Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38869554

RESUMEN

Quasi-continuous-phase metasurfaces overcome the side effects imposed by high-order diffraction on imaging and can impart optical parameters such as amplitude, phase, polarization, and frequency to incident light at sub-wavelength scales with high efficiency. Structured-light three-dimensional (3D) imaging is a hot topic in the field of 3D imaging because of its advantages of low computation cost, high imaging accuracy, fast imaging speed, and cost-effectiveness. Structured-light 3D imaging requires uniform diffractive optical elements (DOEs), which could be realized by quasi-continuous-phase metasurfaces. In this paper, we design a quasi-continuous-phase metasurface beam splitter through a vector iterative Fourier transform algorithm and utilize this device to realize structured-light 3D imaging of a target object with subsequent target reconstruction. A structured-light 3D imaging system is then experimentally implemented by combining the fabricated quasi-continuous-phase metasurface illuminated by the vertical-cavity surface-emitting laser and a binocular recognition system, which eventually provides a new technological path for the 3D imaging field.

2.
Small ; : e2402842, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923165

RESUMEN

The nacre-inspired multi-nanolayer structure offers a unique combination of advanced mechanical properties, such as strength and crack tolerance, making them highly versatile for various applications. Nevertheless, a significant challenge lies in the current fabrication methods, which is difficult to create a scalable manufacturing process with precise control of hierarchical structure. In this work, a novel strategy is presented to regulate nacre-like multi-nanolayer films with the balance mechanical properties of stiffness and toughness. By utilizing a co-continuous phase structure and an extensional stress field, the hierarchical nanolayers is successfully constructed with tunable sizes using a scalable processing technique. This strategic modification allows the robust phase to function as nacre-like platelets, while the soft phase acts as a ductile connection layer, resulting in exceptional comprehensive properties. The nanolayer-structured films demonstrate excellent isotropic properties, including a tensile strength of 113.5 MPa in the machine direction and 106.3 MPa in a transverse direction. More interestingly, these films unprecedentedly exhibit a remarkable puncture resistance at the same time, up to 324.8 N mm-1, surpassing the performance of other biodegradable films. The scalable fabrication strategy holds significant promise in designing advanced bioinspired materials for diverse applications.

3.
Sensors (Basel) ; 24(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38793986

RESUMEN

In this paper, a dispersion of glass beads of different sizes in an ammonium nitrate solution is investigated with the aid of Raman spectroscopy. The signal losses caused by the dispersion are quantified by an additional scattered light measurement and used to correct the measured ammonium nitrate concentration. Each individual glass bead represents an interface at which the excitation laser is deflected from its direction causing distortion in the received Raman signal. It is shown that the scattering losses measured with the scattered light probe correlate with the loss of the Raman signal, which means that the data obtained can be used to correct the measured values. The resulting correction function considers different particle sizes in the range of 2-99 µm as well as ammonium nitrate concentrations of 0-20 wt% and delivers an RMSEP of 1.952 wt%. This correction provides easier process access to dispersions that were previously difficult or impossible to measure.

4.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257407

RESUMEN

In the present study, the influence of disperse systems on Raman scattering was investigated. How an increasing particle concentration weakens the quantitative signal of the Raman spectrum is shown. Furthermore, the change in the position of the optimal measurement point in the fluid was considered in detail. Additional transmission measurements can be used to derive a simple and robust correction method that allows the actual concentration of the continuous phase to be determined with a standard deviation of 2.6%.

5.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257627

RESUMEN

Wireless sensor network (WSN) underpinning the smart-grid Internet of Things (SG-IoT) has been a popular research topic in recent years due to its great potential for enabling a wide range of important applications. However, the energy consumption (EC) characteristic of sensor nodes is a key factor that affects the operational performance (e.g., lifetime of sensors) and the total cost of ownership of WSNs. In this paper, to find the modulation techniques suitable for WSNs, we investigate the EC characteristic of continuous phase modulation (CPM), which is an attractive modulation scheme candidate for WSNs because of its constant envelope property. We first develop an EC model for the sensor nodes of WSNs by considering the circuits and a typical communication protocol that relies on automatic repeat request (ARQ)-based retransmissions to ensure successful data delivery. Then, we use this model to analyze the EC characteristic of CPM under various configurations of modulation parameters. Furthermore, we compare the EC characteristic of CPM with that of other representative modulation schemes, such as offset quadrature phase-shift keying (OQPSK) and quadrature amplitude modulation (QAM), which are commonly used in communication protocols of WSNs. Our analysis and simulation results provide insights into the EC characteristics of multiple modulation schemes in the context of WSNs; thus, they are beneficial for designing energy-efficient SG-IoT in the beyond-5G (B5G) and the 6G era.

6.
Food Chem ; 439: 138087, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039606

RESUMEN

In a recent letter to the editor Prof Khosravi-Darani responded to our paper ''Unravelling mechanisms of protein and lipid oxidation in mayonnaise at multiple length scales''. In our work, we observed liposomes in the continuous phase of mayonnaise. In the letter the objection was made that liposomes cannot be formed in a non-aqueous phase which, however, was not argued in our publication. As mayonnaise is an oil-in-water (O/W) emulsion and its continuous phase is aqueous, liposomes may be observed in this phase. Therefore, the objection from Prof Khosravi-Darani does not apply to our work.


Asunto(s)
Liposomas , Polímeros , Emulsiones
7.
Micromachines (Basel) ; 14(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37512590

RESUMEN

The formation of microparticles (MPs) of biocompatible and biodegradable hydrogels such as polyethylene glycol diacrylate (PEGDA) utilizing microfluidic devices is an attractive option for entrapment and encapsulation of active principles and microorganisms. Our research group has presented in previous studies a formulation to produce these hydrogels with adequate physical and mechanical characteristics for their use in the formation of MPs. In this work, hydrogel MPs are formed based on PEGDA using a microfluidic device with a T-junction design, and the MPs become hydrogel through a system of photopolymerization. The diameters of the MPs are evaluated as a function of the hydrodynamic condition flow rates of the continuous (Qc) and disperse (Qd) phases, measured by optical microscopy, and characterized through scanning electron microscopy. As a result, the following behavior is found: the diameter is inversely proportional to the increase in flow in the continuous phase (Qc), and it has a significant statistical effect that is greater than that in the flow of the disperse phase (Qd). While the diameter of the MPs is proportional to Qd, it does not have a significant statistical effect on the intervals of flow studied. Additionally, the MPs' polydispersity index (PDI) was measured for each experimental hydrodynamic condition, and all values were smaller than 0.05, indicating high homogeneity in the MPs. The microparticles have the potential to entrap pharmaceuticals and microorganisms, with possible pharmacological and bioremediation applications.

8.
Entropy (Basel) ; 25(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37509932

RESUMEN

In this review, we establish a relation between information erasure and continuous phase transitions. The order parameter, which characterizes these transitions, measures the order of the systems. It varies between 0, when the system is completely disordered, and 1, when the system is completely ordered. This ordering process can be seen as information erasure by resetting a certain number of bits to a standard value. The thermodynamic entropy in the partially ordered phase is given by the information-theoretic expression for the generalized Landauer bound in terms of error probability. We will demonstrate this for the Hopfield neural network model of associative memory, where the Landauer bound sets a lower limit for the work associated with 'remembering' rather than 'forgetting'. Using the relation between the Landauer bound and continuous phase transition, we will be able to extend the bound to analog computing systems. In the case of the erasure of an analog variable, the entropy production per degree of freedom is given by the logarithm of the configurational volume measured in units of its minimal quantum.

9.
Int J Biol Macromol ; 240: 124491, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37076066

RESUMEN

FCP-2-1, a water-soluble polysaccharide rich in galacturonic acid was isolated by continuous phase-transition extraction and purified with DEAE-52 cellulose and Sephadex G-100 column chromatography from finger citron with essential oil and flavonoids removed. The structural characterization and immunomodulatory activity of FCP-2-1 were further investigated in this work. FCP-2-1 with a Mw and Mn of 1.503 × 104 g/mol and 1.125 × 104 g/mol, respectively, was predominantly composed of galacturonic acid, galactose, and arabinose in a molar ratio of 0.685: 0.032: 0.283. The main linkage types of FCP-2-1 were proved to be →5)-α-L-Araf-(1→ and →4)-α-D-GalpA-(1→ based on methylation and NMR analysis. Moreover, FCP-2-1 was demonstrated to have significant immunomodulatory effects on macrophages in vitro by improving the cell viability, and enhancing phagocytic activity and secretion of NO and cytokines (IL-1ß, IL-6, IL-10 and TNF-α), indicating that FCP-2-1 could be used as a natural agent in immunoregulation functional foods.


Asunto(s)
Citocinas , Polisacáridos , Polisacáridos/química , Ácidos Hexurónicos/química , Macrófagos
10.
J Agric Food Chem ; 71(11): 4717-4728, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36892016

RESUMEN

Emulsions fortified with polyunsaturated fatty acids are highly relevant from a nutritional perspective; however, such products are prone to lipid oxidation. In the current work, this is mitigated by the use of natural antioxidants occurring in coffee. Coffee fractions with different molecular weights were extracted from roasted coffee beans. These components were positioned either at the interface or in the continuous phase of emulsions where they contributed to emulsion stability via different pathways. Coffee brew as a whole, and its high-molecular-weight fraction (HMWF), was able to form emulsions with good physical stability and excellent oxidative stability. When added post-homogenization to the continuous phase of dairy protein-stabilized emulsions, all coffee fractions were able to slow down lipid oxidation considerably without altering the physical stability of emulsions, though HMWF was more effective in retarding lipid oxidation than whole coffee brew or low-molecular-weight fraction. This is caused by various effects, such as the antioxidant properties of coffee extracts, the partitioning of components in the emulsions, and the nature of the phenolic compounds. Our research shows that coffee extracts can be used effectively as multifunctional stabilizers in dispersed systems leading to emulsion products with high chemical and physical stability.


Asunto(s)
Antioxidantes , Ácidos Grasos Insaturados , Antioxidantes/análisis , Antioxidantes/química , Emulsiones/química , Oxidación-Reducción , Estrés Oxidativo , Agua/química , Polifenoles/análisis , Polifenoles/química
11.
Micromachines (Basel) ; 13(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36557350

RESUMEN

A full PDMS micro-droplet chip for 3D cell culture was prepared by using SLA light-curing 3D printing technology. This technology can quickly customize various chips required for experiments, saving time and capital costs for experiments. Moreover, an injection molding method was used to prepare the full PDMS chip, and the convex mold was prepared by light-curing 3D printing technology. Compared with the traditional preparation process of micro-droplet chips, the use of 3D printing technology to prepare micro-droplet chips can save manufacturing and time costs. The different ratios of PDMS substrate and cover sheet and the material for making the convex mold can improve the bonding strength and power of the micro-droplet chip. Use the prepared micro-droplet chip to carry out micro-droplet forming and manipulation experiments. Aimed to the performance of the full PDMS micro-droplet chip in biological culture was verified by using a solution such as chondrocyte suspension, and the control of the micro-droplet was achieved by controlling the flow rate of the dispersed phase and continuous phase. Experimental verification shows that the designed chip can meet the requirements of experiments, and it can be observed that the micro-droplets of sodium alginate and the calcium chloride solution are cross-linked into microspheres with three-dimensional (3D) structures. These microspheres are fixed on a biological scaffold made of calcium silicate and polyvinyl alcohol. Subsequently, the state of the cells after different time cultures was observed, and it was observed that the chondrocytes grew well in the microsphere droplets. The proposed method has fine control over the microenvironment and accurate droplet size manipulation provided by fluid flow compared to existing studies.

12.
Sensors (Basel) ; 22(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36366015

RESUMEN

With the standardization and commercialization of 5G, research on 6G technology has begun. In this paper, a new low-complexity soft-input-soft-output (SISO) adaptive detection algorithm for short CPM bursts is proposed for low-power, massive Internet of Things (IoT) connectivity in 6G. First, a time-invariant trellis is constructed on the basis of truncation in order to reduce the number of states. Then, adaptive channel estimators, recursive least squares (RLS), or least mean squares (LMS), are assigned to each hypothetical sequence by using the recursive structure of the trellis, and per-survivor processing (PSP) is used to improve the quality of channel estimation and reduce the number of searching paths. Then, the RLS adaptive symbol detector (RLS-ASD) and LMS adaptive symbol detector (LMS-ASD) could be acquired. Compared to using a least-squares estimator, the RLS-ASD avoids matrix inversion for the computation of branch metrics, while the LMS-ASD further reduces the steps in the RLS-ASD at the cost of performance. Lastly, a soft information iteration process is used to further improve performance via turbo equalization. Simulation results and analysis show that the RLS-ASD improves performance by about 1 dB compared to the state-of-the-art approach in time-variant environments while keeping a similar complexity. In addition, the LMS-ASD could further significantly reduce complexity with a power loss of approximately 1 dB. Thus, a flexible choice of detectors can achieve a trade-off of performance and complexity.


Asunto(s)
Internet de las Cosas , Procesamiento de Señales Asistido por Computador , Análisis de los Mínimos Cuadrados , Algoritmos , Simulación por Computador
13.
Adv Sci (Weinh) ; 9(34): e2204721, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257832

RESUMEN

In solid state physics, phase transitions can influence material functionality and alter their properties. In mechanical metamaterials, structural-phase transitions can be achieved through instability or buckling of certain structural elements. However, these fast transitions in one mechanical parameter typically affect significantly the remaining parameters, hence, limiting their applications. Here, this limitation is addressed by designing a novel 3D mechanical metamaterial that is capable of undergoing a phase transition from positive to negative Poisson's ratio under compression, without significant degradation of Young's modulus (i.e. the phase transition is elastically-stable). The metamaterial is fabricated by two-photon lithography at the micro-scale and its mechanical behavior is assessed experimentally. For another choice of structural parameters, it is then shown that the auxetic behavior of the considered 3D metamaterial class can be maintained over a wide range of applied compressive strain.

14.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080964

RESUMEN

With the surge of Internet of Things (IoT) applications using unmanned aerial vehicles (UAVs), there is a huge demand for an excellent complexity/power efficiency trade-off and channel fading resistance at the physical layer. In this paper, we consider the blind equalization of short-continuous-phase-modulated (CPM) burst for UAV-aided IoT. To solve the problems of the high complexity and poor convergence of short-burst CPM blind equalization, a novel turbo blind equalization algorithm is proposed based on establishing a new expectation-maximization Viterbi (EMV) algorithm and turbo scheme. Firstly, a low complexity blind equalization algorithm is obtained by applying the soft-output Lazy Viterbi algorithm within the EM algorithm iteration. Furthermore, a set of initializers that achieves a high global convergence probability is designed by the blind channel-acquisition (BCA) method. Meanwhile, a soft information iterative process is used to improve the system performance. Finally, the convergence, bit error rate, and real-time performance of iterative detection can be further improved effectively by using improved exchange methods of extrinsic information and the stopping criterion. The analysis and simulation results show that the proposed algorithm achieves a good blind equalization performance and low complexity.

15.
Sensors (Basel) ; 22(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35632230

RESUMEN

The continuous phase modulation (CPM) technique is an excellent solution for underwater acoustic (UWA) channels with limited bandwidth and high propagation attenuation. However, the severe intersymbol interference is a big problem for the algorithm applying in shallow water. To solve this problem, an algorithm for prefiltered single-carrier frequency-domain equalization (PF-SCFDE) is presented in this paper. The regular whitening filter is replaced by a prefilter in the proposed algorithm. The output information sequence of this prefilter contains the forward information. To improve the performance, the output of the equalizer, combined with the forward information, is used to make the maximum likelihood estimation. The simulation results with minimum-shift keying and Gaussian-filtered minimum-shift keying signals over shallow water acoustic channels with low root mean square delay spread demonstrate that PF-SCFDE outperformed the traditional single-carrier frequency-domain equalization (SCFDE) by approximately 1 dB under a bit error rate (BER) of 10-4. A shallow sea trial has demonstrated the effectiveness of PF-SCFDE; PF-SCFDE had a reduction in BER of 18.35% as compared to the traditional SCFDE.

16.
Biology (Basel) ; 10(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34440047

RESUMEN

The immature honey pomelo fruit (IPF) is a huge agro-industrial by-product generated during pomelo planting. Although IPF is rich in nutrients, more than 95% of IPF is discarded annually, which causes resource waste and a serious environmental problem. Here, we report a novel continuous phase transition extraction technology (CPTE) to improve the comprehensive utilization of IPF by sequentially generating high value products and solve pollution problems related to their disposal. First, essential oil was successively extracted by CPTE at a yield of 1.12 ± 0.36%, in which 43 species were identified. Second, naringin extraction parameters were optimized using the response surface methodology (RSM), resulting in a maximum extraction rate of 99.47 ± 0.15%. Finally, pectin was extracted at a yield of 20.23 ± 0.66%, which is similar to the contents of commercial pectin. In conclusion, this study suggested that IPF was an excellent potential substrate for the production of value-added components by CPTE.

17.
Micromachines (Basel) ; 12(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200977

RESUMEN

The continuous phase plate (CPP) is the vital diffractive optical element involved in laser beam shaping and smoothing in high-power laser systems. The high gradients, small spatial periods, and complex features make it difficult to achieve high accuracy when manufacturing such systems. A high-accuracy and high-efficiency surface topography manufacturing method for CPP is presented in this paper. The atmospheric pressure plasma jet (APPJ) system is presented and the removal characteristics are studied to obtain the optimal processing parameters. An optimized iterative algorithm based on the dwell point matrix and a fast Fourier transform (FFT) is proposed to improve the accuracy and efficiency in the dwell time calculation process. A 120 mm × 120 mm CPP surface topography with a 1326.2 nm peak-to-valley (PV) value is fabricated with four iteration steps after approximately 1.6 h of plasma processing. The residual figure error between the prescribed surface topography and plasma-processed surface topography is 28.08 nm root mean square (RMS). The far-field distribution characteristic of the plasma-fabricated surface is analyzed, for which the energy radius deviation is 11 µm at 90% encircled energy. The experimental results demonstrates the potential of the APPJ approach for the manufacturing of complex surface topographies.

18.
Food Sci Nutr ; 8(3): 1636-1648, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32180971

RESUMEN

The development of antiaging functional products is a hot topic in the field of functional foods. However, the efficient extraction of functional ingredients is the limiting step for the functional food industry. Continuous phase-transition extraction (CPE) is a new extraction technique that combines the advantages of Soxhlet extraction and supercritical extraction, which may have a distinct advantage over traditional methods in the extraction of flavonoids. In our study, the Box-Behnken design combined with response surface methodology was used to optimize CPE of crude flavonoids from finger citron fruit. The antiaging activities of finger citron crude flavonoids (FCCF) were evaluated by Caenorhabditis elegans (C. elegans) model. The optimal extraction conditions for CPE were as follows: ethanol concentration 85%, temperature 90°C, time 120 min, and pressure 0.2 MPa. Compared with the heat reflux extraction, the extraction rate and content of FCCF extracted by CPE increased by 24.28% and 33.22% (p < .05), respectively. FCCF extended the lifespan of C. elegans by 14.94% without causing adverse effects on their reproduction and locomotion ability. A further analysis suggested that FCCF prolonged the lifespan of nematodes under normal and oxidative stress by increasing the activity of major enzymes in endogenous antioxidant defense system and reducing the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA). The results confirmed the effectiveness of CPE in extracting crude flavonoids from finger citron fruit, and the extracted FCCF exhibited strong antiaging activities.

19.
HardwareX ; 8: e00121, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35498249

RESUMEN

Hydrogel beads are widely used in various applications, but producing such beads often requires complicated devices. Instead, we propose an easy-to-adopt, cost effective, open source hydrogel bead generator. This generator consists of two modules. The first module rotates two immiscible liquids in rigid body motion: mineral oil as the continuous phase (CP) liquid on top, and a hydrogel cross-linking (CL) liquid at bottom. The second module injects a hydrogel pre-polymer solution as the dispersed phase (DP) liquid into the rotating CP liquid. As the DP liquid flows out of a syringe needle, its drops are pinched off by the shear force from the CP liquid, and move with the CP liquid while settling down. When the drops enter the CL liquid, they become hydrogel beads. Experiments using water and mineral oil showed that the size of produced drops could be controlled by adjusting the flow speed of the CP and DP liquids. A demonstration using alginate showed that the proposed generator could successfully create alginate gel beads of uniform size and shape.

20.
Micromachines (Basel) ; 10(4)2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-31003501

RESUMEN

A multi-aperture atmospheric pressure plasma processing (APPP) method was proposed to structure the continuous phase plate (CPP). The APPP system was presented and removal investigation showed the removal function of APPP was of a high repeatability and robustness to the small disturbance of gas flows. A mathematical model for the multi-aperture structuring process was established and the simulation analysis indicated the advantages of the proposed method in terms of balancing the efficiency and accuracy of the process. The experimental results showed that multi-aperture APPP has the ability to structure a 30 mm × 30 mm CPP with the accuracy of 163.4 nm peak to valley (PV) and 31.7 nm root mean square (RMS).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...