Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Chem ; 460(Pt 2): 140657, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106809

RESUMEN

In recent years, the wine industry has shifted towards plant-based fining agents for food safety reasons and consumer preferences. This study analysed the interaction of five plant fibers with red wine phenolic compounds to determinate their performance as fining agents. Chemical composition, polysaccharide profile, and physical properties were examined. Pea, cellulose, and Sauvignon Blanc pomace fibers effectively reduced tannin content while minimally affecting the concentration of anthocyanins, flavonols and wine color. Contrary to previous beliefs, the presence of pectins in fibers didn't play a crucial role in phenolic compound interaction since cellulose-rich fibers with low pectin concentration also bound tannins effectively, especially those with small particle size and high contact surface. Pea fiber, rich in cellulose and pectins, showed remarkable tannin retention while minimally affecting wine color. This research highlights the potential of plant fibers as effective fining agents in wine production and how their composition affects their performance.


Asunto(s)
Vino , Vino/análisis , Taninos/química , Taninos/análisis , Fenoles/química , Fenoles/análisis , Antocianinas/química , Antocianinas/análisis , Vitis/química , Color , Pisum sativum/química , Pectinas/química
2.
Plant Cell Environ ; 47(4): 1238-1254, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173082

RESUMEN

The evolution of land flora was an epochal event in the history of planet Earth. The success of plants, and especially flowering plants, in colonizing all but the most hostile environments required multiple mechanisms of adaptation. The mainly polysaccharide-based cell walls of flowering plants, which are indispensable for water transport and structural support, are one of the most important adaptations to life on land. Thus, development of vasculature is regarded as a seminal event in cell wall evolution, but the impact of further refinements and diversification of cell wall compositions and architectures on radiation of flowering plant families is less well understood. We approached this from a glyco-profiling perspective and, using carbohydrate microarrays and monoclonal antibodies, studied the cell walls of 287 plant species selected to represent important evolutionary dichotomies and adaptation to a variety of habitats. The results support the conclusion that radiation of flowering plant families was indeed accompanied by changes in cell wall fine structure and that these changes can obscure earlier evolutionary events. Convergent cell wall adaptations identified by our analyses do not appear to be associated with plants with similar lifestyles but that are taxonomically distantly related. We conclude that cell wall structure is linked to phylogeny more strongly than to habitat or lifestyle and propose that there are many approaches of adaptation to any given ecological niche.


Asunto(s)
Plantas , Polisacáridos , Polisacáridos/análisis , Filogenia , Plantas/química , Pared Celular/química , Pectinas/análisis , Evolución Biológica
3.
Front Plant Sci ; 13: 1043429, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507451

RESUMEN

Succulence is an adaptation to low water availability characterised by the presence of water-storage tissues that alleviate water stress under low water availability. The succulent syndrome has evolved convergently in over 80 plant families and is associated with anatomical, physiological and biochemical traits. Despite the alleged importance of cell wall traits in drought responses, their significance in the succulent syndrome has long been overlooked. Here, by analyzing published pressure-volume curves, we show that elastic adjustment, whereby plants change cell wall elasticity, is uniquely beneficial to succulents for avoiding turgor loss. In addition, we used comprehensive microarray polymer profiling (CoMPP) to assess the biochemical composition of cell walls in leaves. Across phylogenetically diverse species, we uncover several differences in cell wall biochemistry between succulent and non-succulent leaves, pointing to the existence of a 'succulent glycome'. We also highlight the glycomic diversity among succulent plants, with some glycomic features being restricted to certain succulent lineages. In conclusion, we suggest that cell wall biomechanics and biochemistry should be considered among the characteristic traits that make up the succulent syndrome.

4.
Front Plant Sci ; 13: 785902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35519816

RESUMEN

Polysaccharides constitute an important carbon pool in marine systems, but much is still unknown about the fate and degradation of these compounds. They are derived partly from production in situ, and in coastal areas, they are partly terrestrially derived, originating from freshwater runoff from land. The aim of this study was to test the applicability of high-throughput polysaccharide profiling for plant and algal cell-wall compounds in dated sediment cores from a coastal marine environment, to examine the preservation of cell-wall polysaccharides and explore their potential as proxies for temporal environmental changes. Preserved compounds and remains of organisms are routinely used as paleoenvironmental proxies as the amount and composition of different compounds that can provide insight into past environmental conditions, and novel means for reporting environmental changes are highly sought.

5.
Carbohydr Polym ; 246: 116645, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32747278

RESUMEN

Alginate is a commercially important polysaccharide widely applied in various industries. Carbohydrate-binding proteins could be utilized as desirable tools in the investigation and further applications of polysaccharides. Few alginate-binding proteins have hitherto been characterized and reported. In the present study, a novel alginate-binding protein ABP_Wf, consisting of two "orphan" carbohydrate-binding modules, was cloned from a predicted alginate utilization locus of marine bacterium Wenyingzhuangia funcanilytica, and expressed in Escherichia coli. ABP_Wf exhibited a specific binding capacity to alginate, and the association constant (Ka) and affinity (KD) were 1.94 × 103 M-1s-1 and 1.16 × 10-6 M. It was confirmed that the binding capacity of ABP_Wf to alginate is attributed to its constituent CBM16 domain rather than the CBM44 domain. The potentials of ABP_Wf in the semi-quantitative detection and the in situ visualization of alginate were evaluated, which implied that ABP_Wf could be served as a promising tool for investigating alginate.


Asunto(s)
Alginatos/metabolismo , Proteínas Bacterianas/metabolismo , Flavobacteriaceae/química , Receptores de Superficie Celular/metabolismo , Alginatos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Flavobacteriaceae/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Análisis por Matrices de Proteínas , Unión Proteica , Dominios Proteicos , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Methods Mol Biol ; 2149: 327-337, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617943

RESUMEN

Plant cell walls are composed of a number of coextensive polysaccharide-rich networks (i.e., pectin, hemicellulose, protein). Polysaccharide-rich cell walls are important in a number of biological processes including fruit ripening, plant-pathogen interactions (e.g., pathogenic fungi), fermentations (e.g., winemaking), and tissue differentiation (e.g., secondary cell walls). Applying appropriate methods is necessary to assess biological roles as for example in putative plant gene functional characterization (e.g., experimental evaluation of transgenic plants). Obtaining datasets is relatively easy, using for example gas chromatography-mass spectrometry (GC-MS) methods for monosaccharide composition, Fourier transform infrared spectroscopy (FT-IR) and comprehensive microarray polymer profiling (CoMPP); however, analyzing the data requires implementing statistical tools for large-scale datasets. We have validated and implemented a range of multivariate data analysis methods on datasets from tobacco, grapevine, and wine polysaccharide studies. Here we present the workflow from processing samples to acquiring data to performing data analysis (particularly principal component analysis (PCA) and orthogonal projection to latent structure (OPLS) methods).


Asunto(s)
Pared Celular/química , Células Vegetales/química , Biopolímeros/análisis , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Análisis de Componente Principal
7.
J Biol Chem ; 295(31): 10581-10592, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32493777

RESUMEN

Plant arabinogalactan proteins (AGPs) are a diverse group of cell surface- and wall-associated glycoproteins. Functionally important AGP glycans are synthesized in the Golgi apparatus, but the relationships among their glycosylation levels, processing, and functionalities are poorly understood. Here, we report the identification and functional characterization of two Golgi-localized exo-ß-1,3-galactosidases from the glycosyl hydrolase 43 (GH43) family in Arabidopsis thaliana GH43 loss-of-function mutants exhibited root cell expansion defects in sugar-containing growth media. This root phenotype was associated with an increase in the extent of AGP cell wall association, as demonstrated by Yariv phenylglycoside dye quantification and comprehensive microarray polymer profiling of sequentially extracted cell walls. Characterization of recombinant GH43 variants revealed that the exo-ß-1,3-galactosidase activity of GH43 enzymes is hindered by ß-1,6 branches on ß-1,3-galactans. In line with this steric hindrance, the recombinant GH43 variants did not release galactose from cell wall-extracted glycoproteins or AGP-rich gum arabic. These results indicate that the lack of exo-ß-1,3-galactosidase activity alters cell wall extensibility in roots, a phenotype that could be explained by the involvement of galactosidases in AGP glycan biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Galactosiltransferasas/metabolismo , Glicósido Hidrolasas/metabolismo , Mucoproteínas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Galactosiltransferasas/genética , Glicósido Hidrolasas/genética , Mucoproteínas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética
8.
Plant Cell Environ ; 42(8): 2458-2471, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30980422

RESUMEN

Plants have evolved a multitude of adaptations to survive extreme conditions. Succulent plants have the capacity to tolerate periodically dry environments, due to their ability to retain water in a specialized tissue, termed hydrenchyma. Cell wall polysaccharides are important components of water storage in hydrenchyma cells. However, the role of the cell wall and its polysaccharide composition in relation to drought resistance of succulent plants are unknown. We investigate the drought response of leaf-succulent Aloe (Asphodelaceae) species using a combination of histological microscopy, quantification of water content, and comprehensive microarray polymer profiling. We observed a previously unreported mode of polysaccharide and cell wall structural dynamics triggered by water shortage. Microscopical analysis of the hydrenchyma cell walls revealed highly regular folding patterns indicative of predetermined cell wall mechanics in the remobilization of stored water and the possible role of homogalacturonan in this process. The in situ distribution of mannans in distinct intracellular compartments during drought, for storage, and apparent upregulation of pectins, imparting flexibility to the cell wall, facilitate elaborate cell wall folding during drought stress. We conclude that cell wall polysaccharide composition plays an important role in water storage and drought response in Aloe.


Asunto(s)
Aloe/fisiología , Mananos/metabolismo , Agua/metabolismo , Aloe/citología , Aloe/metabolismo , Pared Celular/metabolismo , Mananos/análisis , Polisacáridos/metabolismo , Polisacáridos/fisiología , Estrés Fisiológico
9.
Cell Surf ; 5: 100033, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32743148

RESUMEN

Cotton fibre provides a unicellular model system for studying cell expansion and secondary cell wall deposition. Mature cotton fibres are mainly composed of cellulose while the walls of developing fibre cells contain a variety of polysaccharides and proteoglycans required for cell expansion. This includes hydroxyproline-rich glycoproteins (HRGPs) comprising the subgroup, extensins. In this study, extensin occurrence in cotton fibres was assessed using carbohydrate immunomicroarrays, mass spectrometry and monosaccharide profiling. Extensin amounts in three species appeared to correlate with fibre quality. Fibre cell expression profiling of the four cotton cultivars, combined with extensin arabinoside chain length measurements during fibre development, demonstrated that arabinoside side-chain length is modulated during development. Implications and mechanisms of extensin side-chain length dynamics during development are discussed.

10.
Biotechnol Biofuels ; 11: 171, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951115

RESUMEN

BACKGROUND: Plants and in particular grasses benefit from a high uptake of silicon (Si) which improves their growth and productivity by alleviating adverse effects of biotic and abiotic stress. However, the silicon present in plant tissues may have a negative impact on the processing and degradation of lignocellulosic biomass. Solutions to reduce the silicon content either by biomass engineering or development of downstream separation methods are therefore targeted. Different cell wall components have been proposed to interact with the silica pool in plant shoots, but the understanding of the underlying processes is still limited. RESULTS: In the present study, we have characterized silicon deposition and cell wall composition in Brachypodium distachyon wild-type and low-silicon 1 (Bdlsi1-1) mutant plants. Our analyses included different organs and plant developmental stages. In the mutant defective in silicon uptake, low silicon availability favoured deposition of this element in the amorphous form or bound to cell wall polymers rather than as silicified structures. Several alterations in non-cellulosic polysaccharides and lignin were recorded in the mutant plants, indicating differences in the types of linkages and in the three-dimensional organization of the cell wall network. Enzymatic saccharification assays showed that straw from mutant plants was marginally more degradable following a 190 °C hydrothermal pretreatment, while there were no differences without or after a 120 °C hydrothermal pretreatment. CONCLUSIONS: We conclude that silicon affects the composition of plant cell walls, mostly by altering linkages of non-cellulosic polymers and lignin. The modifications of the cell wall network and the reduced silicon concentration appear to have little or no implications on biomass recalcitrance to enzymatic saccharification.

11.
Biotechnol Biofuels ; 10: 49, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28250817

RESUMEN

BACKGROUND: Understanding factors that govern lignocellulosic biomass recalcitrance is a prerequisite for designing efficient 2nd generation biorefining processes. However, the reasons and mechanisms responsible for quantitative differences in enzymatic digestibility of various biomass feedstocks in response to hydrothermal pretreatment at different severities are still not sufficiently understood. RESULTS: Potentially important lignocellulosic feedstocks for biorefining, corn stover (Zea mays subsp. mays L.), stalks of Miscanthus × giganteus, and wheat straw (Triticum aestivum L.) were systematically hydrothermally pretreated; each at three different severities of 3.65, 3.83, and 3.97, respectively, and the enzymatic digestibility was assessed. Pretreated samples of Miscanthus × giganteus stalks were the least digestible among the biomass feedstocks producing ~24 to 66.6% lower glucose yields than the other feedstocks depending on pretreatment severity and enzyme dosage. Bulk biomass composition analyses, 2D nuclear magnetic resonance, and comprehensive microarray polymer profiling were not able to explain the observed differences in recalcitrance among the pretreated feedstocks. However, methods characterizing physical and chemical features of the biomass surfaces, specifically contact angle measurements (wettability) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy (surface biopolymer composition) produced data correlating pretreatment severity and enzymatic digestibility, and they also revealed differences that correlated to enzymatic glucose yield responses among the three different biomass types. CONCLUSION: The study revealed that to a large extent, factors related to physico-chemical surface properties, namely surface wettability as assessed by contact angle measurements and surface content of hemicellulose, lignin, and wax as assessed by ATR-FTIR rather than bulk biomass chemical composition correlated to the recalcitrance of the tested biomass types. The data provide new insight into how hydrothermal pretreatment severity affects surface properties of key Poaceae lignocellulosic biomass and may help design new approaches to overcome biomass recalcitrance.

12.
Planta ; 244(2): 347-59, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27072675

RESUMEN

MAIN CONCLUSION: A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling during Tuber melanosporum and Corylus avellana interaction. Cell walls are involved, to a great extent, in mediating plant-microbe interactions. An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes in fully developed C. avellana/T. melanosporum ectomycorrhizae. A localized degradation of pectin seems to occur during fungal colonization, in agreement with the growth of the ectomycorrhizal fungus through the middle lamella and with the fungal gene expression of genes acting on these polysaccharides.


Asunto(s)
Ascomicetos/fisiología , Pared Celular/metabolismo , Corylus/microbiología , Micorrizas , Ascomicetos/enzimología , Ascomicetos/genética , Metabolismo de los Hidratos de Carbono , Pared Celular/ultraestructura , Corylus/metabolismo , Corylus/ultraestructura , Perfilación de la Expresión Génica , Pectinas/análisis , Pectinas/genética , Pectinas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/ultraestructura , Transcriptoma
13.
New Phytol ; 207(3): 805-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25808919

RESUMEN

Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants.


Asunto(s)
Pared Celular/metabolismo , Cuscuta/metabolismo , Interacciones Huésped-Parásitos , Metabolómica , Parásitos/fisiología , Pelargonium/parasitología , Solanum lycopersicum/parasitología , Animales , Cuscuta/citología , Resistencia a la Enfermedad , Epítopos/metabolismo , Glucanos/metabolismo , Solanum lycopersicum/citología , Análisis por Micromatrices , Pectinas/metabolismo , Pelargonium/citología , Enfermedades de las Plantas/parasitología , Tallos de la Planta/fisiología , Plantas Modificadas Genéticamente , Polisacárido Liasas/metabolismo , Polisacáridos/metabolismo , Xilanos/metabolismo
14.
Carbohydr Polym ; 99: 190-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24274496

RESUMEN

Vitis species include Vitis vinifera, the domesticated grapevine, used for wine and grape agricultural production and considered the world's most important fruit crop. A cell wall preparation, isolated from fully expanded photosynthetically active leaves, was fractionated via chemical and enzymatic reagents; and the various extracts obtained were assayed using high-throughput cell wall profiling tools according to a previously optimized and validated workflow. The bulk of the homogalacturonan-rich pectin present was efficiently extracted using CDTA treatment, whereas over half of the grapevine leaf cell wall consisted of vascular veins, comprised of xylans and cellulose. The main hemicellulose component was found to be xyloglucan and an enzymatic oligosaccharide fingerprinting approach was used to analyze the grapevine leaf xyloglucan fraction. When Paenibacillus sp. xyloglucanase was applied the main subunits released were XXFG and XLFG; whereas the less-specific Trichoderma reesei EGII was also able to release the XXXG motif as well as other oligomers likely of mannan and xylan origin. This latter enzyme would thus be useful to screen for xyloglucan, xylan and mannan-linked cell wall alterations in laboratory and field grapevine populations. This methodology is well-suited for high-throughput cell wall profiling of grapevine mutant and transgenic plants for investigating the range of biological processes, specifically plant disease studies and plant-pathogen interactions, where the cell wall plays a crucial role.


Asunto(s)
Pared Celular/química , Hojas de la Planta/química , Vitis/química , Proteínas Bacterianas/química , Celulosa/química , Celulosa/aislamiento & purificación , Fraccionamiento Químico , Ácido Edético/análogos & derivados , Ácido Edético/química , Proteínas Fúngicas/química , Glucanos/química , Glucanos/aislamiento & purificación , Glicósido Hidrolasas/química , Ensayos Analíticos de Alto Rendimiento , Mananos/química , Mananos/aislamiento & purificación , Paenibacillus/química , Paenibacillus/enzimología , Pectinas/química , Pectinas/aislamiento & purificación , Extractos Vegetales/química , Trichoderma/química , Trichoderma/enzimología , Xilanos/química , Xilanos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...