Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.015
Filtrar
1.
J Environ Sci (China) ; 148: 476-488, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095182

RESUMEN

In this study, non-thermal plasma (NTP) was employed to modify the Cu/TiO2 adsorbent to efficiently purify H2S in low-temperature and micro-oxygen environments. The effects of Cu loading amounts and atmospheres of NTP treatment on the adsorption-oxidation performance of the adsorbents were investigated. The NTP modification successfully boosted the H2S removal capacity to varying degrees, and the optimized adsorbent treated by air plasma (Cu/TiO2-Air) attained the best H2S breakthrough capacity of 113.29 mg H2S/gadsorbent, which was almost 5 times higher than that of the adsorbent without NTP modification. Further studies demonstrated that the superior performance of Cu/TiO2-Air was attributed to increased mesoporous volume, more exposure of active sites (CuO) and functional groups (amino groups and hydroxyl groups), enhanced Ti-O-Cu interaction, and the favorable ratio of active oxygen species. Additionally, the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated the main reason for the deactivation was the consumption of the active components (CuO) and the agglomeration of reaction products (CuS and SO42-) occupying the active sites on the surface and the inner pores of the adsorbents.


Asunto(s)
Cobre , Sulfuro de Hidrógeno , Oxidación-Reducción , Titanio , Titanio/química , Adsorción , Cobre/química , Sulfuro de Hidrógeno/química , Contaminantes Atmosféricos/química , Gases em Plasma/química , Modelos Químicos
2.
J Environ Sci (China) ; 149: 221-233, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181637

RESUMEN

Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater. However, the structure of bimetallic has been much less investigated for catalyst optimization. Herein, two main types of Pd-Cu bimetallic nanocrystal structures, heterostructure and intermetallic, were prepared and characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that two individual Pd and Cu nanocrystals with a mixed interface exist in the heterostructure nanocrystals, while Pd and Cu atoms are uniformly distributed across the intermetallic Pd-Cu nanocrystals. The catalytic nitrate reduction experiments were carried out in a semibatch reactor under constant hydrogen flow. The nitrate conversion rate of the heterostructure Pd-Cu nanocrystals supported on α-Al2O3, γ-Al2O3, SBA-15, and XC-72R exhibited 3.82-, 6.76-, 4.28-, 2.44-fold enhancements relative to the intermetallic nanocrystals, and the nitrogen and nitrite were the main products for the heterostructure and intermetallic Pd-Cu nanocrystals, respectively. This indicates that the catalytic nitrate reduction over Pd-Cu catalyst is sensitive to the bimetallic structures of the catalysts, and heterostructure bimetallic nanocrystals exhibit better catalytic performances on both the activity and selectivity, which may provide new insights into the design and optimization of catalysts to improve catalytic activity and selectivity for nitrate reduction in water.


Asunto(s)
Cobre , Nitratos , Oxidación-Reducción , Paladio , Catálisis , Cobre/química , Paladio/química , Nitratos/química , Nanopartículas del Metal/química , Nanopartículas/química , Contaminantes Químicos del Agua/química , Modelos Químicos
3.
J Environ Sci (China) ; 149: 476-487, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181660

RESUMEN

Herein, three supported catalysts, CuO/Al2O3, CeO2/Al2O3, and CuO-CeO2/Al2O3, were synthesized by the convenient impregnation method to reveal the effect of CeO2 addition on catalytic performance and reaction mechanism for toluene oxidation. Compared with CuO/Al2O3, the T50 and T90 (the temperatures at 50% and 90% toluene conversion, respectively) of CuO-CeO2/Al2O3 were reduced by 33 and 39 °C, respectively. N2 adsorption-desorption experiment, XRD, SEM, EDS mapping, Raman, EPR, H2-TPR, O2-TPD, XPS, NH3-TPD, Toluene-TPD, and in-situ DRIFTS were conducted to characterize these catalysts. The excellent catalytic performance of CuO-CeO2/Al2O3 could be attributed to its strong copper-cerium interaction and high oxygen vacancies concentration. Moreover, in-situ DRIFTS proved that CuO-CeO2/Al2O3 promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene. This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.


Asunto(s)
Cerio , Cobre , Oxidación-Reducción , Tolueno , Tolueno/química , Catálisis , Cobre/química , Cerio/química , Modelos Químicos , Contaminantes Atmosféricos/química
4.
Front Chem ; 12: 1439185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091277

RESUMEN

Oxidative dehydrogenation of propane (ODHP) is a reaction with significant practical significance. As for the industrial application of ODHP, it is challenging to achieve high activity and high propylene selectivity simultaneously. In this study, to overcome this obstacle, we designed a series of Cu/BN catalysts with unique morphologies for establishing a photothermal ODHP system with high efficiency and selectivity. Characterization and evaluation results revealed that Cu/BN-NS and Cu/BN-NF with enlarged specific surface areas exhibited higher catalytic activities. The localized surface plasmon resonance (LSPR) effect of Cu nanoparticles further enhanced the photothermal catalytic performances of Cu/BN catalysts under visible light irradiation. To the best of our knowledge, it is the first time to establish a BN-based photothermal ODHP catalytic system. This study is expected to pave pathways to realize high activity and propylene selectivity for the practical application of ODHP.

5.
Glia ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092466

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive death of motor neurons (MNs). Glial cells play roles in MN degeneration in ALS. More specifically, astrocytes with mutations in the ALS-associated gene Cu/Zn superoxide dismutase 1 (SOD1) promote MN death. The mechanisms by which SOD1-mutated astrocytes reduce MN survival are incompletely understood. To characterize the impact of SOD1 mutations on astrocyte physiology, we generated astrocytes from human induced pluripotent stem cell (iPSC) derived from ALS patients carrying SOD1 mutations, together with control isogenic iPSCs. We report that astrocytes harboring SOD1(A4V) and SOD1(D90A) mutations exhibit molecular and morphological changes indicative of reactive astrogliosis when compared to isogenic astrocytes. We show further that a number of nuclear phenotypes precede, or coincide with, reactive transformation. These include increased nuclear oxidative stress and DNA damage, and accumulation of the SOD1 protein in the nucleus. These findings reveal early cell-autonomous phenotypes in SOD1-mutated astrocytes that may contribute to the acquisition of a reactive phenotype involved in alterations of astrocyte-MN communication in ALS.

6.
Small ; : e2405051, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092657

RESUMEN

Metal-organic frameworks (MOFs)-related Cu materials are promising candidates for promoting electrochemical CO2 reduction to produce valuable chemical feedstocks. However, many MOF materials inevitable undergo reconstruction under reduction conditions; therefore, exploiting the restructuring of MOF materials is of importance for the rational design of high-performance catalyst targeting multi-carbon products (C2). Herein, a facile solvent process is choosed to fabricate HKUST-1 with an anionic framework (a-HKUST-1) and utilize it as a pre-catalyst for alkaline CO2RR. The a-HKUST-1 catalyst can be electrochemically reduced into Cu with significant structural reconstruction under operating reaction conditions. The anionic HKUST-1 derived Cu catalyst (aHD-Cu) delivers a FEC2H4 of 56% and FEC2 of ≈80% at -150 mA cm-2 in alkaline electrolyte. The resulting aHD-Cu catalyst has a high electrochemically active surface area and low coordinated sites. In situ Raman spectroscopy indicates that the aHD-Cu surface displays higher coverage of *CO intermediates, which favors the production of hydrocarbons.

7.
Front Immunol ; 15: 1392259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086491

RESUMEN

The treatment of wound inflammation is intricately linked to the concentration of reactive oxygen species (ROS) in the wound microenvironment. Among these ROS, H2O2 serves as a critical signaling molecule and second messenger, necessitating the urgent need for its rapid real-time quantitative detection, as well as effective clearance, in the pursuit of effective wound inflammation treatment. Here, we exploited a sophisticated 3D Cu2- x Se/GO nanostructure-based nanonzymatic H2O2 electrochemical sensor, which is further decorated with evenly distributed Pt nanoparticles (Pt NPs) through electrodeposition. The obtained Cu2- x Se/GO@Pt/SPCE sensing electrode possesses a remarkable increase in specific surface derived from the three-dimensional surface constructed by GO nanosheets. Moreover, the localized surface plasma effect of the Cu2- x Se nanospheres enhances the separation of photogenerated electron-hole pairs between the interface of the Cu2- x Se NPs and the Pt NPs. This innovation enables near-infrared light-enhanced catalysis, significantly reducing the detection limit of the Cu2- x Se/GO@Pt/SPCE sensing electrode for H2O2 (from 1.45 µM to 0.53µM) under NIR light. Furthermore, this biosensor electrode enables in-situ real-time monitoring of H2O2 released by cells. The NIR-enhanced Cu2- x Se/GO@Pt/SPCE sensing electrode provide a simple-yet-effective method to achieve a detection of ROS (H2O2、-OH) with high sensitivity and efficiency. This innovation promises to revolutionize the field of wound inflammation treatment by providing clinicians with a powerful tool for accurate and rapid assessment of ROS levels, ultimately leading to improved patient outcomes.


Asunto(s)
Cobre , Peróxido de Hidrógeno , Inflamación , Nanopartículas del Metal , Platino (Metal) , Peróxido de Hidrógeno/metabolismo , Platino (Metal)/química , Cobre/química , Nanopartículas del Metal/química , Inflamación/metabolismo , Animales , Ratones , Nanoestructuras/química , Técnicas Biosensibles/métodos , Selenio/química , Humanos , Rayos Infrarrojos , Especies Reactivas de Oxígeno/metabolismo , Células RAW 264.7
8.
Sci Rep ; 14(1): 18070, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103430

RESUMEN

We have developed an innovative mesoporous nanocatalyst by carefully attaching a 2-aminothiophenol-Cu complex onto functionalized MCM-41. This straightforward synthesis process has yielded a versatile nanocatalyst known for its outstanding efficiency, recyclability, and enhanced stability. The structural integrity of the nanocatalyst was comprehensively analyzed using an array of techniques, including BET (Brunauer-Emmett-Teller) for surface area measurement, ICP (Inductively Coupled Plasma) for metal content determination, EDS (Energy-Dispersive X-ray Spectroscopy) for elemental mapping, XRD (X-ray Diffraction) for crystalline structure elucidation, SEM (Scanning Electron Microscopy), EMA (Elemental Mapping Analysis), TEM (Transmission Electron Microscopy), TGA (Thermogravimetric Analysis), FT-IR (Fourier Transform Infrared Spectroscopy), AFM (Atomic Force Microscopy), and CV (cyclic voltammetry). Subsequently, the catalytic properties of the newly developed MCM-41-CPTEO-2-aminothiophenol-Cu catalyst was evaluated in the synthesis of biphenyls, demonstrating outstanding yields through a Suzuki coupling reaction between phenylboronic acid and aryl halides. Importantly, this reaction was conducted in an environmentally friendly medium. Note the remarkable recyclability of the catalyst, proving its sustainability over six cycles with minimal loss in activity additionally hot filtration test was prepared to examine the stability of this nanocatalyst. This outstanding feature emphasizes the catalyst's potential for long-term, environmentally conscious catalytic applications.

9.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 8): 890-893, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108787

RESUMEN

Single crystals of the mol-ecular compound, {Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH3OH or [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH [where IMes is 1,3-bis-(2,4,6-trimethylphen-yl)imidazol-2-yl-idene], with a unique heterometallic cluster have been prepared and the structure revealed using single-crystal X-ray diffraction. The mol-ecule is centrosymmetric with two {Cu10Ir3} cores bridged by a pyrazine ligand. The polymetallic cluster contains three stabilizing N-heterocyclic carbenes, four Cl ligands, and a non-bridging pyrazine ligand. Notably, the Cu-Ir core is arranged in an unusual shape containing 13 vertices, 22 faces, and 32 sides. The atoms within the trideca-metallic cluster are arranged in four planes, with 2, 4, 4, 3 metals in each plane. Ir atoms are present in alternate planes with an Ir atom featuring in the peripheral bimetallic plane, and two Ir atoms featuring on opposite sides of the non-adjacent tetra-metallic plane. The crystal contains two disordered methanol solvent mol-ecules with an additional region of non-modelled electron density corrected for using the SQUEEZE routine in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9-18]. The given chemical formula and other crystal data do not take into account the unmodelled methanol solvent mol-ecule(s).

10.
Heliyon ; 10(14): e34266, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108848

RESUMEN

Widespread ecosystem degradation from noxious substances like industrial waste, toxic dyes, pesticides, and herbicides poses serious environmental risks. For remediation of these hazardous problems, present study introduces an innovative Cu-doped Ce2Zr2O7 nano-photocatalyst, fabricated via a simple, eco-friendly hydrothermal method, designed to degrade toxic textile dye methylene blue. Harnessing Cu doping for pyrochlore Ce2Zr2O7, structure engineering carried out through a hydrothermal synthesis method to achieve superior photocatalytic performance, addressing limitations of rapid charge carrier recombination in existing photocatalysts. Photoluminescence analysis showed that doped pyrochlore slows charge carrier recombination, boosting dye degradation efficiency. UV-Visible analysis demonstrated an impressive 96 % degradation of methylene blue by Cu-doped Ce2Zr2O7 within 50 min, far exceeding the performance of pristine materials. Trapping experiments clarified the charge transfer mechanism, deepening our understanding of the photocatalytic process. These findings highlight the potential for developing innovative, highly efficient photocatalysts for environmental remediation, offering sustainable solutions to combat pollution. This study not only addresses the limitations of existing photocatalysts but also opens new avenues for enhancing photocatalytic performance through strategic material design.

11.
Cell Metab ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39111308

RESUMEN

Copper (Cu) is a co-factor for several essential metabolic enzymes. Disruption of Cu homeostasis results in genetic diseases such as Wilson's disease. Here, we show that the zinc transporter 1 (ZnT1), known to export zinc (Zn) out of the cell, also mediates Cu2+ entry into cells and is required for Cu2+-induced cell death, cuproptosis. Structural analysis and functional characterization indicate that Cu2+ and Zn2+ share the same primary binding site, allowing Zn2+ to compete for Cu2+ uptake. Among ZnT members, ZnT1 harbors a unique inter-subunit disulfide bond that stabilizes the outward-open conformations of both protomers to facilitate efficient Cu2+ transport. Specific knockout of the ZnT1 gene in the intestinal epithelium caused the loss of Lgr5+ stem cells due to Cu deficiency. ZnT1, therefore, functions as a dual Zn2+ and Cu2+ transporter and potentially serves as a target for using Zn2+ in the treatment of Wilson's disease caused by Cu overload.

12.
Angew Chem Int Ed Engl ; : e202408873, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113072

RESUMEN

The acidic electrocatalytic conversion of CO2 to multi-carbon (C2+) oxygenates is of great importance in view of enhancing carbon utilization efficiency and generating products with high energy densities, but suffering from low selectivity and activity. Herein, we synthesized Ag-Cu alloy catalyst with highly rough surface, by which the selectivity to C2+ oxygenates can be greatly improved. In a strongly acidic condition (pH=0.75), the maximum C2+ products Faradaic efficiency (FE) and C2+ oxygenates FE reach 80.4% and 56.5% at -1.9 V versus reversible hydrogen electrode, respectively, with a ratio of FEC2+ oxygenates to FEethylene up to 2.36. At this condition, the C2+ oxygenates partial current density is as high as 480 mA cm-2. The in situ Raman measurements and control experiments indicate that the high generation of C2+ oxygenates over the catalyst originates from its large surface roughness and Ag alloying.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39107646

RESUMEN

In this study, we employed the one-dimensional solar cell capacitance simulator (SCAPS-1D) software to optimize the performance of Pb-based and Sn-based (Pb-free) all-inorganic perovskites (AIPs) and organic-inorganic perovskites (OIPs) in perovskite solar cell (PSC) structures. Due to the higher stability of AIPs, the performance of PSCs incorporating Cs-based perovskites was compared with that of FA-based perovskites, which are more stable than their MA-based counterparts. The impact of AIPs such as CsPbCl3, CsPbBr3, CsPbI3, CsSnCl3, CsSnBr3, and CsSnI3, as well as including FAPbCl3, FAPbBr3, FAPbI3, FASnCl3, FASnBr3, and FASnI3, was investigated. SnO2 and Cu2O were selected as an inorganic electron transport layer (ETL) and a hole transport layer (HTL), respectively. CsSnBr3, CsSnI3, FASnCl3, and FASnBr3 exhibited higher efficiency compared to their Pb-based counterparts. Additionally, most Cs-based perovskites, excluding CsPbI3, demonstrated better performance relative to their FA counterparts. CsSnI3 AIP device also shows the highest short circuit current density (JSC) of 32.85 mA/cm2, the best power conversion efficiency (PCE) of 16.00%, and the least recombination at the SnO2/CsSnI3 interface. The thickness, doping, and total defect density of CsSnI3 PSC have been systematically investigated and optimized to obtain the PCE of 17.36%. These findings highlight the potential of CsSnI3 PSCs as efficient and environmentally friendly PSCs.

14.
Chem Biodivers ; : e202401034, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109873

RESUMEN

The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) represents a promising target for antiviral drugs aimed at combating COVID-19. Consequently, the development of Mpro inhibitor  is an ideal strategy for combating the virus. In this study, we identified twenty-two dithiocarbamates (1a-h), dithiocarbamate-Cu(II) complexes (2a-hCu) and disulfide derivatives (2a-e, 2i) as potent inhibitors of Mpro, with IC50 value range of 0.09-0.72, 0.9-24.7 and 15.1-111 µM, respectively, through FRET screening. The enzyme kinetics, inhibition mode, jump dilution, and DTT assay revealed that 1g may be a partial reversible inhibitor, while 2d and 2f-Cu are the irreversible and dose- and time-dependent inhibitors, potentially covalently binding to the target. Binding of 2d, 2f-Cu and 1g to Mpro was found to decrease the stability of the protein. Additionally, DTT assays and thermal shift assays indicated that 2f-Cu and 2d are the nonspecific and promiscuous cysteine protease inhibitor. ICP-MS implied that the inhibitory activity of 2f-Cu may stem from the uptake of Cu(II) by the enzyme. Cytotoxicity assays demonstrated that 2d and 1g exhibit low cytotoxicity, whereas 2f-Cu show certain cytotoxicity in L929 cells. Overall, this work presents two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.

15.
Adv Mater ; : e2408396, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101297

RESUMEN

The rechargeable aqueous ammonium ion battery shows great potential in low-cost energy storage system because of its long life and environmental friendliness. However, most inorganic host materials used in ammonium ion batteries are still limited by slow diffusion kinetics. Herein, it is identified that a 2D heteroligand-based copper-organic framework featuring numerous ammonium ion adsorption site in the π-conjugated periodic skeleton supplies multiple accessible redox-active sites for high-performance ammonium storage. Benefitting from the effective regulation of electron delocalization by heteroligand and the inherent hydrogen bond cage mechanism between ammonium ions, the resultant full battery delivers a large specific energy density of 211.84 Wh kg-1, and it can be stably operated for 12000 cycles at 5 A g-1 for over 80 days. This explanatory understanding provides a new idea for the rational design of high-performance MOF-based ammonium ion battery cathode materials for efficient energy storage and conversion in the future.

16.
J Colloid Interface Sci ; 677(Pt A): 771-780, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121661

RESUMEN

Oxygen reduction reaction (ORR) serves as the foundation for various electrochemical energy storage devices. Fe/NC catalysts are expected to replace commercial Pt/C as oxygen electrode catalysts based on the structural tunability at the atomic level, abundant iron ore reserves and excellent activity. Nevertheless, the lack of durability and low active site density impede its advancement. In this work, a durable catalyst, CuFe/NC, for ORR was prepared by modulating the interfacial composition and electronic structure. The introduction of Cu nanoclusters partially eliminates the Fenton effect from Fe and optimizes the electron structure of FeNx, thereby effectively enhancing the long-term durability and activity. The prepared CuFe/NC exhibits a half-wave potential (E1/2) of 0.90 V and superior stability with a decrease in E1/2 of only 20 mV after 10,000 cycles. The assembled alkaline Zinc-Air batteries (ZABs) with CuFe/NC exhibit an open-circuit potential of 1.458 V. At a current density of 5 mA cm-2, the batteries are capable of operation for 600 h with a stable polarization. This CuFe/NC may promote the practical application of novel and renewable electrochemical energy storage devices.

17.
Food Chem ; 460(Pt 3): 140780, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121774

RESUMEN

A novel self-powered and flexible enzymatic biofuel cell (EBFC)-based aptasensor was developed for the sensitive and selective detection of 17 ß-estradiol (E2). A flexible polyvinyl alcohol (PVA)-tannic acid­carbon nanotube/reduced graphene oxide (PTCR) substrate was modified with gold nanoparticles (AuNPs) and thiolated aptamer 1 (Apt1) to yield Apt1@AuNPs/PTCR. A copper-based metal-organic framework (Cu-MOF) with peroxidase mimicking activity was employed to anchor glucose oxidase (GOD) and Apt2, forming the Cu-MOF@GOD/Apt2 tag. When E2 was recognized by Apt1, the anchored E2 quantitatively recognized Cu-MOF@GOD/Apt2 to create a Cu-MOF@GOD/Apt2-E2-Apt1 sandwich structure for glucose oxidation to generate electrical power. Increased E2 concentrations enhanced Cu-MOF@GOD/Apt2 capture and amplified the electrical signal. The electrical power increased linearly as the E2 concentration increased from 1.0 pM to 1.0 nM. The sensor was successfully applied to various food samples and blood serum detection. This work promoted the application of novel self-powered biosensors for food safety analysis.

18.
Anal Chim Acta ; 1319: 342969, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39122279

RESUMEN

BACKGROUND: Ethanol gas sensors are widely used in driving safety, security, and clinical respiratory monitoring applications. However, most ethanol sensors are large and exhibit poor stability owing to their integrated controller and high-temperature operation. Moreover, the development of wireless controller-free room-temperature ethanol sensors with long-term reliability is challenging. RESULTS: In this study, a wireless room-temperature ethanol gas antenna sensor was developed by combining a Cu radiation electrode with vertical graphene (VG) embedded with CuO@Cu nanoparticles and a polydimethylsiloxane (PDMS) dielectric substrate filled with cysteine (Cys). In the patch-antenna sensor, changes in the ethanol gas concentration resulted in frequency shift differences in the generation and transmission processes of the synchronized sensing signal. The VG-Cu/Cys-PDMS ethanol gas sensor had a detection range of 50-2100 ppm and a low limit of detection (LOD) of 0.112 ppm, with a response/recovery time of only 20/21 s for 1200 ppm ethanol, thus demonstrating superior long-term stability and satisfactory humidity tolerance. Therefore, the synergistic sensitization mechanism between the VG sensing/radiation layer and Cys-PDMS substrate was investigated. SIGNIFICANCE: This approach effectively addresses the issues of low-temperature operation, miniaturization, and long-term reliability. The proposed patch-antenna gas sensor is suitable for large-scale production owing to its use of industrial chemical vapor deposition technology and could be used to develop Internet-of-Things gas sensor nodes owing to its wireless propagation of electromagnetic waves with sensing information.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39127968

RESUMEN

Despite the growing support for the multiple developmental pathways to phenotypic callous-unemotional (CU) traits (i.e., primary, and secondary CU variants), there remains limited research on childhood manifestations of CU variants in non-Western, community samples. Using a latent profile analysis with data sourced from the longitudinal, nationwide Korean sample (N = 1597, 48.7% girls), we discerned heterogeneous groups of children, based on externalizing problems, CU traits, and emotional reactivity level. The optimal five-profile solution identified distinct subgroups: low-risk, primary CU (characterized by low emotional reactivity and externalizing problem), reactive (low CU/moderate emotion reactivity and externalizing problem), and two secondary CU groups (i.e., secondary-high CU and secondary-moderate CU; both high in emotional reactivity and externalizing problems). The two secondary CU variants demonstrated differences from the primary CU variants, in that both are high in preschool externalizing problems (age 6) and school-age conduct problems (age 11). However, the secondary-moderate CU group displayed greater levels of anxiety at age 11 compared to secondary-high CU, indicating divergent developmental trajectories of secondary CU variants. These findings expand our understanding of CU variants among Korean preschoolers and highlight the role of emotional reactivity in distinguishing such subtypes and identifying their developmental outcomes across time.

20.
Adv Sci (Weinh) ; : e2404194, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119933

RESUMEN

Electrochemical conversion of nitrate (NO3 -) to ammonia (NH3) is a potential way to produce green NH3 and remediate the nitrogen cycle. In this paper, an efficient catalyst of spherical CuO made by stacking small particles with oxygen-rich vacancies is reported. The NH3 yield and Faraday efficiency are 15.53 mg h-1 mgcat -1 and 90.69%, respectively, in a neutral electrolyte at a voltage of -0.80 V (vs. reversible hydrogen electrode). The high activity of the electrodes results from changes in the phase and structure during electrochemical reduction. Structurally, there is a shift from a spherical structure with dense accumulation of small particles to a layered network structure with uniform distribution of small particles stacked on top of each other, thus exposing more active sites. Furthermore, in terms of phase, the electrode transitions from CuO to Cu/Cu(OH)2. Density functional theory calculations showed that Cu(OH)2 formation enhances NO3- adsorption. Meanwhile, the Cu(OH)2 can inhibit the competing hydrogen evolution reaction, while the formation of Cu (111) crystal surfaces facilitates the hydrogenation reaction. The synergistic effect between the two promotes the NO3- to NH3. Therefore, this study provides a new idea and direction for Cu-based oxides in electrocatalytic NH3 production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...