Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Clin Med ; 13(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124830

RESUMEN

Background/Objectives: This study aimed to examine the postoperative changes in the corneal biomechanical properties between solo cataract surgery and solo microhook ab interno trabeculotomy (LOT). Methods: This retrospective case-control study included 37 eyes belonging to 26 patients who underwent solo cataract surgery and 37 eyes belonging to 31 patients who underwent solo µLOT. These two groups were matched according to their preoperative intraocular pressure (IOP), axial length (AL), and age. Corneal Visualization Scheimpflug Technology (Corvis ST) was used to obtain four biomechanical parameters representing the corneal stiffness or corneal deformation at the highest concavity, including stiffness parameter A1 (SP-A1), stress-strain index (SSI), peak distance (PD), and deflection amplitude max (DefAmpMax). These parameters were compared preoperatively and 6 months postoperatively, and between the two surgical groups. Results: Preoperatively, the patients' IOP, age, and AL, as well as their results in four Corvis ST parameters, were similar between the two groups (p > 0.05). No significant difference was observed in SP-A1; however, PD and DefAmpMax were significantly larger, and SSI was significantly smaller postoperatively in the LOT group than in the cataract group. Conclusions: Corneal stiffness was reduced, and the cornea was more deformed with LOT than cataract surgery.

2.
Front Bioeng Biotechnol ; 12: 1406870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119274

RESUMEN

Introduction: Glaucoma, a leading cause of blindness worldwide, is primarily caused by elevated intraocular pressure (IOP). Accurate and reliable IOP measurements are the key to diagnose the pathology in time and to provide for effective treatment strategies. The currently available methods for measuring IOP include contact and non contact tonometers (NCT), which estimate IOP based on the corneal deformation caused by an external load, that in the case of NCT is an air pulse. The deformation of the cornea during the tonometry is the result of the coupling between the IOP, the mechanical properties of the corneal tissue, the corneal thickness, and the external force applied. Therefore, there is the need to decouple the four contributions to estimate the IOP more reliably. Methods: This paper aims to propose a new methodology to estimate the IOP based on the analysis of the mechanical work performed by the air jet and by the IOP during the NCT test. A numerical eye model is presented, initially deformed by the action of a falling mass to study the energy balance. Subsequently, Fluid-Structure Interaction (FSI) simulations are conducted to simulate the action of Corvis ST. Results and discussion: The new IOP estimation procedure is proposed based on the results of the simulations. The methodology is centred on the analysis of the time of maximum apex velocity rather than the point of first applanation leading to a new IOP estimation not influenced by the geometrical and mechanical corneal factors.

3.
Int Ophthalmol ; 44(1): 302, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954134

RESUMEN

PURPOSE: To compare early changes in the corneal biomechanical parameters after photorefractive keratectomy (PRK) and small incision lenticule extraction (SMILE) and their correlations with corneal shape parameters. METHODS: One hundred twenty four eyes received myopic PRK and SMILE for similar amounts of myopia. Corneal tomography with Pentacam HR, biomechanical parameters using Corvis ST, and Ocular Response Analyzer (ORA) were evaluated before and 2 weeks after surgery. The change in each parameter was compared between groups, while the difference in central corneal thickness and cornea-compensated intraocular pressure measured before and after surgery were considered as covariates. RESULTS: A significant reduction was seen in the corneal stiffness parameter at first applanation, and an increase in deformation amplitude ratio (DAR), and integrated inverse radius (IIR) in both groups after surgery (p < 0.001) Changes in DAR, and IIR were significantly greater in the SMILE than in the PRK group (p < 0.001) Corneal hysteresis (CH) and corneal resistance factor (CRF) decreased in both SMILE and PRK groups after surgery, (p < 0.001) with no statistically significant difference between groups (p > 0.05) Among new Corvis ST parameters, DAR showed a significant correlation with changes in Ambrosio relational thickness in both groups (p < 0.05). CONCLUSIONS: Both techniques caused significant changes in corneal biomechanics in the early postoperative period, with greater elastic changes in the SMILE group compared to the PRK group, likely due to lower tension in the SMILE cap and thinner residual stromal bed in SMILE. There were no differences in viscoelastic changes between them, so the lower CH may reflect the volume of tissue removed.


Asunto(s)
Córnea , Elasticidad , Miopía , Queratectomía Fotorrefractiva , Humanos , Queratectomía Fotorrefractiva/métodos , Miopía/cirugía , Miopía/fisiopatología , Córnea/cirugía , Córnea/fisiopatología , Córnea/diagnóstico por imagen , Femenino , Masculino , Adulto , Elasticidad/fisiología , Fenómenos Biomecánicos , Adulto Joven , Láseres de Excímeros/uso terapéutico , Presión Intraocular/fisiología , Cirugía Laser de Córnea/métodos , Refracción Ocular/fisiología , Topografía de la Córnea , Sustancia Propia/cirugía , Periodo Posoperatorio , Agudeza Visual/fisiología , Estudios Prospectivos , Estudios de Seguimiento
4.
Sci Rep ; 14(1): 16930, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043930

RESUMEN

This study aims to investigate the changes in ocular biomechanical factors in patients with inactive thyroid eye disease (TED) who undergo orbital decompression surgery. This observational prospective study include 46 eyes of 31 patients with inactive TED undergoing orbital decompression at a tertiary university hospital from October 2021 to September 2023. All participants underwent a full ophthalmic examination, and a biomechanical examination was performed using corvis ST at baseline, 1 month, and 3 months postoperatively. The study participants had a mean age of 45 ± 11.6 years, and 58.1% of them were female. The second applanation time (A2T) increased from baseline to postoperative month 1 and continued to increase to postoperative month 3 (P < 0.001). The first applanation velocity (A1V), highest concavity (HC) peak distance, and pachymetry parameters also increased from postoperative month 1 to postoperative month 3 (P = 0.035, P = 0.005, and P = 0.031, respectively). The HC time increased from baseline to postoperative month 3 (P = 0.027). Other changes were statistically insignificant. The P-values were adjusted according to biomechanically corrected intraocular pressure (bIOP). Baseline Hertel significantly influenced A2 time (P < 0.001). Our findings suggest that ocular biomechanical parameters may change following decompression surgery in patients with inactive TED. Specifically, an increase in A2T, A1V, and HC peak distance suggests a decrease in corneal stiffness, although the increased HC time contradicts this. It is recommended to postpone keratorefractive or intraocular lens implantation surgeries until corneal biomechanics stabilize after decompression surgery for optimal results.


Asunto(s)
Córnea , Descompresión Quirúrgica , Oftalmopatía de Graves , Presión Intraocular , Humanos , Femenino , Persona de Mediana Edad , Masculino , Descompresión Quirúrgica/métodos , Oftalmopatía de Graves/cirugía , Oftalmopatía de Graves/fisiopatología , Córnea/cirugía , Córnea/fisiopatología , Adulto , Fenómenos Biomecánicos , Estudios Prospectivos , Presión Intraocular/fisiología , Órbita/cirugía
5.
Front Med (Lausanne) ; 11: 1384694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071083

RESUMEN

Purpose: To compare corneal biomechanical properties and intraocular pressure (IOP) measurements in patients who underwent Descemet's stripping with endothelial keratoplasty (DSEK) with those of the follow healthy eyes. Methods: In this retrospective comparative study, a total of 35 eyes of 35 patients who underwent DSEK by a single surgeon from 2015.02 to 2019.12 were enrolled along with their fellow healthy eyes. Corneal biomechanical parameters were assessed at least 3 months post-DSEK using Corneal Visualization Scheimpflug Technology (CST). IOP was measured by CST, Goldmann applanation tonometry (GAT), and MacKay-Marg tonometer. Results: Central corneal thickness (CCT) and stiffness parameter at first applanation (SP-A1) were significantly increased after DSEK when compared to the fellow eyes. In DSEK eyes, biomechanically-corrected intraocular pressure (bIOP) and MacKay-Marg IOP correlated significantly with GAT IOP measurements, with bIOP showed the lowest IOP values. All the IOP values did not correlate with CCT. However, GAT-IOP and MacKay-Marg IOP showed a positive correlation with SP-A1. Conclusion: The corneal stiffness increased after DSEK. Central corneal thickness may have less influence than corneal biomechanics on IOP measurements in eyes after DSEK. Biomechanically-corrected IOP obtained by CST seemed to be lower than other tonometry techniques in DSEK eyes, perhaps because of correction for corneal stiffness, CCT and age.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38884654

RESUMEN

PURPOSE: To evaluate the biomechanical and tomographic outcomes of keratoconus patients up to four years after corneal crosslinking (CXL). METHODS: In this longitudinal retrospective-prospective single-center case series, the preoperative tomographic and biomechanical results from 200 keratoconus eyes of 161 patients undergoing CXL were compared to follow-up examinations at three-months, six-months, one-year, two-years, three-years, and four-years after CXL. Primary outcomes included the Corvis Biomechanical Factor (CBiF) and five biomechanical response parameters obtained from the Corvis ST. Tomographically, the Belin-Ambrósio deviation index (BAD-D) and the maximal keratometry (Kmax) measured by the Pentacam were analyzed. Additionally, Corvis E-staging, the thinnest corneal thickness (TCT), and the best-corrected visual acuity (BCVA) were obtained. Primary outcomes were compared using a paired t-test. RESULTS: The CBiF decreased significantly at the six-month (p < 0.001) and one-year (p < 0.001) follow-ups when compared to preoperative values. E-staging behaved accordingly to the CBiF. Within the two- to four-year follow-ups, the biomechanical outcomes showed no significant differences when compared to preoperative. Tomographically, the BAD-D increased significantly during the first year after CXL with a maximum at six-months (p < 0.001), while Kmax decreased significantly (p < 0.001) and continuously up to four years after CXL. The TCT was lower at all postoperative follow-up visits compared to preoperative, and the BCVA improved. CONCLUSION: In the first year after CXL, there was a temporary progression in both the biomechanical CBiF and E-staging, as well as in the tomographic analysis. CXL contributes to the stabilization of both the tomographic and biomechanical properties of the cornea up to four years postoperatively.

7.
Bioengineering (Basel) ; 11(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38790296

RESUMEN

PURPOSE: This study aimed to employ the incremental digital image correlation (DIC) method to obtain displacement and strain field data of the cornea from Corvis ST (CVS) sequences and access the performance of embedding these biomechanical data with machine learning models to distinguish forme fruste keratoconus (FFKC) from normal corneas. METHODS: 100 subjects were categorized into normal (N = 50) and FFKC (N = 50) groups. Image sequences depicting the horizontal cross-section of the human cornea under air puff were captured using the Corvis ST tonometer. The high-speed evolution of full-field corneal displacement, strain, velocity, and strain rate was reconstructed utilizing the incremental DIC approach. Maximum (max-) and average (ave-) values of full-field displacement V, shear strain γxy, velocity VR, and shear strain rate γxyR were determined over time, generating eight evolution curves denoting max-V, max-γxy, max-VR, max-γxyR, ave-V, ave-γxy, ave-VR, and ave-γxyR, respectively. These evolution data were inputted into two machine learning (ML) models, specifically Naïve Bayes (NB) and Random Forest (RF) models, which were subsequently employed to construct a voting classifier. The performance of the models in diagnosing FFKC from normal corneas was compared to existing CVS parameters. RESULTS: The Normal group and the FFKC group each included 50 eyes. The FFKC group did not differ from healthy controls for age (p = 0.26) and gender (p = 0.36) at baseline, but they had significantly lower bIOP (p < 0.001) and thinner central cornea thickness (CCT) (p < 0.001). The results demonstrated that the proposed voting ensemble model yielded the highest performance with an AUC of 1.00, followed by the RF model with an AUC of 0.99. Radius and A2 Time emerged as the best-performing CVS parameters with AUC values of 0.948 and 0.938, respectively. Nonetheless, no existing Corvis ST parameters outperformed the ML models. A progressive enhancement in performance of the ML models was observed with incremental time points during the corneal deformation. CONCLUSION: This study represents the first instance where displacement and strain data following incremental DIC analysis of Corvis ST images were integrated with machine learning models to effectively differentiate FFKC corneas from normal ones, achieving superior accuracy compared to existing CVS parameters. Considering biomechanical responses of the inner cornea and their temporal pattern changes may significantly improve the early detection of keratoconus.

8.
Front Bioeng Biotechnol ; 12: 1323612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558790

RESUMEN

Purpose: To evaluate the change in corneal biomechanics in patients with postoperative ectasia risk when combining two common laser vision correction procedures (tPRK and FS-LASIK) with cross-linking (in tPRK Xtra and FS-LASIK Xtra). Methods: The study included 143 eyes of 143 myopic, astigmatic patients that were divided into non-cross-linked refractive surgery groups (non-Xtra groups, tPRK and FS-LASIK) and cross-linked groups (Xtra groups, tPRK Xtra and FS-LASIK Xtra) according to an ectasia risk scoring system. The eyes were subjected to measurements including the stress-strain index (SSI), the stiffness parameter at first applanation (SP-A1), the integrated inverse radius (IIR), the deformation amplitude at apex (DA), and the ratio of deformation amplitude between apex and 2 mm from apex (DARatio2mm). The measurements were taken preoperatively and at 1, 3, and 6 months postoperatively (pos1m, pos3m, and pos6m). Posterior demarcation line depth from the endothelium (PDLD) and from the ablation surface (DLA) were recorded at pos1m. Results: SP-A1 significantly decreased, while IIR, deformation amplitude, and DARatio2mm increased significantly postoperatively in all four groups (p < 0.01)-all denoting stiffness decreases. In the FS-LASIK group, the changes in IIR, DA, and DARatio2mm were 32.7 ± 15.1%, 12.9 ± 7.1%, and 27.2 ± 12.0% respectively, which were significantly higher (p < 0.05) compared to 20.1 ± 12.8%, 6.4 ± 8.2%, and 19.7 ± 10.4% in the FS-LASIK Xtra group. In the tPRK group, the change in IIR was 27.3 ± 15.5%, significantly larger than 16.9 ± 13.4% in the tPRK Xtra group. The changes of SSI were minimal in the tPRK (-1.5 ± 21.7%, p = 1.000), tPRK Xtra (8.4 ± 17.9%, p = 0.053), and FS-LASIK Xtra (5.6 ± 12.7%, p = 0.634) groups, but was significant in the FS-LASIK group (-12.1 ± 7.9%, p < 0.01). After correcting for baseline biomechanical metrics, preoperative bIOP and the change in central corneal thickness (△CCT) from pre to pos6m, the changes in the IIR in both FS-LASIK and tPRK groups, as well as DA, DARatio2mm and SSI in the FS-LASIK group remained statistically greater than their corresponding Xtra groups (all p < 0.05). Most importantly, after correcting for these covariates, the changes in DARatio2mm in the FS-LASIK Xtra became statistically smaller than in the tPRK Xtra (p = 0.017). Conclusion: The statistical analysis results indicate that tPRK Xtra and FS-LASIK Xtra effectively reduced the biomechanical losses caused by refractive surgery (tPRK and FS-LASIK). The decrease in corneal overall stiffness was greater in FS-LASIK than in tPRK, and the biomechanical enhancement of CXL was also higher following LASIK than after tPRK.

9.
Curr Eye Res ; 49(8): 798-802, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38629736

RESUMEN

PURPOSE: To investigate the percent change in central corneal thickness (%ΔCCT) during air-puff-induced deformation as an indicator of corneal biomechanical response. METHODS: Forty ex vivo human eyes from forty donors were imaged using the CorVis ST at experimentally controlled intraocular pressure (IOP) of 10, 20, 30, and 40 mmHg, followed by uniaxial strip testing to calculate tensile modulus. The CorVis ST research software tracked the anterior and posterior cornea edges and determined the dynamic corneal response (DCR) parameters. Eyes were excluded if image quality or posterior tracking issues were present. Custom algorithms were used to calculate CCT during deformation using a ray-tracing method to correct for Scheimpflug and optical distortion within each image. Correlation and stepwise regression analyses between the shape-related DCR parameters and %ΔCCT were conducted. A mixed model analysis was performed to test the effect of IOP and the strongest significant predictors of the stepwise regression on %ΔCCT. The significance threshold was set to p < 0.05. RESULTS: Thirty eyes were ultimately analyzed and CCT increased significantly from the pre-deformation state to the highest concavity state at each IOP level (p < 0.001). IOP and multiple shape DCRs were found to be significantly related to %ΔCCT (p < 0.0001). The strongest predictor of %ΔCCT was integrated inverse radius (IIR) (p < 0.0001; partial R2 = 0.4772) with no other parameter having a partial R2 value greater than 0.04. The mixed model analysis showed that IIR was the sole predictor (p = 0.0098) and IOP was no longer significant as a single predictor. However, the interaction of IIR with IOP (p = 0.0023) had a significant effect on %ΔCCT. CONCLUSION: Percent change in CCT is influenced by corneal stiffness as indicated by the significant relationship with IIR. The %ΔCCT may be a potential biomarker for determining differences in corneal deformation response with corneal diseases.


Asunto(s)
Córnea , Presión Intraocular , Humanos , Córnea/fisiología , Córnea/diagnóstico por imagen , Presión Intraocular/fisiología , Masculino , Femenino , Fenómenos Biomecánicos/fisiología , Persona de Mediana Edad , Anciano , Adulto , Elasticidad/fisiología , Donantes de Tejidos , Paquimetría Corneal , Tonometría Ocular , Anciano de 80 o más Años
10.
Comput Biol Med ; 172: 108286, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493602

RESUMEN

PURPOSE: To ascertain whether the integration of raw Corvis ST data with an end-to-end CNN can enhance the diagnosis of keratoconus (KC). METHOD: The Corvis ST is a non-contact device for in vivo measurement of corneal biomechanics. The CorNet was trained and validated on a dataset consisting of 1786 Corvis ST raw data from 1112 normal eyes and 674 KC eyes. Each raw data consists of the anterior and posterior corneal surface elevation during air-puff induced dynamic deformation. The architecture of CorNet utilizes four ResNet-inspired convolutional structures that employ 1 × 1 convolution in identity mapping. Gradient-weighted Class Activation Mapping (Grad-CAM) was adopted to visualize the attention allocation to diagnostic areas. Discriminative performance was assessed using metrics including the AUC of ROC curve, sensitivity, specificity, precision, accuracy, and F1 score. RESULTS: CorNet demonstrated outstanding performance in distinguishing KC from normal eyes, achieving an AUC of 0.971 (sensitivity: 92.49%, specificity: 91.54%) in the validation set, outperforming the best existing Corvis ST parameters, namely the Corvis Biomechanical Index (CBI) with an AUC of 0.947, and its updated version for Chinese populations (cCBI) with an AUC of 0.963. Though the ROC curve analysis showed no significant difference between CorNet and cCBI (p = 0.295), it indicated a notable difference between CorNet and CBI (p = 0.011). The Grad-CAM visualizations highlighted the significance of corneal deformation data during the loading phase rather than the unloading phase for KC diagnosis. CONCLUSION: This study proposed an end-to-end CNN approach utilizing raw biomechanical data by Corvis ST for KC detection, showing effectiveness comparable to or surpassing existing parameters provided by Corvis ST. The CorNet, autonomously learning comprehensive temporal and spatial features, demonstrated a promising performance for advancing KC diagnosis in ophthalmology.


Asunto(s)
Queratocono , Humanos , Queratocono/diagnóstico , Topografía de la Córnea , Córnea/diagnóstico por imagen , Curva ROC , Fenómenos Biomecánicos
11.
Oman J Ophthalmol ; 17(1): 47-52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524314

RESUMEN

AIM: The purpose is to study the corneal stress-strain index (SSI) in myopic refractive error among Indian subjects. METHODS: A retrospective study where young myopic subjects aged between 11 and 35 years who had undergone corneal biomechanics assessment using Corvis ST between January 2017 and December 2021 were enrolled. Subjects with central corneal thickness (CCT) <500 µ, intraocular pressure (IOP) >21 mmHg, history of any systemic and ocular disease or any previous ocular surgery, high astigmatism, corneal disease such as keratoconus were excluded. Subjects with missing data or having poor quality scan were excluded. Corneal biomechanical properties and corneal SSI were assessed using Corvis ST. For statistical purposes, eyes were divided into four different groups and were analyzed using one-way ANOVA. RESULTS: Nine hundred and sixty-six myopic eyes with mean ± standard deviation age, IOP, and CCT of 26.89 ± 4.92 years, 16.94 ± 2.00 mmHg, and 540.18 ± 25.23 microns, respectively, were included. There were 311, 388, 172, and 95 eyes that were low, moderate, severe, and extreme myopic. Deformation amplitude ratio at 1 mm and 2 mm were similar across different myopic groups. A significant increase in max inverse radius, ambrosia relational thickness, biomechanically corrected IOP, integrated radius was noted with an increase in myopic refractive error. Corvis biomechanical index, corneal SSI was found to be decreased significantly with an increase in myopic refractive error. We noted a significant positive association between myopic refractive error and SSI (P < 0.001). CONCLUSION: Corneal SSI was found to be reduced in extreme myopic eyes.

12.
Int Ophthalmol ; 44(1): 148, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502381

RESUMEN

PURPOSE: To investigate corneal biomechanical properties and its associations with the severity of lens dislocation in patients with Marfan syndrome. METHODS: A total of 30 patients with Marfan syndrome and 30 age-, sex- and axial length (AL)-matched controls were recruited. Corneal biomechanical parameters of both groups were measured by CorVis ST and were compared between groups. Potential associations between corneal biomechanical parameters and severity of lens dislocation were also investigated. RESULTS: Lower applanation 1 velocity (A1V) (0.13 ± 0.004 vs. 0.15 ± 0.003, P = 0.016), shorter applanation 2 time (A2T)(22.64 ± 0.11 vs. 22.94 ± 0.11, P = 0.013), longer peak distance (PD) (5.03 ± 0.07 vs. 4.81 ± 0.05, P = 0.008), longer radius (R) of highest concavity (7.44 ± 0.16 vs. 6.93 ± 0.14, P = 0.012), greater Ambrosio relational thickness horizontal (ARTh) (603 ± 20 vs. 498 ± 12, P < 0.001), and integrated radius (IR) (8.32 ± 0.25 vs. 8.95 ± 0.21, P = 0.033) were detected among Marfan eyes compared with controls (all P < 0.05). Marfan individuals with more severe lens dislocation tended to have increased stiffness parameter as longer A1T, slower A1V, shorter A2T, slower application 2 velocity (A2V), smaller PD and smaller Distance Amplitude (DA) (P < 0.05). CONCLUSION: Marfan patients were detected to have increased corneal stiffness compared with normal subjects. Corneal biomechanical parameters were significantly associated with the severity of lens dislocation in Marfan patients.


Asunto(s)
Subluxación del Cristalino , Síndrome de Marfan , Humanos , Síndrome de Marfan/complicaciones , Síndrome de Marfan/diagnóstico , Presión Intraocular , Fenómenos Biomecánicos , Córnea , Subluxación del Cristalino/diagnóstico , Subluxación del Cristalino/etiología , Tonometría Ocular
13.
Graefes Arch Clin Exp Ophthalmol ; 262(1): 121-132, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37401934

RESUMEN

PURPOSE: To assess the associations of corneal biomechanical properties as measured by the Corvis ST with refractive errors and ocular biometry in an unselected sample of young adults. METHODS: A total of 1645 healthy university students underwent corneal biomechanical parameters measurement by the Corvis ST. The refractive status of the participants was measured using an autorefractor without cycloplegia. Ocular biometric parameters were measured using the IOL Master. RESULTS: After adjusting for the effect of age, sex, biomechanical-corrected intraocular pressure and central corneal thickness, axial length was significantly associated with A1 velocity (A1v, ß = -10.47), A2 velocity (A2v, ß = 4.66), A2 deflection amplitude (A2DeflA, ß = -6.02), HC deflection amplitude (HC-DeflA, ß = 5.95), HC peak distance (HC-PD, ß = 2.57), deformation amplitude ratio max (DA Rmax, ß = -0.36), Ambrósio's relational thickness to the horizontal profile (ARTh, ß = 0.002). For axial length / corneal radius ratio, only A1v (ß = -2.01), A1 deflection amplitude (A1DeflA, ß = 2.30), HC-DeflA (ß = 1.49), HC-PD (ß = -0.21), DA Rmax (ß = 0.07), stress-strain index (SSI, ß = -0.29), ARTh (ß < 0.001) were significant associates. A1v (ß = 23.18), HC-DeflA (ß = -15.36), HC-PD (ß = 1.27), DA Rmax (ß = -0.66), SSI (ß = 3.53), ARTh (ß = -0.02) were significantly associated with spherical equivalent. CONCLUSION: Myopic eyes were more likely to have more deformable corneas and corneas in high myopia were easier to deform and were even softer compared with those in the mild/moderate myopia.


Asunto(s)
Córnea , Miopía , Humanos , Adulto Joven , Refracción Ocular , Presión Intraocular , Tonometría Ocular , Miopía/diagnóstico , Fenómenos Biomecánicos
14.
Cont Lens Anterior Eye ; 47(1): 102100, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072740

RESUMEN

PURPOSE: To investigate the alterations in corneal biomechanical metrics induced by orthokeratology (ortho-k) using Corvis ST and to determine the factors influencing these changes. METHOD: A prospective observational study was conducted to analyze various Corvis ST parameters in 32 children with low to moderate myopia who successfully underwent ortho-k lens fitting. Corneal biomechanical measurements via Corvis ST were acquired at six distinct time points: baseline (pre) and 2 h (pos2h), 6 h (pos6h), and 10 h (pos10h) following the removal of the first overnight wear ortho-k, one week (pos1w) and one month (pos1m) subsequent to the initiation of ortho-k. RESULT: Significant differences were observed in Corvis ST Biomechanical parameters DAR2, IIR, CBI, and cCBI post ortho-k intervention. The integration of covariates (CCT, SimK, and bIOP) mitigated the differences in DAR2, IIR, and cCBI, but not in CBI. Initially, the stiffness parameter at first applanation, SP-A1, did not demonstrate significant variations, but after adjusting for covariates, noticeable differences over time were observed. The Stress-Strain Indeces, SSIv1 and SSIv2, did not manifest considerable changes over time, irrespective of the adjustment for covariates. No significant disparities were identified among different ortho-k lens brands. CONCLUSION: Corneal biomechanics remained consistent throughout the one-month period of ortho-k lens wear. The observed changes in Corvis ST parameters subsequent ortho-k are primarily attributable to alterations in corneal pachymetry and morphology, rather than actual alterations in corneal biomechanics. The stability of corneal biomechanics post ortho-k treatment suggests the safety of this approach for adolescents from a corneal biomechanics perspective.


Asunto(s)
Córnea , Tonometría Ocular , Adolescente , Niño , Humanos , Fenómenos Biomecánicos , Paquimetría Corneal , Topografía de la Córnea
15.
Life (Basel) ; 13(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38137914

RESUMEN

The aim of this study was to evaluate the biomechanical changes in the cornea after wearing soft contact lenses (CLs) in healthy myopic patients measured with a Corvis ST® (CST, Oculus Optikgeräte GmbH, Wetzlar, Germany) analyser. This prospective, cross-sectional, single-centre study was performed on twenty-two Caucasian patients aged between 19 and 24 years (20.64 ± 1.21 years) range. Five device-specific biomechanical parameters, the central corneal thickness (CCT), and biomechanically corrected intraocular pressure (bIOP) were measured prior to fitting and one month after CL wear. Differences between the means of the deflection amplitude ratio (DA Ratio) and the standard deviation of the DA Ratio (SD DA Ratio) pre- and post-CL wear were found to be significant (p value = 0.002 in both cases). Significant differences were found between pre- and post-CL wear values in CCT (p value = 0.013). For all other biomechanical measures, no significant differences were observed before and after treatment. A significant association was found between changes in bIOP and classification according to changes in Int. Radius (p value = 0.047) and SSI (p value = 0.026) standard deviations. The corneal biomechanical indices provided by CST demonstrate that the fitting of soft CLs is a safe optical compensation method for the stability of corneal stiffness. No significant differences were found pre- and post-CL wear in the assessment of bIOP.

16.
BMC Ophthalmol ; 23(1): 459, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968616

RESUMEN

BACKGROUND: The diagnosis of keratoconus, as the most prevalent corneal ectatic disorder, at the subclinical stage gained great attention due to the increased acceptance of refractive surgeries. This study aimed to assess the pattern of the corneal biomechanical properties derived from Corneal Visualization Scheimpflug Technology (Corvis ST) and evaluate the diagnostic value of these parameters in distinguishing subclinical keratoconus (SKC) from normal eyes. METHODS: This prospective study was conducted on 73 SKC and 69 normal eyes. Subclinical keratoconus eyes were defined as corneas with no clinical evidence of keratoconus and suspicious topographic and tomographic features. Following a complete ophthalmic examination, topographic and tomographic corneal assessment via Pentacam HR, and corneal biomechanical evaluation utilizing Corvis ST were done. RESULTS: Subclinical keratoconus eyes presented significantly higher Deformation Amplitude (DA) ratio, Tomographic Biomechanical Index (TBI), and Corvis Biomechanical Index (CBI) rates than the control group. Conversely, Ambrósio Relational Thickness to the Horizontal profile (ARTh), and Stiffness Parameter at the first Applanation (SPA1) showed significantly lower rates in SKC eyes. In diagnosing SKC from normal eyes, TBI (AUC: 0.858, Cut-off value: > 0.33, Youden index: 0.55), ARTh (AUC: 0.813, Cut-off value: ≤ 488.1, Youden index: 0.58), and CBI (AUC: 0.804, Cut-off value: > 0.47, Youden index: 0.49) appeared as good indicators. CONCLUSIONS: TBI, CBI, and ARTh parameters could be valuable in distinguishing SKC eyes from normal ones.


Asunto(s)
Queratocono , Procedimientos Quirúrgicos Refractivos , Humanos , Queratocono/diagnóstico , Queratocono/cirugía , Fenómenos Biomecánicos , Estudios Prospectivos , Córnea/cirugía , Topografía de la Córnea/métodos , Curva ROC , Paquimetría Corneal/métodos , Estudios Retrospectivos
17.
Bioengineering (Basel) ; 10(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37892838

RESUMEN

Over the last two decades, there has been growing interest in assessing corneal biomechanics in different diseases, such as keratoconus, glaucoma, and corneal disorders. Given the interaction and structural continuity between the cornea and sclera, evaluating corneal biomechanics may give us further insights into the pathogenesis, diagnosis, progression, and management of glaucoma. Therefore, some authorities have recommended baseline evaluations of corneal biomechanics in all glaucoma and glaucoma suspects patients. Currently, two devices (Ocular Response Analyzer and Corneal Visualization Schiempflug Technology) are commercially available for evaluating corneal biomechanics; however, each device reports different parameters, and there is a weak to moderate agreement between the reported parameters. Studies are further limited by the inclusion of glaucoma subjects taking topical prostaglandin analogues, which may alter corneal biomechanics and contribute to contradicting results, lack of proper stratification of patients, and misinterpretation of the results based on factors that are confounded by intraocular pressure changes. This review aims to summarize the recent evidence on corneal biomechanics in glaucoma patients and insights for future studies to address the current limitations of the literature studying corneal biomechanics.

18.
Int J Ophthalmol ; 16(10): 1601-1607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854370

RESUMEN

AIM: To access the agreement of intraocular pressure (IOP) values obtained from biomechanically corrected tonometer [Corvis ST (CST)], non-contact tonometer (NCT), and Goldmann applanation tonometer (GAT) in children with NCT measured-IOP (NCT-IOP) values of 22 mm Hg or more, and related factors. METHODS: A total of 51 eyes with NCT-IOP≥22 mm Hg in children aged 7 to 14y were examined and IOP was measured by CST, NCT, and GAT. Based on GAT measured IOP (GAT-IOP), ocular hypertension (OHT) group (≥22 mm Hg, 24 eyes) and the non-OHT group (<22 mm Hg, 27 eyes) were defined. We compared the agreement of the three measurements, i.e., CST measured IOP (CST-IOP), GAT-IOP, and NCT-IOP, and further analyzed the correlation between the differences in tonometry readings, central corneal thickness (CCT), axial length (AL), optic disc rim volume, and age. RESULTS: Compared with the OHT group, thicker CCT, larger rim volume, and higher differences between NCT-IOP and GAT-IOP, were found in the non-OHT group. The differences between CST-IOP and GAT-IOP were lower than the differences between NCT-IOP and GAT-IOP in both groups. The mean differences in CST-IOP and GAT-IOP were 1.26 mm Hg (95% limit of agreement ranged from 0.1 to 2.41 mm Hg, OHT group) and 1.20 mm Hg (95% limit of agreement ranged from -0.5 to 3.00 mm Hg, non-OHT group), and the mean differences in NCT and GAT were 3.90 mm Hg (95% limit of agreement ranged from -0.19 to 9.70 mm Hg, OHT group) and 6.00 mm Hg (95% limit of agreement ranged from 1.50 to 10.50 mm Hg, non-OHT group). The differences between CST-IOP and GAT-IOP were not related to CCT, age, and AL in both groups; while the differences between NCT-IOP and GAT-IOP were related to CCT in the OHT group (r=0.93, P<0.001) and to CCT and AL in the non-OHT group (r=0.66, P<0.001, r=-0.81, P<0.001). CONCLUSION: The accuracy of NCT in the diagnosis of pediatric OHT is low. The agreement of CST-IOP and GAT-IOP was significantly higher in children with and without OHT than in those with NCT-IOP and GAT-IOP. Therefore, CST can be used as a good alternative for IOP measurement in children. The impacts of CCT and AL on NCT measurement need to be fully considered when managing childhood IOP.

19.
Int Ophthalmol ; 43(11): 4121-4129, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37632576

RESUMEN

PURPOSE: To compare intraocular pressure (IOP) measurements between Easyton transpalpebral tonometry and Perkins, iCare iC100 and Corvis ST. Also, to assess the influence of corneal characteristics and anterior scleral thickness (AST) on the IOP measurements. METHODS: Sixty-nine eyes from 69 healthy subjects were included. IOP was measured by Easyton, Perkins, iC100 and Corvis ST (corrected IOP, bIOP; and non-corrected IOP, IOPnct). Other variables studied were AST, axial length (AL), and Corvis parameters: Length 1, velocity 1, length 2, velocity 2, peak distance, radius, deformation amplitude, and central corneal thickness (CCT). Pearson correlation, limits of agreement (LoA), and multiple regression analysis were calculated. RESULTS: No significant differences in IOP between Easyton and Perkins, iC100, and bIOP were observed (all p > 0.05), being significant only between Perkins and IOPnct ( - 1.49 mmHg, p < 0.001). Bland-Altman graphs showed that the mean difference between Perkins and Easyton was 0.07 mmHg (p < 0.001), and LoA - 7.49 to + 7.39 mmHg. Significant correlations were found between the measurements of Perkins and iC100, IOPnct, bIOP (r = 0.710, 0.628, 0.539; p < 0.001 respectively), iC100 and IOPnct, bIOP (r = 0.627, 0.513; p < 0.001, respectively). The multivariate regression analysis revealed that differences between Perkins and Easyton (adjusted R2 = 0.25) were influenced by AL (B = 1.28, p < 0.008), length 1 (B = 3.13, p < 0.018), and the radius (B = 1.26, p < 0.010). Differences between Perkins and bIOP (adjusted R2 = 0.21) were affected by the CCT (B = 0.029, p < 0.003). CONCLUSIONS: There are no significant differences in the IOP measurements between Perkins and Easyton, iC100 or bIOP. Length 1, radius, and CCT have limited influence on these differences, while AST did not show any effect.


Asunto(s)
Presión Intraocular , Tonometría Ocular , Humanos , Córnea , Análisis de Regresión , Manometría
20.
J Clin Med ; 12(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37568510

RESUMEN

BACKGROUND: We compared corneal visualization Scheimpflug technology (CST) parameters between eyes with primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). METHODS: A retrospective analysis was performed on data from 89 eyes with POAG and 83 eyes with PACG that had CST examinations. CST parameters were compared between eyes with POAG and those with PACG using a linear mixed model (LMM). RESULTS: No differences were observed in age, central corneal thickness, intraocular pressure, or use of antiglaucoma eye drops between the two groups. Patients with PACG had a significantly shorter axial length (AL), a higher proportion of females, CST parameters, longer applanation 2 (A2) time, deeper A2 deformation amplitude, shorter peak distance, longer whole eye movement, and longer whole eye movement time than patients with POAG. The highest concavity (HC) length and PD showed a significant positive correlation with AL. However, A1 length, A1 deformation amplitude, A2 time, A2 velocity, A2 length, A2 deformation amplitude, HC time, whole eye movement, and whole eye movement time were negatively correlated with AL. CONCLUSIONS: The biomechanical properties of the cornea differed between POAG and PACG. In some parts, AL differences between the POAG and PACG groups might contribute to the variation in CST parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...