Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 346-358, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39096703

RESUMEN

HYPOTHESIS: Hexavalent chromium, recognized as one of the most toxic heavy metals, demands the development of advanced materials capable of both adsorption and photocatalysis for effective Cr (VI) removal. EXPERIMENTS: This study successfully synthesized a two-dimensional zinc porphyrin covalent organic framework (ZnPor-COF) via a solvent-based method. Performance evaluations have demonstrated that the ZnPor-COF possesses outstanding capabilities for the adsorptive and/or photocatalytic elimination of Cr (VI). Particularly noteworthy is the observation that when adsorption and photocatalysis are coupled, the ZnPor-COF attains an exceptional 99.7 % removal rate for a Cr (VI) concentration of 30 mg/L within just 60 min, with minimal susceptibility to coexisting ions. After five consecutive cycles, the material sustains a removal efficiency of 90 %, indicative of its robust cyclability. FINDINGS: Theoretical calculations, as well as experimental validations, have indicated that the integration of Zn ions into the porphyrin COF not only results in an expanded specific surface area and an increased count of adsorption sites but also significantly improves the COF's photosensitivity and the capability for charge carrier separation. Furthermore, the core of the synergistic effect between adsorption and photocatalysis lies in the ability of photocatalysis to substantially augment the adsorption process.

2.
J Colloid Interface Sci ; 674: 938-950, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959739

RESUMEN

Biosynthetic metal sulfides showed great application prospects in the environmental treatment against high-valence metal pollutants. However, the efficiency of biosynthesis, agglomeration during the reaction process, and the formation of the passivation layer during the reduction process were always the important factors restricting its development. This study explored the composition of the culture medium to promote the growth of highly corrosive sulfate-reducing bacteria (SRB) and its metabolism to produce FeS nanoparticles (NPs). The results showed that reducing the carbon source (CS) and adding electron carriers in the culture medium effectively promoted the production of small, dispersed, and loose FeS NPs in cells. At pH = 7, 24 °C and 10 min reaction time, 0.1 g/L FeS NPs produced by SRB under the conditions of 10 % CS with 10 ppm cytochrome c medium could achieve 100 % removal efficiency of 1 mM hexavalent chromium (Cr(VI)). Under this condition, FeS NPs could be produced by intracellular metabolism in SRB cells, and environmental factors such as pH, metal cations, and Cl- had little effect on the removal of Cr(VI) by this FeS NPs. The surface proteins of FeS NPs significantly enhanced their antioxidant properties. After 7 days of natural environment exposure, the Cr(VI) removal efficiency of FeS NPs was only reduced by 16 % compared with the initial sample. This work provided an in-depth understanding of Cr(VI) removal by SRB biosynthesis of FeS and contributes to the widespread application of FeS in the future.


Asunto(s)
Carbono , Cromo , Cromo/metabolismo , Cromo/química , Carbono/química , Carbono/metabolismo , Desulfovibrio/metabolismo , Compuestos Ferrosos/metabolismo , Compuestos Ferrosos/química , Electrones , Propiedades de Superficie , Tamaño de la Partícula , Concentración de Iones de Hidrógeno
3.
J Hazard Mater ; 477: 135274, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053067

RESUMEN

The reactivity and stability of zero-valent iron (ZVI) and sulfidated zero-valent iron (S-ZVI) are inherently contradictory. Iron sulfides (FeSX) on the S-ZVI surface play multiple roles, including electrostatic adsorption and catalyzing reduction. We proposed to balance the reactivity and air stability of S-ZVI by regulating FeSX. Benefiting from the superior coordination and accelerate electron transport capabilities of phosphate, herein, eco-friendly ammonium dihydrogen phosphate (ADP) was employed to synthesize N, P, and S-incorporated ZVI (NPS-ZVI) and regulate the FeSX. Raman, FTIR, XPS, and density functional theory (DFT) calculations were combined to reveal that HPO42- acts as the main P species on the Fe surface. The superior reactivity of NPS-ZVI was quantified by kobs, kSA, and kM of Cr(VI), which were 210.77, 27.44, and 211.17-fold than ZVI, respectively. NPS-ZVI demonstrated excellent reusability, with no risk of secondary pollution. Critically, NPS-ZVI could effectively maintain FeSX stability under the combination of diffusion limitation and surface protection mechanisms of ADP. The superior reactivity of NPS-ZVI was attributed to the fact that ADP maintains FeSX stability and accelerates electron transport. This study provides a novel strategy in balancing the reactivity and air stability of S-ZVI and offers theoretical support for material modification.

4.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792083

RESUMEN

A high-efficiency nickel-doped porous biochar (PCNi3) has been successfully synthesized from chestnut shell waste via a two-step chemical activation treatment with H3PO4. The influences of microstructure, surface morphology, elemental composition, surface functional groups, specific surface area, porosity, pore-size distribution, and chemical properties of the surface state on the removal of Cr (VI) from water were thoroughly investigated by using XRD, FESEM, FTIR, Raman, BET, and XPS testing methods, N2 adsorption, and XPS testing techniques respectively. The results indicate that the treatment of H3PO4 activation and nickel doping can effectively improve microstructure characteristics, thus promoting Cr (VI) adsorption capacity. The effects of initial solution pH, solution concentration, time, and temperature on remediation are revealed. The Cr (VI) uptake experiments imply that the adsorption curves of PCNi3 fit well with the Freundlich model, the pseudo-second-order kinetic model, and the Elovich model. The adsorption process of PCNi3 can be regarded as a spontaneous endothermic reaction limited by diffusion among particles and porosity. The adsorption mechanisms of PCNi3 are ion exchange, complexation, electrostatic adsorption, and coprecipitation with the assistance of surface active sites, porosity, Ni0 particles, and Ni7P3. With these advantages, PCNi3 reveals an extraordinary Cr (VI) removal capacity and a strong ability to reduce Cr (VI) to Cr (III).

5.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792211

RESUMEN

Micron-scale zero-valent iron (ZVI)-based material has been applied for hexavalent chromium (Cr(VI)) decontamination in wastewater treatment and groundwater remediation, but the passivation problem has limited its field application. In this study, we combined aluminum chloride solution with ZVI (pcZVI-AlCl3) to enhance Cr(VI) removal behavior under aerobic conditions. The optimal pre-corrosion conditions were found to be 2.5 g/L ZVI, 0.5 mM AlCl3, and a 4 h preconditioning period. Different kinds of techniques were applied to detect the properties of preconditioned ZVI and corrosion products. The 57Fe Mössbauer spectra showed that proportions of ZVI, Fe3O4, and FeOOH in pcZVI-AlCl3 were 49.22%, 34.03%, and 16.76%, respectively. The formation of Al(OH)3 in the corrosion products improved its pHpzc (point of zero charge) for Cr(VI) adsorption. Continuous-flow experiments showed its great potential for Cr(VI) removal in field applications. The ZVI and corrosion products showed a synergistic effect in enhancing electron transfer for Cr(VI) removal. The mechanisms underlying Cr(VI) removal by pcZVI-AlCl3 included adsorption, reduction, and precipitation, and the contribution of adsorption was less. This work provides a new strategy for ZVI pre-corrosion to improve its longevity and enhance Cr(VI) removal.

6.
Bioresour Technol ; 401: 130761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692370

RESUMEN

Cr (VI) is a common heavy metal pollutant in electroplating wastewater. This study introduces the liquid-phase product from the hydrothermal reaction of coffee grounds (CGHCL) into the synthesis process of molybdenum disulfide, assisting in the fabrication of an intercalated, expanded core-shell structured molybdenum disulfide adsorbent (C-MoS2), designed for the adsorption and reduction of Cr (VI) from electroplating wastewater. The addition of CGHCL significantly enhances the adsorption performance of MoS2. Furthermore, C-MoS2 exhibits exceedingly high removal efficiency and excellent regenerative capability for Cr (VI)-containing electroplating wastewater. The core-shell structure effectively minimizes molybdenum leaching to the greatest extent, while the oleophobic interface is unaffected by oily substances in water, and the expanded interlayer structure ensures the long-term stability of C-MoS2 in air (90 days). This study provides a viable pathway for the resource utilization of biomass and the application of molybdenum disulfide-based materials in wastewater treatment.


Asunto(s)
Biomasa , Cromo , Disulfuros , Molibdeno , Aguas Residuales , Purificación del Agua , Molibdeno/química , Disulfuros/química , Adsorción , Aguas Residuales/química , Purificación del Agua/métodos , Cromo/química , Galvanoplastia , Contaminantes Químicos del Agua , Soluciones
7.
Environ Res ; 252(Pt 4): 119065, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723990

RESUMEN

The present research study combines chitin from shrimp waste with the oxide-rich metakaolin. Metakaolin is a blend of mixed oxides rich in silica and alumina with good adsorbent properties. The chitin@metakaolin (CHt@M.K.) composite was synthesized and characterized using FTIR, SEM, TGA, XRD and XPS techniques. Cr(VI) removal studies were compared for chitin and CHt@M.K. through adsorption. It was found that the adsorption capacity of CHt@M.K. is 278.88 mg/g, almost double that of chitin, at pH 5.0 in just 120 min of adsorption. Isotherm models like Langmuir, Freundlich, Temkin and Dubinin-Radushkevich were investigated to comprehend the adsorption process. It was revealed that Langmuir adsorption isotherm is most suitable to elucidate Cr(VI) adsorption on CHt@M.K. The adsorption kinetics indicate that pseudo first order was followed, indicating that the physisorption was the process that limited the sorption process rate. The positive enthalpy change (20.23 kJ/mol) and positive entropy change (0.083 kJ/mol K) showed that the adsorption process was endothermic and more random at the solid-liquid interface. The negative free energy change over entire temperature range was an indicator of spontaneity of the process. Apart from all these, the non-covalent interactions between Cr(VI) and composite were explained by quantum calculations based models.


Asunto(s)
Exoesqueleto , Quitina , Cromo , Contaminantes Químicos del Agua , Quitina/química , Animales , Cromo/química , Adsorción , Contaminantes Químicos del Agua/química , Exoesqueleto/química , Braquiuros/química , Cinética
8.
J Hazard Mater ; 473: 134668, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788577

RESUMEN

Tea saponins (TS), a natural biosurfactant extracted from tea trees, were co-ball milled with commercial micro zero-valent iron (mZVI) to produce TS modified mZVI (TS-BZVI) for efficient hexavalent chromium (Cr(VI)) removal. The findings demonstrated that TS-BZVI could nearly remove 100% of Cr(VI) within 2 h, which was 1.43 times higher than that by ball milled mZVI (BZVI) (70%). Kinetics analysis demonstrated a high degree of compatibility with the pseudo-second-order (PSO), revealing that TS-BZVI exhibited a 2.83 times faster Cr(VI) removal rate involved primarily chemisorption. Further, X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) measurements indicated that the TS co-ball milling process improved the exposure of Fe(II) and Fe(0) on mZVI, which further promoted the Cr(VI) reduction process. Impressively, the introduction of TS increased the hydrophobicity of ZVI, effectively inhibiting the H2 evolution by 95%, thus improved electron selectivity for efficient Cr(VI) removal. Ultimately, after operating for 10 days, a simulated permeable reactive barrier (PRB) column experiment revealed that TS-BZVI had a higher Cr(VI) elimination efficiency than BZVI, indicating that TS-BZVI was promising for practical environment remediation.

9.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474082

RESUMEN

The removal of Cr(VI), a highly-toxic heavy metal, from industrial wastewater is a critical issue in water treatment research. Photocatalysis, a promising technology to solve the Cr(VI) pollution problem, requires urgent and continuous improvement to enhance its performance. To address this need, an electric field-assisted photocatalytic system (PCS) was proposed to meet the growing demand for industrial wastewater treatment. Firstly, we selected PAF-54, a nitrogen-rich porous organic polymer, as the PCS's catalytic material. PAF-54 exhibits a large adsorption capacity (189 mg/g) for Cr(VI) oxyanions through hydrogen bonding and electrostatic interaction. It was then coated on carbon paper (CP) and used as the photocatalytic electrode. The synergy between capacitive deionization (CDI) and photocatalysis significantly promotes the photoreduction of Cr(VI). The photocatalytic performance was enhanced due to the electric field's influence on the mass transfer process, which could strengthen the enrichment of Cr(VI) oxyanions and the repulsion of Cr(III) cations on the surface of PAF-54/CP electrode. In addition, the PCS system demonstrates excellent recyclability and stability, making it a promising candidate for chromium wastewater treatment.


Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Aguas Residuales , Cromo/análisis , Adsorción , Cinética , Concentración de Iones de Hidrógeno
10.
Environ Geochem Health ; 46(4): 121, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483644

RESUMEN

Selective adsorption of heavy metal ions from industrial effluent is important for healthy ecosystem development. However, the selective adsorption of heavy metal pollutants by biochar using lignin as raw material is still a challenge. In this paper, the lignin carbon material (N-BLC) was synthesized by a one-step hydrothermal carbonization method using paper black liquor (BL) as raw material and triethylene diamine (TEDA) as nitrogen source. N-BLC (2:1) showed excellent selectivity for Cr(VI) in the binary system, and the adsorption amounts of Cr(VI) in the binary system were all greater than 150 mg/g, but the adsorption amounts of Ca(II), Mg(II), and Zn(II) were only 19.3, 25.5, and 6.3 mg/g, respectively. The separation factor (SF) for Cr(VI) adsorption was as high as 120.0. Meanwhile, FTIR, elemental analysis and XPS proved that the surface of N-BLC (2:1) contained many N- and O- containing groups which were favorable for the removal of Cr(VI). The adsorption of N-BLC (2:1) followed the Langmuir model and its maximum theoretical adsorption amount was 618.4 mg/g. After 5th recycling, the adsorption amount of Cr(VI) by N-BLC (2:1) decreased about 15%, showing a good regeneration ability. Therefore, N-BLC (2:1) is a highly efficient, selective and reusable Cr(VI) adsorbent with wide application prospects.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Carbono , Cromo/análisis , Concentración de Iones de Hidrógeno , Cinética , Lignina , Nitrógeno , Contaminantes Químicos del Agua/análisis
11.
J Colloid Interface Sci ; 662: 836-845, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382368

RESUMEN

HYPOTHESIS: Metal-organic frameworks (MOFs) have been widely studied for Cr(VI) adsorption in water. Theoretically, numerous MOFs can be synthesised by assembling diverse metals and ligands. However, the traditional manual experimentation for screening high-performance MOFs is resource-intensive and inefficient. EXPERIMENTS: A screening strategy for MOFs based on machine learning was proposed for the adsorption and removal of Cr(VI) from water. By collecting the characteristics of MOFs and the experimental parameters of Cr(VI) adsorption from the literature, a dataset was constructed to predict the adsorption performance. Among the six regression models, the model trained by the extreme gradient boosted tree algorithm had the best performance and was used to simulate the adsorption and screen potential high-performance adsorbents. FINDINGS: Structure-property analysis indicated that prepared MOF adsorbents with properties of 0.37 < largest cavity diameter < 0.71 nm, 0.18 < pore volume < 0.57 cm3/g, 412 < specific surface area < 1588 m2/g, 0.43 < void fraction < 0.62 will achieve enhanced adsorption of Cr(VI) in water. High-performance adsorbents were successfully screened using a combination of machine-learning prediction and analysis. Experiments were conducted to verify the exceptional adsorption capacity of UiO-66 and MOF-801. This method effectively identified adsorbents and accelerated the development of new MOF adsorbents for contaminant removal, providing a novel approach for the discovery of superior adsorbents.

12.
Environ Sci Pollut Res Int ; 31(14): 21279-21290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38388974

RESUMEN

A novel adsorbent, deposited PPy on the DMI (PPy/DMI) composite, was successfully synthesized for Cr(VI) removal from aqueous solution. PPy/DMI composite was characterized by BET, SEM, TEM, XRD, and XPS. The SEM and TEM analyses revealed that DMI can greatly reduce the aggregation of PPy and significantly enhance its adsorption performance. The Cr(VI) removal was highly pH dependent. The high selectivity of PPy/DMI composite for Cr(VI) removal was found even in the presence of co-existing ions. The adsorption kinetic process followed the pseudo-second-order equation, demonstrating that the Cr(VI) adsorption behavior onto PPy/DMI is chemisorption. Furthermore, the intra-particle diffusion model implied that the adsorption was controlled by both liquid membrane diffusion and internal diffusion. The adsorption isotherm data fitted well with the Langmuir model with the maximum adsorption capacity (406.50 mg/g at 323 K) which was considerably higher than that of other PPy-based adsorbents. The Cr(VI) adsorption onto PPy/DMI composite was endothermic. The main mechanisms of Cr(VI) removal are involved in adsorption through electrostatic attractions, ion exchange, and in situ reduction. The results suggested that PPy/DMI composite could be a promising candidate for efficient Cr(VI) removal from aqueous solution.


Asunto(s)
Carbonato de Calcio , Cromo , Magnesio , Polímeros , Contaminantes Químicos del Agua , Polímeros/química , Contaminantes Químicos del Agua/análisis , Pirroles/química , Agua/química
13.
J Hazard Mater ; 466: 133636, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309166

RESUMEN

The toxic Cr(VI) from industrial wastewater pose serious threat to the human beings and eco-systems. To reduce the operation processes and enhance the removal efficiency of Cr(VI), targeted design of functionalized material is critical in practical applications. Herein, we developed a one-step strategy for simultaneous Cr(VI) reduction and total Cr capture by a novel phytate modified zero-valent iron (PA-ZVI). The reaction kinetics of Cr(VI) removal by PA-ZVI (0.2225 min-1) was 53 times higher compared to ZVI (0.0042 min-1). The Fe(0) content on the surface of PA-ZVI increased from 2.2% to 15.6% compared to ZVI. Meanwhile, Cr(VI) was liable to adsorb on the surface of PA-ZVI due to its lower adsorption energy compared with the original ZVI (-2.09 eV vs -0.85 eV). The incorporation of the phytate ligand promoted electron transfer from iron core to Cr(VI), leading to the rapid in-situ reduction of Cr(VI) adsorbed on the surface of PA-ZVI to Cr(III). PA-ZVI exhibited a satisfactory performance for Cr(VI) removal at a broad pH range (3-11) and in the presence of coexisting ions and humic acid. Moreover, the reactor with the addition of PA-ZVI achieved more than 90% Cr(VI) removal within 72 h in continuous flow experiments. The feasibility of PA-ZVI for the removal of Cr(VI) is also validated in authentic wastewater. This work provides novel ZVI materials that can effectively address decontamination challenges from Cr(VI) pollution.

14.
Heliyon ; 10(2): e23273, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38304819

RESUMEN

Modification of silica purified from the Merapi volcanic ash with magnetic material of Fe3O4 and attachment of cetyl triamine bromide (CTA-Br) on the magnetic cored has been performed to provide recoverable and positive surfaced of natural adsorbent. The magnetic cored was prepared via co-precipitation and CTA-Br attachment was conducted by a facile strategy. Then, the modified adsorbents were characterized by SEM, TEM, XRD, and FTIR instruments and examined for removing anionic Cr(VI) from the water media. The characterization data confirmed that crystals of Fe3O4 coated by SiO2 that has been bound with CTA-Br have been successfully formed. Additionally, increasing CTA-Br loaded gives thicker lamination on Fe3O4@SiO2/CTA-Br, but the CTA-Br loaded with higher than 0.25 mmol, leads to the coating peeled out. It is also demonstrated that Fe3O4@SiO2/CTA-Br prepared with CTA-Br 0.25 mmol is ideal for Cr(VI) anionic removal, regarding to the highest adsorption and very good separation or recovery process. Moreover, the optimal dose of Fe3O4@SiO2/CTA-Br in the Cr(VI) removal was observed at 0.25 g/20 mL under condition of pH 3 for 60 min. The adsorption of Cr(VI) well fits the Langmuir isotherm model with an adsorption capacity of 3.38 mg g-1 and is in a good agreement with pseudo-second order giving kinetic constant at 0.005 g mg-1 min-1. Thus, it is clear that the natural adsorbent material with recoverable properties for more efficient and wider application of removal Cr(VI) contaminant was expected from this study.

15.
Chemosphere ; 350: 141177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211787

RESUMEN

The fastest-growing microbe Vibrio natriegens is an excellent platform for bioproduction processes. Until now, this marine bacterium has not been examined for bioremediation applications, where the production of substantial amounts of biomass would be beneficial. V. natriegens can perform extracellular electron transfer (EET) to Fe(III) via a single porin-cytochrome circuit conserved in Vibrionaceae. Electroactive microbes capable of EET to Fe(III) usually also reduce toxic metals such as carcinogenic Cr(VI), which is converted to Cr(III), thus decreasing its toxicity and mobility. Here, the performance of V. natriegens was explored for the bioremediation of Cr(VI). At a density of 100 mg/mL, V. natriegens removed 5-20 mg/L Cr(VI) within 30 s and 100 mg/L Cr(VI) within 10 min. In comparison, the model bacterium Escherichia coli grown to a comparable cell density removed Cr(VI) 36 times slower. To eliminate Cr(VI), V. natriegens had to be metabolically active, and functional outer-membrane c-type cytochromes were required. At the end of the Cr(VI) removal process, V. natriegens had reduced all of it into Cr(III) while adsorbing more than half of the metallic ions. These results demonstrate that V. natriegens, with its fast metabolism, is a viable option for the rapid treatment of aqueous pollution with Cr.


Asunto(s)
Compuestos Férricos , Vibrio , Compuestos Férricos/metabolismo , Transporte de Electrón , Cromo/toxicidad , Cromo/metabolismo
16.
Chemosphere ; 350: 141028, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142883

RESUMEN

Covalent organic frameworks (COFs) offer a pivotal solution to urgently address heavy metal removal from wastewater due to their exceptional attributes such as high adsorption capacity, tunable porosity, controllable energy band structures, superior photocatalytic performance, and high stability-reusability. Despite these advantages, COFs encounter certain challenges, including inefficient utilization of visible light, rapid recombination of photogenerated carriers, and limited access to active sites due to close stacking. To enhance the photocatalytic and adsorptive performance of COF-based catalysts, various modification strategies have been reported, with a particular focus on molecular design, structural regulation, and heterostructure engineering. This review comprehensively explores recent advancements in COF-based photocatalytic and adsorptive materials for chromium removal from wastewater, addressing kinetics, mechanisms, and key influencing factors. Additionally, it sheds light on the influence of chemical composition and functional groups of COFs on the efficiency of hexavalent chromium [Cr (VI)] removal.


Asunto(s)
Estructuras Metalorgánicas , Aguas Residuales , Cromo , Adsorción , Cinética
17.
Chemosphere ; 350: 141034, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147926

RESUMEN

The removal of Cr(VI) from aqueous solutions using microscale zerovalent iron (mZVI) shows promising potential. However, the surface passivation of mZVI particles hinders its widespread application. In this study, we prepared tannic acid (TA) modified mZVI composite (TA-mZVI) by a simple sonication method. The introduction of TA allowing TA-mZVI composite to adsorb Cr(VI) rapidly under electrostatic forces attraction, guarantying TA-mZVI exhibited remarkable Cr(VI) removal capacity with a maximum adsorption capacity of 106.1 mg⋅g-1. At an initial pH of 3, it achieved a rapid removal efficiency of 96.2% within just 5 min, which was 7.7 times higher than that of mZVI. Various characterizations, including XPS and CV analysis, indicated that the formation of TA-Fe complexes accelerates electron transfer. In addition, TA endows functional groups to TA-mZVI, raising the dispersion and stability and serves as a protective layer hindering passivation. Further mechanistic analysis revealed that Cr(VI) removal by TA-mZVI followed an adsorption-reduction-precipitation mechanism, with TA mitigating the surface passivation of mZVI and facilitating the reduction of most Cr(VI) to Cr(III). Batch cyclic experiments revealed that TA-mZVI exhibited satisfactory performance, maintaining over 85% Cr(VI) removal even after five cycles and minimally affected by various coexisting ions. With notable advantages in cost-effectiveness, ease-synthesis and recovery, this work provides a great promise for developing efficient reactive adsorbent for addressing Cr(VI) contamination in aqueous solutions.


Asunto(s)
Hierro , Polifenoles , Contaminantes Químicos del Agua , Hierro/química , Contaminantes Químicos del Agua/análisis , Cromo/química , Adsorción , Agua
18.
Rev. colomb. quím. (Bogotá) ; 36(3): 305-322, sep.-dic. 2007. ilus, tab
Artículo en Español | LILACS | ID: lil-636554

RESUMEN

En este trabajo se determina la adsorción de Cr6+ de disoluciones acuosas en dos carbones activados comerciales en función del grado de modificación (reducción, oxidación) de la superficie de los adsorbentes, con tratamientos térmicos en presencia de hidrógeno, oxígeno y ácido nítrico. La química superficial de los carbones activados originales y modificados se examina por los métodos de titulaciones de Böehm y descomposición con temperatura programada (DTP). Los ensayos de evaluación de la capacidad de adsorción se realizan con soluciones modelo de ión cromato y bajo distintas condiciones de concentración inicial, tiempo de contacto, pH del medio, temperatura y masa de adsorbente. Se comprueba que la modificación de la superficie de los adsorbentes afecta el grado de adsorción del ión cromato en la medida en que los sólidos tratados con H2 muestran la mayor capacidad de remoción. Las variables que afectan favorablemente la extensión de la remoción de cromo son: concentración inicial de 100 ppm, pH inicial de 2,0, temperatura de 25 °C y masa de adsorbente de 100 mg.


In this work, the influence of the degree of surface modification of activated carbons in the adsorption of Cr6+ from aqueous solution was determined modifying two commercial activated carbons by thermal oxidative and reductive treatments (oxygen or nitric acid and hydrogen, respectively). The surface chemistry of the original and modified activated carbons was examined by Böehm’s titrationand thermal programmed decomposition (TPD). The adsorption capacities were tested with model solutions of chromate ion, and under different initial concentrations, contact times, pH, temperature and adsorbent mass. The surface chemistry modifications showed that they have an important influence in the adsorption capacity of the activated carbons, being the hydrogen modified carbons the best for the chromate ion adsorption. The conditions that presented the maximum adsorption capacity were: initial concentration of 100 ppm, initial pH of 2.0, temperature of 25°C and adsorbent mass of 100 mg.


Neste trabalho estudou-se a adsorção de Cr6+ de soluções aquosas em dois carvões activados comerciais em função do grau de modificação (redução, oxidação) da superfície dos adsorventes com tratamentos térmicos na presença de hidrogénio, oxigénio e ácido nítrico. A química superficial dos carvões activados originais e modificados foi examinada pelos métodos de titulação de Böehm e de decomposição a temperatura programada (DTP). Os ensaios de avaliação da capacidade de adsorção realizaram-se com soluções modelo de ião cromato sob diferentes condições de concentração inicial, tempo de contacto, pH do meio, temperatura e massa de adsorvente. Comprovou-se que a modificação da superfície dos adsorventes afecta a extensão da adsorção do ião cromato, sendo que os sólidos tratados com H2 mostram a maior capacidade de remoção. As variáveis que afectam favoravelmente a extensão da remoção do crómio são: concentração inicial de 100 ppm, pH inicial de 2.0, temperatura de 25ºC e massa de adsorvente de 100 mg.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...