Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.461
Filtrar
1.
Neurochem Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235580

RESUMEN

Dr. Harish Chandra Pant was Chief of the Section on Neuronal Cytoskeletal Protein Regulation within the National Institute of Neurological Disorders and Stroke at the NIH. A main focus of his group was understanding the mechanisms regulating neuronal cytoskeletal phosphorylation. Phosphorylation of neurofilaments can increase filament stability and confer resistance to proteolysis, but aberrant hyperphosphorylation of neurofilaments can be found in the neurofibrillary tangles that are seen with neurodegenerative diseases like Alzheimer disease (AD). Through his work, Harish would inevitably come across cyclin dependent kinase 5 (Cdk5), a key kinase that can phosphorylate neurofilaments at KSPXK motifs. Cdk5 differs from other Cdks in that its activity is mainly in post-mitotic neurons rather than being involved in the cell cycle in dividing cells. With continued interest in Cdk5, Harish and his group were instrumental in identifying important roles for this neuronal kinase in not only neuronal cytoskeleton phosphorylation but also in neuronal development, synaptogenesis, and neuronal survival. Here, we review the accomplishments of Harish in characterizing the functions of Cdk5 and its involvement in neuronal health and disease.

2.
Mol Carcinog ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259041

RESUMEN

Polyadenylate-binding protein-interacting protein 1 (PAIP1) is a protein that modulates translation initiation in eukaryotic cells. Studies have shown that PAIP1 was overexpressed in various type of cancers, and drives cancer progression by promoting cancer cell proliferation, invasion, and migration. In our previous study, we identified that PAIP1 was overexpressed in breast cancer, and the expression was correlated with poor prognosis. However, the biological function of PAIP1 in breast cancer has not been clearly understood. In this study, we constructed PAIP1 specifically silenced breast cancer cells. Then, cell proliferation, cell cycle distribution, and apoptosis were detected in PAIP1 knockdown cells. RNA-seq analysis was performed to predict the downstream target of PAIP1, and the molecular mechanism was explored. As a results, we found that knockdown of PAIP1 repressed cell proliferation, induced cell cycle arrest, and triggers apoptosis. Xenograft mouse model showed that knockdown of PAIP1 inhibits cell growth in vivo. RNA-seq predicted that CCNE2 mRNA was one of the downstream targets of PAIP1. In addition, we identified that knockdown of PAIP1-inhibited cell proliferation through modulating cyclin E2 expression. Mechanically, knockdown of PAIP1 reduces the expression of cyclin E2 by regulating the mRNA stability of cyclin E2. Moreover, in breast cancer tissues, we found that the expression of PAIP1 was positively correlated with cyclin E2. Taken together, our findings establish the role and mechanism of PAIP1 in breast cancer progression, indicating that PAIP1 would be a new therapeutic target for breast cancer treatment.

3.
Bioorg Chem ; 153: 107777, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39244968

RESUMEN

Inhibiting cyclin-dependent kinases (CDK) offers an important arsenal for cancer treatments by interfering with apoptotic proteins related to cancer. Novel selective cyclin-dependent kinases inhibitors using the Quinazoline as the cap with multiple electronic donating (EDG) and/or electron withdrawing group (EWG) substituted Aniline chain at the C-2 position were designed, synthesized, and evaluated for activity against liver cancer. Among the tested compounds, compounds B34 and B35 emerged as potent candidates in the series, with IC50 values of 0.102 ± 0.04 µM and 0.058 ± 0.003 µM, respectively. They also suppressed the enzymatic activity of CDK2/cyclinA2 selectively. Further biological studies revealed that compounds B34 and B35 arrested the cell cycle, and induced apoptosis in HepG-2 cancer cells through a Caspase-mediated mechanism, facilitating the release of Cyt-c through modulation of Caspase-3 expression. More importantly, compounds B34 and B35 suppressed the xenografted tumor growth in mice in a dose-dependent manner. Finally, through a molecular docking study, it was confirmed that compoundsB34 andB35 retained crucial hydrogen bonding and hydrophobic interactions with CDK receptor, rationalizing their higher efficacy compared to other compounds in the series. Taken together, the Quinazoline derivatives B34 and B35 may serve as novel chemotherapeutic agents through inhibition of CDK.

4.
Arch Esp Urol ; 77(7): 796-804, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39238305

RESUMEN

BACKGROUNDS: F-box protein 45 (FBXO45) has been implicated in the progression of several diseases. Whether FBXO45 is involved in the development of bladder cancer remains unclear. Thus, this study focused on the effect of FBXO45 on the malignant progression of bladder cancer cells. METHODS: FBXO45 small-interference fragment was transfected into RT4 and 5637 cells by liposome-mediated transfection, and the knockdown efficiency of FBXO45 was verified by Western blot assay. The growth rate between FBXO45 knockdown cell lines and control cell lines was compared by counting kit 8 and plate cloning experiments. The motility of bladder cancer cells was observed via the Transwell test and Wound healing test. The effects of FBXO45 silencing on apoptosis and cell division were confirmed by flow cytometry. Western blot assay was performed to determine the function of FBXO45 knockdown on key proteins of cell apoptosis and the ERK/Cyclin D1/CDK4 pathway. RESULTS: After FBXO45 knockdown, the proliferation of bladder cancer cells was blocked (p < 0.01), and the migration and invasion abilities were reduced (p < 0.01). FBXO45 knockdown reduced the number of S-phase cells (RT4, p < 0.01; 5637, p < 0.05) and enhanced the apoptotic rate (p < 0.01). FBXO45 knockdown decreased the levels of p-ERK1/2, CDK4 and Cyclin D1 (p < 0.01). CONCLUSIONS: This study revealed that FBXO45 plays a carcinogenic role in bladder cancer via the ERK/Cyclin D1/CDK4 pathway, which provides a reference for the clinical treatment of patients with bladder cancer.


Asunto(s)
Ciclina D1 , Quinasa 4 Dependiente de la Ciclina , Progresión de la Enfermedad , Proteínas F-Box , Técnicas de Silenciamiento del Gen , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Humanos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Sistema de Señalización de MAP Quinasas , Células Tumorales Cultivadas , Línea Celular Tumoral , Proliferación Celular
5.
J Adv Res ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218249

RESUMEN

INTRODUCTION: Owing to the limited treatment options for hepatocellular carcinoma (HCC), interventions targeting pre-HCC stages have attracted increasing attention. In the pre-HCC stage, hepatic tumor-initiating cells (hTICs) proliferate abnormally and contribute to hepatocarcinogenesis. Numerous studies have investigated targeted senescence induction as an HCC intervention. However, it remains to be clarified whether senescence induction of hTICs could serve as a pre-HCC intervention. OBJECTIVES: This study was designed to investigate whether senescence induction of hTICs in the precancerous stage inhibit HCC initiation. METHODS AND RESULTS: HCC models developed from chronic liver injury (CLI) were established by using Fah-/- mice and N-Ras + AKT mice. PD-0332991, a selective CDK4/6 inhibitor that blocks the G1/S transition in proliferating cells, was used to induce senescence during the pre-HCC stage. Upon administration of PD-0332991, we observed a significant reduction in HCC incidence following selective senescence induction in hTICs, and an alleviation liver injury in the CLI-HCC models. PD-0332991 also induced senescence in vitro in cultured hTICs isolated from CLI-HCC models. Moreover, RNA sequencing (RNA-seq) analysis delineated that the "Cyclin D-CDK4/6-INK4-Rb" pathway was activated in both mouse and human liver samples during the pre-HCC stage, while PD-0332991 exhibited substantial inhibition of this pathway, thereby inducing cellular senescence in hTICs. Regarding the immune microenvironment, we demonstrated that senescent hTICs secrete key senescence-associated secretory phenotypic (SASP) factors, CXCL10 and CCL2, to activate and recruit macrophages, and contribute to immune surveillance. CONCLUSION: We found that hTICs can be targeted and induced into a senescent state during the pre-HCC stage. The SASP factors released by senescent hTICs further activate the immune response, facilitating the clearance of hTICs, and consequently suppressing HCC occurrence. We highlight the importance of pre-HCC interventions and propose that senescence-inducing drugs hold promise for preventing HCC initiation under CLI.

6.
Cancer Med ; 13(17): e70101, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39235099

RESUMEN

INTRODUCTION: Hotspots (HS) mutations in the PIK3CA gene may lead to poorer oncological outcomes and endocrine resistance in advanced breast cancer (BC), but their prognostic role in early-stage disease remains controversial. The overall agreement within plasma and tissue methods has not been well explored. Our aim was to correlate tissue and plasma approaches and to analyze the prognostic impact of PIK3CA mutations (PIK3CAm) in HR+/HER2- BC. METHODS: A retrospective and unicentric analysis of PIK3CA mutational status in tissue and plasma samples by Cobas®PIK3CA Mutation Kit in patients with HR+/HER2- BC. RESULTS: We analyzed 225 samples from 161 patients with luminal BC. PIK3CA mutations were identified in 62 patients (38.5%), of which 39.6% were found in tissue and 11.8% in plasma. In advanced disease, plasma and tissue correlation rate was performed in 64 cases, with an overall agreement of 70.3%. Eighty patients were treated with CDK4/6 inhibitors + endocrine therapy. We observed a moderately worse progression-free survival (PFS) in PIK3CAm versus wild-type (WT) (24 m vs. 30 m; HR = 1.39, p = 0.26). A subanalysis was carried out based on exons 9 and 20, which showed a statistically poorer PFS in PIK3CAm exon 9 versus 20 population (9.7 m vs. 30.3 m; HR = 2.84; p = 0.024). Furthermore, detection of PIK3CAm in plasma was linked to a worse PFS vs PIK3CAm detection just in tissue (12.4 vs. 29.3; HR = 2.4; p = 0.08). CONCLUSIONS: Our findings suggest the PIK3CA evaluation in tissue as the diagnostic method of choice, however, additional investigations are required to improve the role of liquid biopsy in the PIK3CA assessment. PIK3CAm show worse outcomes in advanced luminal BC, especially in exon 9 mutation carriers, despite visceral involvement, prior exposure to endocrine therapy or detection of PIK3CAm in plasma, with an unclear prognosis in early-stage disease. Nonetheless, this should be validated in a prospective cohort study.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa Clase I , Mutación , Receptor ErbB-2 , Humanos , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/sangre , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Pronóstico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Anciano , Estudios Retrospectivos , Adulto , Anciano de 80 o más Años , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Estrógenos/metabolismo
7.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273534

RESUMEN

Statins, inhibitors of HMG-CoA reductase, have been shown to have potential anti-carcinogenic effects through the inhibition of the mevalonate pathway and their impact on Ras and RhoGTAases. Prior studies have demonstrated a reduction in breast tumor proliferation, as well as increased apoptosis, among women with early-stage breast cancer who received statins between the time of diagnosis and the time of surgery. The aim of this study was to evaluate the impact of short-term oral high-potency statin therapy on the expression of markers of breast tumor proliferation, apoptosis, and cell cycle arrest in a window-of-opportunity trial. This single-arm study enrolled 24 women with stage 0-II invasive breast cancer who were administered daily simvastatin (20 mg) for 2-4 weeks between diagnosis and surgical resection. Pre- and post-treatment tumor samples were analyzed for fold changes in Ki-67, cyclin D1, p27, and cleaved caspase-3 (CC3) expression. Out of 24 enrolled participants, 18 received statin treatment and 17 were evaluable for changes in marker expression. There was no significant change in Ki-67 expression (fold change = 1.4, p = 0.597). There were, however, significant increases in the expression of cyclin D1 (fold change = 2.8, p = 0.0003), p27 cytoplasmic (fold change = 3.2, p = 0.025), and CC3 (fold change = 2.1, p = 0.016). Statin treatment was well tolerated, with two reported grade-1 adverse events. These results align with previous window-of-opportunity studies suggesting a pro-apoptotic role of statins in breast cancer. The increased expression of markers of cell cycle arrest and apoptosis seen in this window-of-opportunity study supports further investigation into the anti-cancer properties of statins in larger-scale clinical trials.


Asunto(s)
Apoptosis , Biomarcadores de Tumor , Neoplasias de la Mama , Proliferación Celular , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Apoptosis/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Persona de Mediana Edad , Proliferación Celular/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Anciano , Adulto , Estadificación de Neoplasias , Simvastatina/farmacología , Simvastatina/uso terapéutico , Antígeno Ki-67/metabolismo , Ciclina D1/metabolismo , Caspasa 3/metabolismo
8.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273571

RESUMEN

Amyloid-beta peptide (Aß) is a neurotoxic constituent of senile plaques in the brains of Alzheimer's disease (AD) patients. The detailed mechanisms by which protein kinase C-delta (PKCδ) contributes to Aß toxicity is not yet entirely understood. Using fully differentiated primary rat cortical neurons, we found that inhibition of Aß25-35-induced PKCδ increased cell viability with restoration of neuronal morphology. Using cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) as the respective markers for the G1-, S-, and G2/M-phases, PKCδ inhibition mitigated cell cycle reentry (CCR) and subsequent caspase-3 cleavage induced by both Aß25-35 and Aß1-42 in the post-mitotic cortical neurons. Upstream of PKCδ, signal transducers and activators of transcription (STAT)-3 mediated PKCδ induction, CCR, and caspase-3 cleavage upon Aß exposure. Downstream of PKCδ, aberrant neuronal CCR was triggered by overactivating cyclin-dependent kinase-5 (CDK5) via calpain2-dependent p35 cleavage into p25. Finally, PKCδ and CDK5 also contributed to Aß25-35 induction of p53-upregulated modulator of apoptosis (PUMA) in cortical neurons. Together, we demonstrated that, in the post-mitotic neurons exposed to Aßs, STAT3-dependent PKCδ expression triggers calpain2-mediated p35 cleavage into p25 to overactivate CDK5, thus leading to aberrant CCR, PUMA induction, caspase-3 cleavage, and ultimately apoptosis.


Asunto(s)
Péptidos beta-Amiloides , Apoptosis , Ciclo Celular , Corteza Cerebral , Neuronas , Proteína Quinasa C-delta , Péptidos beta-Amiloides/metabolismo , Animales , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratas , Proteína Quinasa C-delta/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Ciclo Celular/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/metabolismo , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/metabolismo , Caspasa 3/metabolismo , Ratas Sprague-Dawley , Células Cultivadas , Transducción de Señal/efectos de los fármacos
9.
J Proteomics ; 310: 105318, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284438

RESUMEN

This study was performed to investigate the proteomic basis underlying the interaction between vitamin D3 (VD) and insulin (I) within ovarian follicle using the pig as a model. Porcine antral follicles were incubated in vitro for 12 h with VD alone and I alone or in combination (VD + I) or with no treatment as the control (C). In total, 7690 and 7467 proteins were identified in the granulosa and theca interna compartments, respectively. Comparative proteomic analysis revealed 97 differentially abundant proteins (DAPs) within the granulosa layer and 11 DAPs within the theca interna layer. In the granulosa compartment, VD affected proteome leading to the promotion of cell proliferation, whereas I influenced mainly proteins related to cellular adhesion. The VD + I treatment induced granulosa cell proliferation probably via the DAPs involved in DNA synthesis and the cell cycle regulation. In the theca interna layer, VD alone or in co-treatment with I affected DAPs associated with cholesterol transport and lipid and steroid metabolic processes that was further confirmed by diminished lipid droplet accumulation. SIGNIFICANCE: The application of quantitative proteomics demonstrated for the first time the complexity of VD and I interactions in porcine ovarian follicle, providing a framework for understanding the molecular mechanisms underlying their cross-talk. Although identified DAPs were related to crucial ovarian processes, including the granulosa cell proliferation and cholesterol transport in the theca interna layer, novel molecular pathways underlying these processes have been proposed. The identified unique proteins may serve as indicators of VD and I interactions in both follicle layers, and could be useful biomarkers of ovarian pathologies characterized by impaired VD and I levels, such as polycystic ovary syndrome.

10.
Adv Exp Med Biol ; 1460: 767-819, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287872

RESUMEN

Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.


Asunto(s)
Neoplasias de la Mama , Obesidad , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/terapia , Neoplasias de la Mama/metabolismo , Femenino , Obesidad/complicaciones , Factores de Riesgo , Índice de Masa Corporal , Pronóstico
11.
Transfus Apher Sci ; 63(6): 104004, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288703

RESUMEN

BACKGROUND: So many risk factors for mobilization failure have been described so far. We aimed to identify the risk factors and search the possible effects of bone marrow fibrosis (BMF), CD56, c-myc, and cyclinD1 expression on mobilization. METHODS: We evaluated 189 patients with MM who were admitted for stem cell mobilization before autologous stem cell transplantation (ASCT) between 2015 and June 2021. Clinical, laboratory, treatment features, and survival outcomes were compared in patients who were successfully mobilized and who were not. RESULTS: Mobilization failure rate was 11.1 % (21) in our study group. Male gender, mobilization with only G-CSF, history of previous ASCT, lenalidomide exposure, and 2 lines of chemotherapy before stem cell mobilization were observed more commonly in mobilization failure group. There is no relationship between mobilization failure and BMF, CD56, c-myc, and cyclin D1 expression status in patients who received either only G-CSF or G-CSF+ chemotherapy for mobilization. Overall survival (OS) was not different in groups of patients who were successfully mobilized and who were not. Neutrophil engraftment was faster in patients who were transfused > 5 × 106/kg stem cells (p = 0.015). ECOG performance status (p = 0.004), c-myc expression (p = 0.005), lenalidomide therapy before mobilization (p = 0.032), and mobilization with G-CSF+chemotherapy was found to be predictive factors for OS. CONCLUSION: Even though we could not find any predictive value of CD56, c-myc, and cyclin D1 expression on mobilization, c-myc was found to be associated with low OS. Further studies with large and homogenous study population would be more informative.

12.
Curr Med Chem ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39279123

RESUMEN

INTRODUCTION: P-glycoprotein, an ATP-dependent efflux transporter, plays a crucial role in eliminating cellular toxins and affects the intracellular concentration and bioavailability of CDK 4/6 inhibitors. Moreover, dietary flavonoids are natural bio-enhancers that can effectively inhibit the efflux function of these transporters. Therefore, this study aimed to assess the impact of dietary polyphenols on the inhibition of P-glycoprotein and the subsequent efflux of CDK inhibitors palbociclib and ribociclib. METHODS: A molecular docking approach was implemented to evaluate the binding interaction characteristics of CDK4/6 inhibitors in the presence of dietary polyphenols at the ATP binding site. Furthermore, the stability of the complexes was evaluated in two conformations of P-glycoprotein, followed by an ex vivo everted gut sac experiment. RESULTS: The findings demonstrated that the binding of curcumin and quercetin with high affinity (-51.63 and 47.16 Kcal/mol) to ATP binding sites of P-glycoprotein-palbociclib and ribociclib inward conformation complexes resulted in good stability of complex and minimal fluctuation throughout the course of the simulation. It was evident from the everted gut sac ex vivo study that the presence of 100µM of curcumin resulted in an increase of 1.77 and 4.20-fold in the intestinal transit of palbociclib and ribociclib, respectively. CONCLUSION: The study emphasizes the significance of curcumin and quercetin as inhibitors of P-glycoprotein, demonstrating their potential to decrease the efflux of palbociclib and ribociclib, consequently contributing to their bioavailability enhancement.

13.
Int J Hematol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285033

RESUMEN

Splenic marginal zone lymphoma (SMZL) is one of the most common B-cell lymphomas that affect the spleen. We report a case with splenomegaly and lymphocytosis that showed a clonal B-cell population lacking CD5 and CD10 expression. Notably, the atypical lymphoid cells showed prolymphocytoid morphology and expressed cyclin D1. Fluorescence in-situ hybridization was negative for CCND1/IgH rearrangement. The prolymphocytoid morphology and cyclin D1 expression present a diagnostic pitfall. The clinical presentation, morphology, immunophenotype, and molecular genetic findings are most consistent with a diagnosis of SMZL with prolymphocytic transformation and cyclin D1 expression. Here, we present this case along with a review of the literature, and summarize the clinicopathological characteristics of SMZL with prolymphocytic transformation.

14.
EMBO J ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271794

RESUMEN

Sister chromatid cohesion is mediated by the cohesin complex. In mitotic prophase cohesin is removed from chromosome arms in a Wapl- and phosphorylation-dependent manner. Sgo1-PP2A protects pericentromeric cohesion by dephosphorylation of cohesin and its associated Wapl antagonist sororin. However, Sgo1-PP2A relocates to inner kinetochores well before sister chromatids are separated by separase, leaving pericentromeric regions unprotected. Why deprotected cohesin is not removed by Wapl remains enigmatic. By reconstituting Wapl-dependent cohesin removal from chromatin in vitro, we discovered a requirement for Nek2a and Cdk1/2-cyclin A2. These kinases phosphorylate cohesin-bound Pds5b, thereby converting it from a sororin- to a Wapl-interactor. Replacement of endogenous Pds5b by a phosphorylation mimetic variant causes premature sister chromatid separation (PCS). Conversely, phosphorylation-resistant Pds5b impairs chromosome arm separation in prometaphase-arrested cells and suppresses PCS in the absence of Sgo1. Early mitotic degradation of Nek2a and cyclin A2 may therefore explain why only separase, but not Wapl, can trigger anaphase.

15.
J Breast Cancer ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39344410

RESUMEN

PURPOSE: A widely distributed cell cycle inhibitor, p27, regulates cyclin-dependent kinase-cyclin complexes. Although the prognostic value of p27 has been established for various types of carcinomas, its role in luminal breast cancer remains poorly understood. This study aimed to explore the functional enrichment of p27 and identify potential drug targets in patients with luminal-type breast cancer. METHODS: Clinicopathological data were collected from 868 patients with luminal-type breast cancer. Additionally, publicly available data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset (1,500 patients) and the Gene Expression Omnibus database (855 patients) were included in the analysis. Immunohistochemical staining for p27, differential gene expression analysis, disease ontology analysis, survival prediction modeling using machine learning (ML), and in vitro drug screening were also performed. RESULTS: Low p27 expression correlated with younger age, advanced tumor stage, estrogen receptor/progesterone receptor negativity, decreased cluster of differentiation 8+ T cell count, and poorer survival outcomes in luminal-type breast cancer. The METABRIC data revealed that reduced cyclin-dependent kinase inhibitor 1B (CDKN1B) expression (encoding p27) was associated with cell proliferation-related pathways and epigenetic polycomb repressive complex 2. Using ML, p27 emerged as the second most significant survival factor after N stage, thereby enhancing survival model performance. Additionally, luminal-type breast cancer cell lines with low CDKN1B expression demonstrated increased sensitivity to specific anticancer drugs such as voxtalisib and serdemetan, implying a potential therapeutic synergy between CDKN1B-targeted approaches and these drugs. CONCLUSION: The integration of ML and bioinformatic analyses of p27 has the potential to enhance risk stratification and facilitate personalized treatment strategies for patients with breast cancer.

16.
Pharmaceutics ; 16(9)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39339274

RESUMEN

Background. Cyclin-dependent kinase 8 (CDK8) is a multifaceted regulator and represents a catalytic component of the transcriptional Mediator complex. CDK8 activity, on the one hand, increases transcriptional elongation by the recruitment of Mediator/super elongation complexes, but, on the other hand, negatively regulates CDK7-controlled transcriptional initiation through inactivating cyclin H phosphorylation. Recently, these combined properties of CDK8 have also suggested its rate-limiting importance for herpesviral replication. Objectives. In this paper, we focused on human cytomegalovirus (HCMV) and addressed the question of whether the pharmacological inhibition or knock-down of CDK8 may affect viral replication efficiency in cell culture models. Methods. A number of human and animal herpesviruses, as well as non-herpesviruses, were used to analyze the importance of CDK8 for viral replication in cell culture models, and to assess the antiviral efficacy of CDK8 inhibitors. Results. Using clinically relevant CDK8 inhibitors (CCT-251921, MSC-2530818, and BI-1347), HCMV replication was found strongly reduced even at nanomolar drug concentrations. The EC50 values were consistent for three different HCMV strains (i.e., AD169, TB40, and Merlin) analyzed in two human cell types (i.e., primary fibroblasts and astrocytoma cells), and the drugs comprised a low level of cytotoxicity. The findings highlighted the following: (i) the pronounced in vitro SI values of anti-HCMV activity obtained with CDK8 inhibitors; (ii) a confirmation of the anti-HCMV efficacy by CDK8-siRNA knock-down; (iii) a CDK8-dependent reduction in viral immediate early, early, and late protein levels; (iv) a main importance of CDK8 for viral late-stage replication; (v) several mechanistic aspects, which point to a strong impact on viral progeny production and release, but a lack of CDK8 relevance for viral entry or nuclear egress; (vi) a significant anti-HCMV drug synergy for combinations of inhibitors against host CDK8 and the viral kinase vCDK/pUL97 (maribavir); (vii) finally, a broad-spectrum antiviral activity, as seen for the comparison of selected α-, ß-, γ-, and non-herpesviruses. Conclusions. In summary, these novel data provide evidence for the importance of CDK8 as a positive regulator of herpesviral replication efficiency, and moreover, suggest its exploitability as an antiviral target for novel strategies of host-directed drug development.

17.
Neoplasia ; 57: 101045, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236400

RESUMEN

PSMA expression gradually increases from benign prostatic hyperplasia to adenocarcinoma of the prostate and is therefore used for the development of improved diagnostic (PSMA)-based prostate cancer imaging tools. Pharmacological induction of PSMA is therefore eminent to further improve the detection rate of PSMA-based imaging. Our previous studies have demonstrated that lovastatin (Lova) and dutasteride (Duta) are able to induce PSMA expression. However, the mechanisms by which PSMA is regulated in prostate cancer remain poorly understood. Androgen receptor (AR) and homeobox B13 (HOXB13) are the best known regulators of PSMA, hence in the present study we aimed to explore the PSMA regulation by HOXB13 and AR signaling in LNCaP and VCaP cells following treatments with Lova and Duta. Furthermore, our previous research revealed a growth arrest in prostate cancer cells after Lova, but not after Duta treatment. To understand this discrepancy, we explored the influence of Lova and Duta on well known tumor growth promoters, such as AR, the mTOR/Akt signaling pathways and Cyclin D1. Our results showed that treatment with Lova leads to a significant inhibition of the investigated tumor promoters and results in growth regression of LNCaP and VCaP cells. In contrast, Duta does not show these effects. Furthermore, we confirm the cooperative effect of HOXB13 and AR in regulating PSMA in LNCaP cells, and extend the investigations to an additional prostate cancer cell line (VCaP).

18.
Mol Med Rep ; 30(5)2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39239742

RESUMEN

The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system­related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.


Asunto(s)
Neoplasias del Sistema Digestivo , Tetraspaninas , Humanos , Tetraspaninas/metabolismo , Tetraspaninas/genética , Neoplasias del Sistema Digestivo/metabolismo , Neoplasias del Sistema Digestivo/genética , Neoplasias del Sistema Digestivo/patología , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Animales
19.
Ann Dermatol ; 36(5): 282-291, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39343755

RESUMEN

BACKGROUND: Excessive growth of keratinocytes is the critical event in the etiology of psoriasis. However, the underlying molecular mechanism of psoriatic keratinocyte hyperproliferation is still unclear. OBJECTIVE: This study aimed to figure out the potential contributory role of S-phase kinase-associated protein 2 (SKP2) in promoting the hyperproliferation of keratinocytes in psoriasis. METHODS: We analyzed microarray data (GSE41662) to investigate the gene expression of SKP2 in psoriatic lesion skins compared with their adjacent non-lesional skin. Then, we further confirmed the mRNA and protein expression of SKP2 in human psoriatic skin tissues, imiquimod (IMQ)-induced psoriatic mice back skins and tumor necrosis factor α (TNF-α), interleukin (IL)-17A and IL-6-stimulated keratinocytes by using real-time quantitative polymerase chain reaction and western blot (WB). Furthermore, we explored the potential pathogenic role and its underlying cellular mechanism of SKP2 in promoting keratinocytes hyperproliferation through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle detection, 5-ethynyl-2'-deoxyuridine staining and WB. Finally, we determined whether inhibition of SKP2 can effectively alleviate the keratinocytes hyperproliferation in vivo. RESULTS: We identified that SKP2 is aberrantly upregulated in the psoriatic lesion skin and cytokines-stimulated keratinocytes. Moreover, upregulated SKP2 augments cytokines-induced keratinocytes hyperproliferation. Mechanistically, enhanced SKP2 increased the S phase ratio through inhibiting Cyclin-Dependent Kinase Inhibitor p27 (P27 Kip1) expression. Correspondingly, suppression of SKP2 with SMIP004 can significantly ease the epidermis hyperplasia in vivo. CONCLUSION: Our results suggest that elevated SKP2 can empower keratinocytes proliferation and psoriasis-like epidermis hyperplasia via downregulation of P27 Kip1. Therefore, targeting SKP2-P27 Kip1 axis might be a promising therapeutic strategy for the treatment of psoriasis in future.

20.
Biomolecules ; 14(9)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39334946

RESUMEN

Rhabdomyosarcoma (RMS), the most common form of sarcoma typical of pediatric age, arises from the malignant transformation of the mesenchymal precursors that fail to differentiate into skeletal muscle cells. Here, we investigated whether the protein phospholipase C δ4 (PLCδ4), a member of the PLC family involved in proliferation and senescence mechanisms of mesenchymal stromal stem cells, may play a role in RMS. Our molecular and morpho-functional data reveal that PLCδ4 is highly expressed in the fusion-negative, p53-positive, SMARCB1 heterozygous mutated embryonal RMS (ERMS) cell line A204, while it is poorly expressed in the ERMS cell lines RD (fusion-negative, MYC amplification, N-RAS (Q61H), homozygous mutated p53) and Hs729 (homozygous mutated p53) and the alveolar rhabdosarcoma (ARMS) cell line SJCRH30 (RH30; fusion positive, heterozygous mutated RARA, polyheterozygous mutated p53). To characterize the role of PLCδ4, the RD cell line was stably transfected with wild-type PLCδ4 (RD/PLCδ4). Overexpressed PLCδ4 mainly localized to the nucleus in RD cells and contributed to the phosphorylation of PRAS40 (T246), Chk2(T68), WNK1(T60), and Akt 1/273 (S473), as revealed by proteome profiler array analysis. Overexpression of PLCδ4 in RD cells enhanced cyclin B1 expression and resulted in G2/M-phase cell cycle arrest. In contrast, siRNA-mediated knockdown of PLCδ4 in A204 cells resulted in reduced cyclin B1 expression. Our study identifies a novel role for nuclear PLCδ4 as a regulator of cyclin B1 via Akt-dependent phosphorylation. The modulation of PLCδ4 expression and its downstream targets could represent a crucial signaling pathway to block embryonal RMS cell proliferation.


Asunto(s)
Rabdomiosarcoma Embrionario , Humanos , Línea Celular Tumoral , Rabdomiosarcoma Embrionario/metabolismo , Rabdomiosarcoma Embrionario/genética , Rabdomiosarcoma Embrionario/patología , Fosfolipasa C delta/metabolismo , Fosfolipasa C delta/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Núcleo Celular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Ciclina B1/metabolismo , Ciclina B1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...