Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 667, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961361

RESUMEN

Dof transcription factor family in Cyperus esculentus genome was identified and analyzed using bioinformatics. The analysis results revealed that C.esculentus genome contains 29 Dof genes (CesDof), all of which are located in the nucleus according to subcellular localization prediction. CesDof proteinrs have a range of 124 to 512 amino acids, with most being basic proteins. Their secondary structure was mainly irregular curl. The promoter sequence of CesDof genes contains cis-acting elements that respond to light, drought, hormones, low temperature, and circadian rhythm. Codon preference analysis showed that CesDof genes' codon preference ends in T/A. Collinearity analysis revealed that C.esculentus had three pairs of collinear CesDof genes. Additionally, there were 15 pairs of collinear genes between C.esculentus and Arabidopsis thaliana. The genetic relationship between C.esculentus and Rhynchospora pubera was found to be the closest. Phylogenetic tree analysis revealed that 29 CesDof genes of C.esculentus can be classified into 4 subgroups. Additionally, 144 miRNAs were predicted to target these CesDof genes. Furthermore, protein interaction analysis indicated that 15 Dof proteins in C.esculentus had interactions. The qRT-PCR verification results of drought stress and salt stress treatment experiments showed that most CesDof genes were involved in drought stress and salt stress responses, and the gene expression trends under drought stress and salt stress conditions were consistent. These results lay a theoretical foundation for further studying the molecular functions of Dof gene family in C.esculentus and its molecular mechanisms in regulating the life activities of C.esculentus.


Asunto(s)
Cyperus , Evolución Molecular , Filogenia , Proteínas de Plantas , Factores de Transcripción , Cyperus/genética , Cyperus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Estrés Fisiológico/genética , Regiones Promotoras Genéticas , Familia de Multigenes
2.
Plant Physiol Biochem ; 214: 108911, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38976943

RESUMEN

Soil salinization effects plant photosynthesis in a number of global ecosystems. In this study, photosynthetic and physiological parameters were used to elucidate the impacts of saline-alkaline stress on Cyperus esculentus L. (C. esculentus) seedling photosynthesis. The results demonstrate that salt stress, alkali stress and mixed salt and alkali stress treatments all have similar bell-shaped influences on photosynthesis. At low concentrations (0-100 mmol L-1), saline-alkaline stress promoted net photosynthetic rate, transpiration rate and water use efficiency in C. esculentus. However, as the treatments increased in intensity (100-200 mmol L-1), plant photosynthetic parameters began to decline. We interpreted this as the capacity of C. esculentus to improve osmoregulatory capacity in low saline-alkaline stress treatments by accumulating photosynthetic pigment, proline and malondialdehyde to counterbalance the induced stress - an adaptive mechanism that failed once concentrations reached a critical threshold (100 mmol L-1). Stomatal conductance, maximum photosynthetic rate and actual photosynthetic rate all decreased with increasing concentration of the stress treatments, and intercellular carbon dioxide showed a decreasing and then increasing trend. These results indicated that when the saline-alkaline stress concentrations were low, C. esculentus seedlings showed obvious adaptive ability, but when the concentration increased further, the physiological processes of C. esculentus seedlings were significantly affected, with an obvious decrease in photosynthetic efficiency. This study provides a new understanding of the photosynthetic adaptation strategies of C. esculentus seedlings to varying concentrations of saline-alkaline stress.

3.
Food Chem X ; 22: 101511, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38911913

RESUMEN

This study investigated the effects of varying amounts of added Cyperus esculentus polysaccharide (CEP) on the physicochemical and structural properties, as well as in vitro digestibility, of homologous Cyperus esculentus starch (CES). Compared to CES, the CES-CEP complexes showed reduced peak viscosity and breakdown value, and improved thermal paste stability of starch. Rheological properties showed that adding CEP reduced the consistency coefficient and pseudoelasticity of the complexes, thus increasing their resistance to shear thinning. FTIR analysis suggested the absence of covalent binding between CES and CEP. SEM showed a more homogeneous and dense gel structure, particularly in the CES-1.0%CEP sample. During in vitro digestion, the content of resistant starch in the complexes increased after CEP was added. Analysis of the interaction forces showed that the CES-CEP complexes had stronger hydrogen bonding and electrostatic interaction. This study offers valuable insights into the potential applications of CEP in starch-based foods.

4.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791140

RESUMEN

The tiger nut (Cyperus esculentus L.) is a usable tuber and edible oil plant. The size of the tubers is a key trait that determines the yield and the mechanical harvesting of tiger nut tubers. However, little is known about the anatomical and molecular mechanisms of tuber expansion in tiger nut plants. This study conducted anatomical and comprehensive transcriptomics analyses of tiger nut tubers at the following days after sowing: 40 d (S1); 50 d (S2); 60 d (S3); 70 d (S4); 90 d (S5); and 110 d (S6). The results showed that, at the initiation stage of a tiger nut tuber (S1), the primary thickening meristem (PTM) surrounded the periphery of the stele and was initially responsible for the proliferation of parenchyma cells of the cortex (before S1) and then the stele (S2-S3). The increase in cell size of the parenchyma cells occurred mainly from S1 to S3 in the cortex and from S3 to S4 in the stele. A total of 12,472 differentially expressed genes (DEGs) were expressed to a greater extent in the S1-S3 phase than in S4-S6 phase. DEGs related to tuber expansion were involved in cell wall modification, vesicle transport, cell membrane components, cell division, the regulation of plant hormone levels, signal transduction, and metabolism. DEGs involved in the biosynthesis and the signaling of indole-3-acetic acid (IAA) and jasmonic acid (JA) were expressed highly in S1-S3. The endogenous changes in IAA and JAs during tuber development showed that the highest concentrations were found at S1 and S1-S3, respectively. In addition, several DEGs were related to brassinosteroid (BR) signaling and the G-protein, MAPK, and ubiquitin-proteasome pathways, suggesting that these signaling pathways have roles in the tuber expansion of tiger nut. Finally, we come to the conclusion that the cortex development preceding stele development in tiger nut tubers. The auxin signaling pathway promotes the division of cortical cells, while the jasmonic acid pathway, brassinosteroid signaling, G-protein pathway, MAPK pathway, and ubiquitin protein pathway regulate cell division and the expansion of the tuber cortex and stele. This finding will facilitate searches for genes that influence tuber expansion and the regulatory networks in developing tubers.


Asunto(s)
Cyperus , Regulación de la Expresión Génica de las Plantas , Tubérculos de la Planta , RNA-Seq , Cyperus/genética , Cyperus/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , Transcriptoma , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Foods ; 13(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731796

RESUMEN

In this study, we have investigated the effects of Tremella fuciformis polysaccharide (TP) on the pasting, rheological, structural and in vitro digestive properties of Cyperus esculentus starch (CS). The results showed that the addition of TP significantly changed the pasting characteristics of CS, increased the pasting temperature and pasting viscosity, inhibited pasting, reduced the exudation of straight-chain starch and was positively correlated with the amount of TP added. The addition of the appropriate amount of TP could increase its apparent viscosity and enhance its viscoelasticity. The composite system of CS/TP exhibited higher short-range ordered structure and solid dense structure, which protected the crystal structure of CS, but was related to the amount of TP added. In addition, the introduction of TP not only decreased the in vitro digestion rate of CS and increased the content of slow-digestible starch (SDS) and resistant starch (RS), but also reduced the degree of digestion. Correlation studies established that TP could improve the viscoelasticity, relative crystallinity and short-range order of the CS/TP composite gel, maintain the integrity of the starch granule and crystalline structure, reduce the degree of starch pasting and strengthen the gel network structure of CS, which could help to lower the digestibility of CS.

6.
Trop Anim Health Prod ; 56(4): 136, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647730

RESUMEN

This study examined the effects of using mushroom mycelium to ferment tigernut and cassava pulp on the growth performance, haematology and immunology of rabbits. Seventy-five New Zealand Bulk grower rabbits were randomly distributed to four treatment groups and a control group in a completely randomized approach. The treatment groups were fed with formulated experimental diets containing one of fermented tigernut drink by-product (FT), fermented cassava sievate (FC), unfermented tigernut drink by-product (UT), or unfermented cassava sievate (UC). The control group was fed a basal diet with no additives. The proximate composition of the fermented feed was analyzed. The weight gain of the animals was, 834.5, 633, 790, 510, and 706 g for control, FT, FC, UT, and UC respectively. The packed cell volume (PCV) for animals in the control group, FT, and FC are 34.33, 37.26, and 32.29% respectively. The red blood cell (RBC) of the FT was favourably improved (5.53 × 1012/L) compared to those of UT (2.28 × 1012/L), while there was a reduction in the red blood cell count of FC group (1.02 × 1012/L). Conclusively, the inclusion of fermented tiger nut drink by-product in rabbit feed improved the PCV and RBC of the rabbits' understudy but did not affect their growth performance.


Asunto(s)
Alimentación Animal , Dieta , Fermentación , Manihot , Animales , Conejos/crecimiento & desarrollo , Conejos/sangre , Manihot/química , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Distribución Aleatoria , Arecaceae/química , Hematócrito/veterinaria , Aumento de Peso/efectos de los fármacos
7.
Int J Biol Macromol ; 267(Pt 1): 131272, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565370

RESUMEN

Oxidative stress can induce many diseases. Antioxidant peptides from food sources have the advantages of good safety, high activity, and good absorbability. In this study, a pentapeptide (SFRWQ; SER-PHE-ARG-TRP-GLN) was identified in a protein hydrolysate of Cyperus (Cyperus esculentus L.). Enzyme-linked immunosorbent assay (ELISA), real-time quantitative (qPCR), immunofluorescence and other techniques were used to evaluate the anti-inflammatory and antioxidant effects of SFRWQ. SFRWQ was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging ability, help increase superoxide dismutase (SOD) and catalase (CAT) levels in RAW264.7 cells, reduce reactive oxygen species (ROS) levels, and decrease tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) gene expression and secretion. The binding score of SFRWQ to recombinant Kelch-like ECH-associated protein 1 (Keap1) was greater than that of TX6. These findings suggest that SFRWQ activates the Keap1-Nrf2 cellular antioxidant signaling pathway. According to metabolomics studies, SFRWQ increased glutathione (GSH), glutathione disulfide (GSSG), and γ-glutamylcysteine levels and decreased the levels of Prostaglandin D2 (PGD2), Prostaglandin E2 (PGE2), and Prostaglandin H2 (PGH2), which are involved in arachidonic acid metabolism, to protect cells from LPS-induced damage. By elucidating the mechanism of action of SFRWQ, we provide a reference for the development of dietary antioxidant peptides.


Asunto(s)
Antiinflamatorios , Antioxidantes , Cyperus , Inflamación , Estrés Oxidativo , Animales , Ratones , Células RAW 264.7 , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/química , Cyperus/química , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Superóxido Dismutasa/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo
8.
Int J Biol Macromol ; 267(Pt 2): 131172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552701

RESUMEN

In this study, the impact of acetylation on physicochemical, digestive behavior and fermentation characteristics of Cyperus esculentus polysaccharides (CEP) was investigated. Results indicated that the acetylation led the molecules to be more likely aggregated, followed by a higher crystallinity, a lower apparent viscosity and a higher ratio of G" to G' (tan δ). Importantly, the acetylated polysaccharides (ACEP) had a lower digestibility, but its molecular weight was lower than that of original polysaccharides (CEP) following a simulated saliva-gastrointestinal digestion. Gut microbiota fermentation indicated that both polysaccharides generated outstanding short-chain fatty acids (SCFAs), in which the acetylated polysaccharides had a faster fermentation kinetics than the original one, followed by a quicker reduction of pH and a more accumulation of SCFAs, particularly butyrate. Fermentation of both polysaccharides promoted Akkermansia, followed by a reduced richness of Klebsiella. Importantly, the current study revealed that the fermentation of acetylated polysaccharides enriched Parabacteroides, while fermentation of original ones promoted Bifidobacterium, for indicating their individual fermentation characteristics and gut environmental benefits.


Asunto(s)
Cyperus , Ácidos Grasos Volátiles , Fermentación , Microbioma Gastrointestinal , Polisacáridos , Microbioma Gastrointestinal/efectos de los fármacos , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/metabolismo , Acetilación , Cyperus/química , Ácidos Grasos Volátiles/metabolismo , Fenómenos Químicos , Animales , Viscosidad , Concentración de Iones de Hidrógeno
9.
Front Plant Sci ; 15: 1351843, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481404

RESUMEN

Intercropping has the potential to enhance yields and nutrient availability in resource-limited agricultural systems. However, the effects on crop yield nutrients and soil properties can vary considerably depending on the specific plant combinations and intercropping ratios used. In this study, the advantages and impacts of intercropping C. esculentus with legumes were investigated by measuring their biomass, nutrient content, and soil properties. The experiment included five intercropping treatments: monoculture of C. esculentus (MC), intercropping of C. esculentus with Medicago sativa L. (alfalfa) at row spacing ratios of 4:4 (4:4CM) and 8:4 (8:4CM), and intercropping of C. esculentus with Glycine max (L.) Merr. (soybean), also at row spacing ratios of 4:4 (4:4CG) and 8:4 (8:4CG). Our results demonstrated that all four intercropping treatments (4:4CM, 4:4CG, 8:4CM, and 8:4CG) significantly increased the biomass of C. esculentus by approximately 41.05%, 41.73%, 16.08%, and 18.43%, respectively, compared with monoculture cultivation alone, among which the 4:4CG treatment was optimum. However, no significant differences were observed in alfalfa or soybean biomass across different intercropping ratios. A notable increase was found in the total nitrogen (TN) and total phosphorus (TP) contents in the leaves, roots, and tubers of C. esculentus under intercropping, along with increased soil organic carbon (SOC), alkaline-hydrolyzed nitrogen (AN), available phosphorus (AP), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and soil water content (SWC), and significantly reduced the soil pH. Among the intercropping treatments, the 4:4CG treatment also exhibited the most favorable soil properties. In particular, compared with MC, the 4:4CG treatment resulted in significant increases of 163.8%, 394.6%, and 716.8% in SOC, AN, and AP contents, respectively. The same treatment also led to significant increases of 48.34%, 46.40%, and 208.65% in MBC, MBN, and SWC, respectively. Overall, the findings suggest that the use of 4:4CG intercropping is an effective approach for sustainable farming management in Xinjiang.

10.
Plants (Basel) ; 13(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276771

RESUMEN

This study includes an assessment of the VIR (Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources) chufa collection, grown in various ecological and geographical conditions of the Russian Federation: "Yekaterininskaya experimental station VIR" in the Tambov region and "Kuban experimental station VIR" in the Krasnodar Region during the years 2020-2021. The main indicators of the economic value of chufa accessions were studied: yield structure and nutritional value (oil, protein, starch, and fatty acid profile). The accessions were grown in regions with different climatic conditions. As a result of the study, the variability of the biochemical and yield characteristics and the correlation between the studied indicators and the factor structure of its variability were established. Of the 20 accessions used in the study, the accessions with the highest protein, starch, oil and unsaturated fatty acid contents were selected, which are the most promising for their use as a raw material to expand the range of regional functional food products, as well as for future breeding efforts in the development of new, promising regional chufa varieties.

11.
Food Sci Technol Int ; : 10820132231219714, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38073089

RESUMEN

In this study, tiger nut was pretreated with xylanase (Xyl), microwave radiation (MW), and a combination of both (MW + Xyl). The structure, nutritional composition, technofunctional, and antioxidant properties of the pretreated and untreated (control) tiger nut flour (TNF) were investigated. The Fourier transform infrared spectroscopic and X-ray diffractrometric spectra of the control and the pretreated samples are similar; however, there was a slight change in some peaks in the pretreated samples, indicating structural re-organization of macromolecules. Scanning electron microscopic images show reductions of surface erosion and formation of clusters in the MW + Xyl-treated TNF compared to the other pretreated samples. Pretreatment increased the protein, Ca, total phenolic content, and swelling capacity of TNF by 3.71-7.31%, 29.41-32.35%, 4.39-9.65%, and 1.59-6.75%, respectively. Meanwhile, 45.52-58.78% and 11.54-15.38% reductions in fat content and water absorption capacity, respectively, were recorded. Pretreatment of TNF with Xyl and MW + Xyl increased its soluble dietary fiber by 26.84% and 64.34%, respectively; however, a 3.31% reduction was recorded following MW treatment. The highest 2, 2-diphenyl-1-picrylhydrazyl scavenging activity (53.20%) was recorded in the MW + Xyl-treated TNF. These findings proved that pretreating TNF with microwave radiation and Xyl could improve its technological and nutritional qualities, enhancing its applicability in food systems.

12.
Foods ; 12(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38002145

RESUMEN

In this study, Tiger nut (Cyperus esculentus L.) oil-based oleogels were prepared using the emulsion template method with whey protein (WPI; 0.5-2.5% (w/v) and Xanthan gum (XG; 0.1-0.5% (w/v). The microstructure of the oleogels obtained from the high internal phase emulsion (HIPE) and an emulsion after further shearing were observed using an optical microscope and laser confocal microscopy. A series of rheological tests were conducted to evaluate the effect of WPI and XG concentrations on the strength of the emulsion and oleogel. The texture, oil holding capacity, and oxidative stability of oleogels were characterized. The results showed that XG alone could not form oleogel, while the concentration of WPI had more effect than XG. When WPI was at a fixed concentration, the viscoelasticity of HIPE increased with the addition of XG. This was due to the complexation of WPI and XG, forming a stable gel network between the tight emulsion droplets and thus giving it a higher viscoelasticity. With an increase in WPI concentration, the stability and viscoelasticity of the emulsion were increased, and the oil-holding capacity and gel strength of the oleogels were enhanced. Moreover, the addition of XG could significantly enhance the stability and viscoelasticity of the emulsion (p < 0.05), and an increase in the concentration had a positive effect on it. The oleogels showed high gel strength (G' > 15,000 Pa) and good thixotropic recovery when the XG concentration was higher than 0.3% (w/v). WPI (2.0%) and XG (>0.3%) could be used to obtain HIPE with good physicochemical and viscoelastic properties, which in turn lead to oleogels with minimal oil loss, viscoelastic and thixotropic recovery, and temperature stability. Compared with tiger nut oil-based oleogel, tiger nut oil contained more polyunsaturated fatty acids, which were more easily decomposed through oxidation during storage and had lower oxidation stability. This study provides a reference for the preparation of oleogels from food-approved polymers and provides additional theoretical support for their potential application as solid fat substitutes.

13.
Int J Biol Macromol ; 253(Pt 1): 126626, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37660863

RESUMEN

Non-thermal dielectric barrier discharge plasma (DBDP) and four thermal treatments, including baking (BT), high pressure cooking (HPC), radio frequency (RF) and microwave (MW) were applied to modify the structural and physicochemical properties of Cyperus esculentus starch (CES). The results showed that the thermal treatments remarkably disordered the crystalline structures of CES through weakening the double-helix conformation of amylopectin, while DBDP caused much more gentle influence on the starch structures than them. Specifically, MW induced the high-frequency displacement of polar molecules and intensive collisions between starch and water molecules, causing the largest stretching and swelling extents of amylopectin, resulting in the highest pasting and rheological viscosity of CES in four thermal treatments. As DBDP did not favor the aggregation of amylopectin chains, the deaggregated starch chains promoted the hydration effects with water molecules, boosting the final pasting viscosity, apparent rheological viscosity, freeze-thaw stability and digestion velocity of CES. Besides, the gelatinization-retrogradation process in the thermal treatments regulated starch digestion velocity and produced type III resistant starch in CES. Conclusively, the modified physicochemical properties of CES resulted from the altered molecular structures of starch by the applied treatments.


Asunto(s)
Cyperus , Almidón , Almidón/química , Amilopectina/química , Amilosa/química , Nueces , Temperatura , Viscosidad , Agua
14.
Ecotoxicol Environ Saf ; 265: 115519, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769580

RESUMEN

Heavy metal (HM) stress is a non-negligible abiotic stress that seriously restricts crop yield and quality, while the sprout stage is the most sensitive to stress and directly impacts the growth and development of the later stage. Melatonin (N-acetyl-5-methoxytryptamine), as an exogenous additive, enhances stress resistance due to its ability to oxidize and reduce. However, few reports on exogenous melatonin to tiger nuts under HM stress have explored whether exogenous melatonin enhances plants' resistance to heavy metals. Here, "Jisha 2″ was used as material, with a stress concentration of 5 mg/L and 100 µmol/L of CdCl2 to explore whether exogenous melatonin enhances plant resistance and molecular mechanism. The result revealed that stress limits growth, while melatonin alleviated the sprout damage under stress from the phenotypes. Moreover, stress-enhanced reactive oxygen species (ROS) accumulation and membrane lipid peroxidation, while melatonin-increased ROS reduce damage via the analysis of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and malondialdehyde (MDA) content, hydrogen peroxide (H2O2), superoxide anion (O2-), and Electrolyte leakage (El). Further results indicated that HM leads to DNA damage while exogenous melatonin will repair the damage by analyzing random amplified polymorphic DNA (RAPD), DNA cross-linking, 8-hydroxy-20-deoxyguanine level, and relative density of apurinic sites. Furthermore, gene expression in the DNA-repaired pathway exhibited similar results. These results applied that exogenous melatonin released the hurt caused by HM stress, with DNA repair and ROS balance serving as candidate pathways. This study elucidated the mechanism of melatonin's influence and provided theoretical insights into its application in tiger nuts.


Asunto(s)
Cyperus , Melatonina , Melatonina/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cadmio/metabolismo , Peróxido de Hidrógeno/metabolismo , Técnica del ADN Polimorfo Amplificado Aleatorio , ADN/metabolismo , Estrés Oxidativo
15.
Food Chem ; 427: 136734, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37418805

RESUMEN

This research was designed to characterize the structure of Cyperus esculentus polysaccharide (CEP) and its acetylated one (ACEP), and then investigated the effects of acetylation on the changes in physicochemical properties, thermal stability, antioxidant and immunomodulatory activities. Results showed that CEP and ACEP were heteropolysaccharides consisting of glucose, mannose, arabinose and xylose. The main chain of CEP included α-1,4-Glcp residues with the branching points at the O-6 position of the α-1,6-Manp residues. Acetyl groups were substituted at the O-2 and O-6 positions of some glucose residues. Meanwhile, the acetylation remarkably improved the polysaccharides thermal stability, and the ACEP exhibited a greater antioxidant activity. Furthermore, CEP and ACEP were proved to protect RAW 264.7 cells against LPS-induced inflammation by improving cellular morphology and decreasing reactive oxygen species secretion. This study may highlight a new approach for developing a high value-added ingredient from C. esculentus for functional food industry.


Asunto(s)
Antioxidantes , Cyperus , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/química , Cyperus/química , Polisacáridos/farmacología , Polisacáridos/química , Células RAW 264.7 , Glucosa
16.
BMC Plant Biol ; 23(1): 187, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37032368

RESUMEN

BACKGROUND: The allelopathic effect of Moringa (Moringa oleifera Lam.) leaves applied as organic manure in tiger nut (Cyperus esculentus L.) production on associated weeds was investigated in the guinea savanna of South West Nigeria, during the 2014 (September - November) and 2015 (June - August) wet seasons. METHODS: Five Moringa leaves rates (0, 2.5, 5.0, 7.5 and 10 t/ha) and three tuber sizes (0.28 g, 0.49 g and 0.88 g dry weight) were laid out in the main plot and sub-plot, respectively in a split-plot arrangement fitted into randomized complete block design and replicated three times. RESULTS: Parameters measured, which include, weed cover score (WCS), weed density (WD) and weed dry matter production (WDMP) were significantly (p<0.05) influenced in both years by Moringa leaf. In 2015, WCS, WD and WDMP significantly (p<0.05) reduced by 25-73%, 35-78% and 26-70% on Moringa leaves-treated plots respectively. There were significant (p<0.05) interactions between quantity of Moringa leaves incorporated and tuber size. The bigger the tuber and the higher the quantity of Moringa leaves incorporated the lower the WCS, WD and WDMP. CONCLUSIONS: Consequently, application of 10 t.ha- 1 Moringa leaves and planting of large or medium-sized tubers were recommended for optimum weed suppression in tiger nut production in South West Nigeria.


Asunto(s)
Producción de Cultivos , Cyperus , Fertilizantes , Moringa oleifera , Hojas de la Planta , Control de Malezas , Pradera , Suelo , Nigeria , Cyperus/crecimiento & desarrollo , Estaciones del Año , Distribución Aleatoria , Control de Malezas/métodos , Producción de Cultivos/métodos
17.
J Plant Physiol ; 284: 153961, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933340

RESUMEN

The tubers of the widely distributed Cyperus esculentus are rich in oil, and therefore, the plant is considered to have a high utilization value in the vegetable oil industry. Oleosins and caleosins are lipid-associated proteins found in oil bodies of seeds; however oleosins and caleosins genes have not been identified in C. esculentus. In this study, we performed transcriptome sequencing and lipid metabolome analysis of C. esculentus tubers at four developmental stages to obtain the information on their genetic profile, expression trends, and metabolites in oil accumulation pathways. Overall, 120,881 non-redundant unigenes and 255 lipids were detected; 18 genes belonged to the acetyl-CoA carboxylase (ACC), malonyl-CoA:ACP transacylase (MCAT), ß-ketoacyl-ACP synthase (KAS), and fatty acyl-ACP thioesterase (FAT) gene families involved in fatty acid biosynthesis, and 16 genes belonged to the glycerol-3-phosphate acyltransferase (GPAT), diacylglycerol acyltransferase 3 (DGAT3), phospholipid:diacylglycerol acyltransferase (PDAT), FAD2, and lysophosphatidic acid acyltransferase (LPAAT) gene families playing important roles in triacylglycerol synthesis. We also identified 9 oleosin- and 21 caleosin-encoding genes in C. esculentus tubers. These results provide detailed information on the C. esculentus transcriptional and metabolic profiles, which can be used as reference for the development of strategies to increase oil content in C. esculentus tubers.


Asunto(s)
Cyperus , Diacilglicerol O-Acetiltransferasa , Diacilglicerol O-Acetiltransferasa/genética , Cyperus/genética , Cyperus/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Aceites de Plantas/metabolismo
18.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807517

RESUMEN

The yellow nutsedge (Cyperus esculentus L. 1753) is an unconventional oil plant with oil-rich tubers, and a potential alternative for traditional oil crops. Here, we reported the first high-quality and chromosome-level genome assembly of the yellow nutsedge generated by combining PacBio HiFi long reads, Novaseq short reads, and Hi-C data. The final genome size is 225.6 Mb with an N50 of 4.3 Mb. More than 222.9 Mb scaffolds were anchored to 54 pseudochromosomes with a BUSCO score of 96.0%. We identified 76.5 Mb (33.9%) repetitive sequences across the genome. A total of 23,613 protein-coding genes were predicted in this genome, of which 22,847 (96.8%) were functionally annotated. A whole-genome duplication event was found after the divergence of Carex littledalei and Rhynchospora breviuscula, indicating the rich genetic resources of this species for adaptive evolution. Several significantly enriched GO terms were related to invasiveness of the yellow nutsedge, which may explain its plastic adaptability. In addition, several enriched Kyoto Encyclopedia of Genes and Genomes pathways and expanded gene families were closely related with substances in tubers, partially explaining the genomic basis of characteristics of this oil-rich tuber.


Asunto(s)
Cyperus , Cyperus/genética , Cyperus/metabolismo , Cromosomas , Genómica , Genoma , Secuencias Repetitivas de Ácidos Nucleicos
19.
J Adv Vet Anim Res ; 10(4): 685-695, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38370884

RESUMEN

Objective: Cadmium chloride (CdCl2) is an environmentally toxic pollutant that can cause reprotoxicity. Cyperus esculentus and Euterpe oleracea are potent antioxidant plants currently used to counteract the action of harmful pollutants. The present experiment was intended to evaluate and comp are the role of C. esculentus hydroethanolic extract (CHE) and E. oleracea in treating the reprotoxicity induced by CdCl2 in rats. Materials and Methods: Forty adult male rats (160-210 gm) were allocated into five groups equally. Control group: received 5 ml of normal saline (NS); the other treatment groups were injected with CdCl2 as a single dose for two weeks to induce testicular toxicity. After 14 days, the four groups were treated orally daily for two months as follows: The cadmium group (Cd) received NS, the third group (TC) was administered 800 mg/kg BW of CHE, the fourth group (TO) received 500 mg/kg BW of E. oleracea, and the fifth group (TCO) received CHE with E. oleracea. Results: The live sperm and motility, serum testosterone, follicle-stimulating hormone (FSH), testicular superoxide dismutase (SOD), catalase (CAT), steroidogenic acute regulatory protein (StAR), 17ß-hydroxysteroid dehydrogenase, and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) were significantly increased in the TCO, TC, and TO groups compared with the Cd group. Testicular nitric oxide and malondialdehyde were elevated significantly in the Cd group compared to the TC, TO, TCO, and control groups. The fold changes of Fshß, Lhß, and Gnrh genes were upregulated in the TCO group compared to the Cd and control groups. Conclusion: The combination of CHE with E. oleracea showed improvements in rat testicles affected by cadmium toxicity via upregulated reproductive gene expression and its antioxidant effects.

20.
Chem Biodivers ; 19(11): e202200531, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36208060

RESUMEN

Cyperus esculentus is cultivated as a crop plant due to its edible and oily tubers (tiger nut). However, little is known about the phytochemicals and bioeffects of the leaves. This study was conducted to identify and quantify the chemical constituents of C. esculentus leaves and evaluate their bioactivities. By liquid chromatography-mass spectrometry, 30 compounds including flavan-3-ols, caffeic acid derivatives, and flavones, were identified from the leaves. The quantitative analysis revealed that gallocatechin (8), procyanidin B1 (15), catechin (16), chlorogenic acid (19), orientin (30), and luteolin 7-O-glucuronide (31) are the major chemical constituents of C. esculentus leaves. The contents of these six chemical constituents in the leaves collected in September in Hohhot, China, reached to 1460.85±7.66, 10178.77±302.65, 1048.35±17.37, 1722.15±26.13, 5318.62±277.16, and 1526.54±11.95 µg, respectively, in one gram of the dried leaves. The leaf extract (CELE) showed strong antioxidant activity in vitro, with compounds 8, 15, and 19 contributing the most. CELE showed significant protection against the agricultural fungicide tebuconazole-induced developmental toxicity and hepatotoxicity in zebrafish.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cyperus , Fungicidas Industriales , Animales , Cyperus/química , Fungicidas Industriales/toxicidad , Pez Cebra , Antioxidantes/farmacología , Extractos Vegetales/química , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...