Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.341
Filtrar
1.
J Comput Aided Mol Des ; 38(1): 27, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093524

RESUMEN

Antioxidants agents play an essential role in the food industry for improving the oxidative stability of food products. In the last years, the search for new natural antioxidants has increased due to the potential high toxicity of chemical additives. Therefore, the synthesis and evaluation of the antioxidant activity in peptides is a field of current research. In this study, we performed a Quantitative Structure Activity Relationship analysis (QSAR) of cysteine-containing 19 dipeptides and 19 tripeptides. The main objective is to bring information on the relationship between the structure of peptides and their antioxidant activity. For this purpose, 1D and 2D molecular descriptors were calculated using the PaDEL software, which provides information about the structure, shape, size, charge, polarity, solubility and other aspects of the compounds. Different QSAR model for di- and tripeptides were developed. The statistic parameters for di-peptides model (R2train = 0.947 and R2test = 0.804) and for tripeptide models (R2train = 0.923 and R2test = 0.847) indicate that the generated models have high predictive capacity. Then, the influence of the cysteine position was analyzed predicting the antioxidant activity for new di- and tripeptides, and comparing them with glutathione. In dipeptides, excepting SC, TC and VC, the activity increases when cysteine is at the N-terminal position. For tripeptides, we observed a notable increase in activity when cysteine is placed in the N-terminal position.


Asunto(s)
Antioxidantes , Cisteína , Dipéptidos , Oligopéptidos , Relación Estructura-Actividad Cuantitativa , Cisteína/química , Antioxidantes/química , Antioxidantes/farmacología , Dipéptidos/química , Dipéptidos/farmacología , Oligopéptidos/química , Oligopéptidos/farmacología , Modelos Moleculares , Programas Informáticos
2.
Pharmacol Rep ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093549

RESUMEN

BACKGROUND: Endometriosis is a female hormone-dependent gynecological disorder characterized by chronic inflammation. Therefore, the development of novel treatment strategies that can diminish the side effects of the long-term use of hormone-based drugs has been emphasized. S-Allyl-L-cysteine (SAC) is the major constituent of aged garlic extracts. Although the therapeutic effects resulting from the antioxidant properties of SAC have been extensively studied in inflammatory diseases, the therapeutic efficacy of SAC in endometriosis has not been described. In this study, we investigated the therapeutic potential of SAC for endometriosis using a mouse model. METHODS: An endometriosis mouse model was surgically induced, and oral treatment with 30 mg/kg SAC was administered daily for 28 days. The development of endometriotic lesions was assessed by histological analysis, and the expression profiles of adhesion-, apoptosis-, and inflammation-related genes were evaluated by PCR. Flow cytometric analysis of mouse spleen was conducted to assess changes in lymphocyte subpopulations. RESULTS: SAC treatment significantly inhibited endometriotic lesion growth. Transcriptional expression analysis revealed the antiadhesion and apoptosis-promoting effects of SAC. In particular, SAC showed an effective immune modulatory response by altering splenic CD4+ and CD8+ T cell subsets and inflammatory cytokine production in the spleen and endometriotic lesions. CONCLUSION: This study newly elucidates the inhibitory effects of SAC on the growth of endometriosis in a mouse model and describes its immunomodulatory effects.

3.
Cancer Metab ; 12(1): 23, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113116

RESUMEN

BACKGROUND: The metabolic reprogramming of amino acids is critical for cancer cell growth and survival. Notably, intracellular accumulation of cysteine is often observed in various cancers, suggesting its potential role in alleviating the oxidative stress associated with rapid proliferation. The liver is the primary organ for cysteine biosynthesis, but much remains unknown about the metabolic alterations of cysteine and their mechanisms in hepatocellular carcinoma cells. METHODS: RNA-seq data from patients with hepatocarcinoma were analyzed using the TNMplot database. The underlying mechanism of the oncogenic alteration of cysteine metabolism was studied in mice implanted with BNL 1ME A.7 R.1 hepatocarcinoma. RESULTS: Database analysis of patients with hepatocellular carcinoma revealed that the expression of enzymes involved in de novo cysteine synthesis was down-regulated accompanying with increased expression of the cystine uptake transporter xCT. Similar alterations in gene expression have also been observed in a syngeneic mouse model of hepatocarcinoma. The enhanced expression of DNA methyltransferase in murine hepatocarcinoma cells caused methylation of the upstream regions of cysteine synthesis genes, thereby repressing their expression. Conversely, suppression of de novo cysteine synthesis in healthy liver cells induced xCT expression by up-regulating the oxidative-stress response factor NRF2, indicating that reduced de novo cysteine synthesis repulsively increases cystine uptake via enhanced xCT expression, leading to intracellular cysteine accumulation. Furthermore, the pharmacological inhibition of xCT activity decreased intracellular cysteine levels and suppressed hepatocarcinoma tumor growth in mice. CONCLUSIONS: Our findings indicate an underlying mechanism of the oncogenic alteration of cysteine metabolism in hepatocarcinoma and highlight the efficacy of alteration of cysteine metabolism as a viable therapeutic target in cancer.

4.
Am J Cancer Res ; 14(7): 3388-3403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113880

RESUMEN

The drug resistance is a major obstacle in acute B-lymphoblastic leukemia (B-ALL) treatment. Our previous study has indicated that increased levels of Cysteine-rich protein 61 (Cyr61) in the bone marrow can mitigate the chemosensitivity of B-ALL cells, though the specific source of Cyr61 in the bone marrow remains unknown. In this study, we aimed to investigate whether hypoxia can induce Cyr61 production in B-ALL cells, delineates the underlying mechanisms, and evaluates the effect of Cyr61 on the chemosensitivity of B-ALL cells under hypoxia conditions. The results indicate that hypoxia promotes Cyr61 production in B-ALL cells by activating the NF-κB pathway. Increased Cyr61 expression appears to reduce the chemosensitivity of B-ALL cell to vincristine (VCR) and daunorubicin (DNR) through autophagy under hypoxia. Notably, inhibition of Cyr61 restores the chemosensitivity of B-ALL cells to both chemotherapeutic agents. This study is the first time to report that hypoxia decreases the chemosensitivity of B-ALL cells by inducing Cyr61 production, suggesting that targeting Cyr61 or its associated pathways could potentially improve the clinical response of B-ALL patients.

5.
Neuroscience ; 555: 213-221, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089569

RESUMEN

Anxiety disorders are prevalent chronic psychological disease with complex pathogenic mechanisms. Current anxiolytics have limited efficacy and numerous side effects in many anxiety patients, highlighting the urgent need for new therapies. Recent research has been focusing on nutritional supplements, particularly amino acids, as potential therapies for anxiety disorders. Among these, L-Cysteine plays a crucial role in various biological processes. L-Cysteine exhibits antioxidant properties that can enhance the antioxidant functions of the central nervous system (CNS). Furthermore, metabolites of L-cysteine, such as glutathione and hydrogen sulfide have been shown to alleviate anxiety through distinct molecular mechanisms. Long-term administration of L-Cysteine has anxiolytic, antidepressant, and memory-improving effects. L-Cysteine depletion can lead to increased oxidative stress in the brain. This review delves into the potential mechanisms of L-Cysteine and its main products, glutathione (GSH) and hydrogen sulfide (H2S) in the management of anxiety and related diseases.

6.
J Colloid Interface Sci ; 677(Pt A): 244-249, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39094485

RESUMEN

Sulfur-containing amino acids have been proposed as drugs for lipid oxidation associated with diseases for a long time, but the molecular-level mechanism on the effectiveness of sulfur-containing amino acids against lipid oxidation remains elusive. In this work, with the interfacial sensitivity mass spectrometry method, oxidation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), a widely used model lipid, was significantly inhibited on hung droplet surface in presence of sulfur-containing amino acids, such as cysteine (Cys) and methionine (Met). Both the Cys and Met showed a self-sacrificing protection. The amino acids with -S-R tails (R referring to methyl or t-butyl group) showed more effective against POPG oxidation than those with -SH tails, and this process was not related to the conformations of amino acids. The low effectiveness of Cys during the interfacial chemistry was proved to arise from the formation of disulfide bond. This study extends the current understanding of chemistry of sulfur-containing amino acids and provides insights to aid the sulfur-containing amino acids against cell oxidation.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39099422

RESUMEN

Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidised. Their numbers scale: A protein with ten cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinises methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down and bottom-up mass spectrometry for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the 'Human Cysteine Redox Proteoform Project' is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.

8.
ANZ J Surg ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101362

RESUMEN

BACKGROUND: N-Acetylcysteine (NAC) is a recognized antioxidative agent that facilitates the conjugation of toxic metabolites. In recent years, NAC has been routinely used to limit ischaemia-reperfusion injury in liver transplantation. There remains, however, contradictory evidence on its effectiveness in liver resection. This meta-analysis examines the effectiveness of NAC in improving outcomes following hepatectomy. METHODS: A comprehensive search of the MEDLINE, EMBASE, and Cochrane databases was performed to identify relevant randomized controlled trials (RCTs) published since database inception until November 2023. The outcomes of Day 1 biochemical markers (lactate, ALT, bilirubin, and INR), length of stay, transfusion rates, and morbidity were extracted. Quantitative pooling of data was based on a random-effects model. The study protocol was registered on PROSPERO (Registration no: CRD42023442429). RESULTS: Five RCTs reporting on 388 patients undergoing hepatectomy were included in the analysis. There were no significant differences in patient demographics between groups. Post-operative lactate was lower in patients receiving NAC (WMD -0.61, 95% CI -1.19 to -0.04, I2 = 67%). There were, however, no differences in the post-operative INR (WMD -0.04, 95% CI -0.19 to 0.12, I2 = 96%) and ALT (WMD -94.94, 95% CI -228.46 to 40.38; I2 = 67%). More importantly, there were no statistically significant differences in length of stay, transfusion rates, and morbidity between the two groups. CONCLUSION: The administration of NAC in liver resection did not alter important biochemical parameters suggesting any real effectiveness in reducing hepatic dysfunction. There were no improvements in the clinical outcomes of length of stay, transfusion rates, and overall morbidity.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39102049

RESUMEN

N-acetyl cysteine (NAC) is a potential pharmacotherapy for alcohol use disorder (AUD), but it is not known whether it modulates neural activation to alcohol cues or intrinsic functional connectivity. We investigated whether NAC attenuates (i) alcohol cue-elicited activation, and (ii) intrinsic functional connectivity compared to placebo in patients with AUD. In this preliminary study, twenty-three individuals (7 females) with moderate-severe AUD received daily NAC (2400 mg/day, n = 9), or a placebo (n = 14) for at least 2 weeks. Participants completed a pre-treatment functional magnetic resonance imaging session (T0) and a post-treatment session (T1) comprising resting-state and visual alcohol cue reactivity task acquisitions. Activation differences between sessions, treatment, and session-by-treatment interaction were assessed. Resting-state functional connectivity examined using 377 node ROI-to-ROIs evaluated whether NAC reduced intrinsic functional connectivity after treatment. There were no differences in alcohol cue reactivity for brain activation or subjective craving between NAC and placebo during treatment or across sessions, or significant interaction. A significant treatment-by-time interaction, with reduced intrinsic connectivity was observed after treatment (T1) for NAC-treated compared to placebo-treated patients in the posterior cingulate node (9, left hemisphere) of the dorsal attentional network and connections to salience, ventral-attentional, somatosensory, and visual-peripheral networks implicated in AUD. NAC reduced intrinsic functional connectivity in patients with moderate-severe AUD after treatment compared to placebo, but did not attenuate alcohol cue-elicited activation. However, the absence of cue reactivity findings may result from low power, rather than the absence of cue reactivity findings associated with NAC. These results provide preliminary evidence that NAC treatment may modulate intrinsic functional connectivity brain activation in patients with alcohol use disorder, but replication in larger studies are required to determine the strength of this effect and any associations with clinical outcomes. Clinical Trials Registration: ClinicalTrials.gov Identifier: NCT03879759.

10.
Appl Spectrosc ; 78(7): 744-752, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39096170

RESUMEN

Hemicyanine dyes are an ideal structure for building near-infrared fluorescent probes due to their excellent emission wavelength properties and biocompatibility in biological imaging field. Developing a near-infrared fluorescent probe capable of detecting cysteine (Cys) was the aim of this study. A novel developed fluorescent probe P showed high selectivity and sensitivity to Cys in the presence of various analytes. The detection limit of P was found to be 0.329 µM. The MTT assay showed that the probe was essentially non-cytotoxic. Furthermore, the probe was successfully used as cysteine imaging in living cells and mice.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Cisteína/análisis , Cisteína/química , Colorantes Fluorescentes/química , Animales , Ratones , Humanos , Espectroscopía Infrarroja Corta/métodos , Límite de Detección , Carbocianinas/química , Espectrometría de Fluorescencia/métodos , Células HeLa , Imagen Óptica/métodos
11.
J Biol Chem ; : 107641, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122000

RESUMEN

Fe-S clusters are critical cofactors for redox chemistry in all organisms. The cysteine desulfurase, SufS, provides sulfur in the SUF Fe-S cluster bioassembly pathway. SufS is a dimeric, PLP-dependent enzyme that uses cysteine as a substrate to generate alanine and a covalent persulfide on an active site cysteine residue. SufS enzymes are activated by an accessory transpersulfurase protein, either SufE or SufU depending on the organism, which accepts the persulfide product and delivers it to downstream partners for Fe-S assembly. Here, using E. coli proteins, we present the first X-ray crystal structure of a SufS/SufE complex. There is a 1:1 stoichiometry with each monomeric unit of the EcSufS dimer bound to one EcSufE subunit, though one EcSufE is rotated ∼7° closer to the EcSufS active site. EcSufE makes clear interactions with the α16 helix of EcSufS and site-directed mutants of several α16 residues were deficient in EcSufE binding. Analysis of the EcSufE structure showed a loss of electron density at the EcSufS/EcSufE interface for a flexible loop containing the highly conserved residue R119. An R119A EcSufE variant binds EcSufS but is not active in cysteine desulfurase assays and fails to support Fe-S cluster bioassembly in vivo. 35S-transfer assays suggest that R119A EcSufE can receive a persulfide, suggesting the residue may function in a release mechanism. The structure of the EcSufS/EcSufE complex allows for comparison with other cysteine desulfurases to understand mechanisms of protected persulfide transfer across protein interfaces.

12.
Proc Natl Acad Sci U S A ; 121(35): e2403424121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159367

RESUMEN

Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.


Asunto(s)
Proteínas Portadoras , Comovirus , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Vigna , Comovirus/metabolismo , Comovirus/fisiología , Comovirus/genética , Vigna/virología , Vigna/metabolismo , Nicotiana/virología , Nicotiana/metabolismo , Nicotiana/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/virología , Proteasas de Cisteína/metabolismo , Proteasas de Cisteína/genética , Plantas Modificadas Genéticamente , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Potyvirus/fisiología , Potyvirus/metabolismo , Endopeptidasas
13.
Bioorg Med Chem Lett ; 112: 129914, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111728

RESUMEN

Mitogen-activated protein kinase kinases (MAP2Ks) 1, 4, and 7 are potential targets for treating various diseases. Here, we solved the crystal structures of MAP2K1 and MAP2K4 complexed with covalent inhibitor 5Z-7-oxozeaenol (5Z7O). The elucidated structures showed that 5Z7O was non-covalently bound to the ATP binding site of MAP2K4, while it covalently attached to cysteine at the DFG-1 position of the deep ATP site of MAP2K1. In contrast, we previously showed that 5Z7O covalently binds to MAP2K7 via another cysteine on the solvent-accessible edge of the ATP site. Structural analyses and molecular dynamics calculations indicated that the configuration and mobility of conserved gatekeeper methionine located at the central ATP site regulated the binding and access of 5Z7O to the ATP site of MAP2Ks. These structural features provide clues for developing highly potent and selective inhibitors against MAP2Ks. Abbreviations: ATP, adenosine triphosphate; FDA, Food and Drug Administration; MAP2Ks, mitogen-activated protein kinase kinases; MD, molecular dynamics; NSCLC, non-small cell lung cancer; 5Z7O, 5Z-7-oxozeaenol; PDB, protein data bank; RMSD, root-mean-square deviation.

14.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125033

RESUMEN

The toxicity of silver nanoparticles (AgNPs) depends on their physicochemical properties. The ongoing research aims to develop effective methods for modifying AgNPs using molecules that enable control over the processes induced by nanoparticles in both normal and cancerous cells. Application of amino acid-stabilized nanoparticles appears promising, exhibiting tunable electrokinetic properties. Therefore, this study focused on determining the influence of the surface charge of cysteine (CYS)-stabilized AgNPs on their toxicity towards human normal B (COLO-720L) and T (HUT-78) lymphocyte cell lines. CYS-AgNPs were synthesized via the chemical reduction. Transmission electron microcopy (TEM) imaging revealed that they exhibited a quasi-spherical shape with an average size of 18 ± 3 nm. CYS-AgNPs remained stable under mild acidic (pH 4.0) and alkaline (7.4 and 9.0) conditions, with an isoelectric point observed at pH 5.1. Following a 24 h treatment of lymphocytes with CYS-AgNPs, concentration-dependent alterations in cell morphology were observed. Positively charged CYS-AgNPs notably decreased lymphocyte viability. Furthermore, they exhibited grater genotoxicity and more pronounced disruption of biological membranes compared to negatively charged CYZ-AgNPs. Despite both types of AgNPs interacting similarly with fetal bovine serum (FBS) and showing comparable profiles of silver ion release, the biological assays consistently revealed that the positively charged CYS-AgNPs exerted stronger effects at all investigated cellular levels. Although both types of CYS-AgNPs have the same chemical structure in their stabilizing layers, the pH-induced alterations in their surface charge significantly affect their biological activity.


Asunto(s)
Cisteína , Nanopartículas del Metal , Plata , Plata/química , Cisteína/química , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Humanos , Supervivencia Celular/efectos de los fármacos , Linfocitos/efectos de los fármacos , Línea Celular , Propiedades de Superficie , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
15.
Chemistry ; : e202401255, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162779

RESUMEN

An imbalance in cysteine (Cys) levels in the cells and plasma has been identified as the risk indicator for various human diseases. The structural similarity of cysteine with its congener homocysteine and glutathione offers challenges in its measurement. Herein, we report a hydrogen-bonded organic-inorganic framework of Cu(II) (HOIF) for the selective detection of cysteine over other biothiols. The non-fluorescent HOIF showed 12-fold green emission in the presence of cysteine. The monomeric unit of HOIF is stabilized via intermolecular hydrogen bonds, resulting in a non-porous network structure. Non-interference from homocysteine, glutathione, and other competitive bio-analytes revealed explicit affinity of HOIF for cysteine. Fluorimetric titration showed a wide working concentration window (650 nM-800 µM) for measuring cysteine in an aqueous medium. The mechanistic investigation involving HRMS, EPR, and UV-vis spectroscopic studies revealed the decomplexation of HOIF with Cys, resulting in a fluorescence turn-on response from the luminescent ligand. Validation using a commercial dye, "Cysteine Green", confirmed the prospect of HOIF for early diagnostic purposes. Utilizing the fluorescence turn-on property of HOIF in the presence of cysteine, we measured cysteine quantitatively in the blood plasma samples. Bio-imaging of endogenous cysteine in cancer cells indicated the ability of HOIF to monitor the intracellular cysteine.

16.
Biol Reprod ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151022

RESUMEN

Prior studies showed that mice deficient in the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in synthesis of the thiol antioxidant glutathione (GSH), have decreased ovarian GSH concentrations, chronic ovarian oxidative stress, poor oocyte quality resulting in early preimplantation embryonic mortality and decreased litter size, and accelerated age-related decline in ovarian follicle numbers. Global deficiency of the catalytic subunit of this enzyme, Gclc, is embryonic lethal. We tested the hypothesis that granulosa cell- or oocyte-specific deletion of Gclc recapitulates the female reproductive phenotype of global Gclm deficiency. We deleted Gclc in granulosa cells or oocytes of growing follicles using Gclc floxed transgenic mice paired with Amhr2-Cre or Zp3-Cre alleles respectively. We discovered that granulosa cell-specific deletion of Gclc in Amhr2Cre;Gclc(f/-) mice recapitulates the decreased litter size observed in Gclm-/- mice, but does not recapitulate the accelerated age-related decline in ovarian follicles observed in Gclm-/- mice. In addition to having lower GSH concentrations in granulosa cells, Amhr2Cre;Gclc(f/-) mice also had decreased GSH concentrations in oocytes. By contrast, oocyte-specific deletion of Gclc in Zp3Cre;Gclc(f/-) mice did not affect litter size or accelerate the age-related decline in follicle numbers, and these mice did not have decreased oocyte GSH concentrations, consistent with transport of GSH between cells via gap junctions. The results suggest that GSH deficiency at earlier stages of follicle development may be required to generate the accelerated follicle depletion phenotype observed in global Gclm null mice.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124974, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39151399

RESUMEN

Alcoholic liver disease (ALD) is a chronic toxic liver injury caused by long-term heavy drinking. Due to the increasing incidence, ALD is becoming one of important medical tasks. Many studies have shown that the main mechanism of liver damage caused by large amounts of alcohol may be related to antioxidant stress. As an important antioxidant, cysteine (Cys) is involved in maintaining the normal redox balance and detoxifying metabolic function of the liver, which may be closely related to the pathogenesis of ALD. Therefore, it is necessary to develop a simple non-invasive method for rapid monitoring of Cys in liver. Thus, a near-infrared (NIR) fluorescent probe DCI-Ac-Cys which undergoes Cys triggered cascade reaction to form coumarin fluorophore is developed. Using the DCI-Ac-Cys, decreased Cys was observed in the liver of ALD mice. Importantly, different levels of Cys were monitored in the livers of ALD mice taking silybin and curcumin with the antioxidant effects, indicating the excellent therapeutic effect on ALD. This study provides the important references for the accurate diagnosis of ALD and the pharmacodynamic evaluation of silybin and curcumin in the treatment of ALD, and support new ideas for the pathogenesis of ALD.

18.
Eur J Med Chem ; 277: 116754, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39128327

RESUMEN

Cathepsin L (CTSL), a cysteine cathepsin protease of the papain superfamily, plays a crucial role in cancer progression and metastasis. Dysregulation of CTSL is frequently observed in tumor malignancies, leading to the degradation of extracellular matrix and facilitating epithelial-mesenchymal transition (EMT), a key process in malignant cancer metastasis. This review mainly provides a comprehensive information about recent findings on natural inhibitors targeting CTSL and their anticancer effects, which have emerged as potent anticancer therapeutic agents or metastasis-suppressive adjuvants. Specifically, inhibitors are categorized into small-molecule and macromolecule inhibitors, with a particular emphasis on cathepsin propeptide-type macromolecules. Additionally, the article explores the molecular mechanisms of CTSL involvement in cancer metastasis, highlighting its regulation at transcriptional, translational, post-translational, and epigenetic levels. This work underscores the importance of understanding natural CTSL inhibitors and provides researchers with practical insights to advance the relevant fields and discover novel CTSL-targeting inhibitors from natural sources.

20.
Curr Opin Chem Biol ; 82: 102511, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142018

RESUMEN

The ancient messenger molecule hydrogen sulfide (H2S) modulates myriad signaling cascades and has been conserved across evolutionary boundaries. Although traditionally known as an environmental toxin, H2S is also synthesized endogenously to exert modulatory and homeostatic effects in a broad array of physiologic functions. Notably, H2S levels are tightly physiologically regulated, as both its excess and paucity can be toxic. Accumulating evidence has revealed pivotal roles for H2S in neuroprotection and normal cognitive function, and H2S homeostasis is dysregulated in neurodegenerative conditions. Here, we review the normal neuroprotective roles of H2S that go awry in Alzheimer's disease, the most common form of neurodegenerative disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...