RESUMEN
Vitamin D is a fat-soluble micronutrient that plays essential roles in a range of biological processes, including cell proliferation, inflammation, and metabolism. In this study, we investigated the effects of a novel synthetic lithocholic acid derivative with vitamin D activity (Dcha-20) on pharmacokinetic gene expression in human induced pluripotent stem cell-derived intestinal organoids. Compared with vitamin D3 treatment, Dcha-20 was found to upregulate the expression and enzyme activity of the drug-metabolizing enzyme CYP3A4, an indicator of intestinal functional maturation. In addition, Dcha-20 specifically increased expression levels of the xenobiotic detoxification enzyme UGT1A and excretion transporter MRP2. These results suggest that Dcha-20 promotes activity of the intrinsic defense system of the intestinal epithelium.
Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Organoides , Ácido Litocólico/farmacología , Ácido Litocólico/metabolismo , Diferenciación Celular , Mucosa Intestinal/metabolismo , Vitamina D/metabolismo , Vitamina D/farmacologíaRESUMEN
We present a dissection of the patent ductus arteriosus and pulmonary artery for surgical repair utilising cardiopulmonary bypass in the setting of vein of Galen malformation. Several strategies were employed to attenuate the cerebral shunt including pH-stat, high cardiac index, restrictive venous drainage, continuous ventilation and deep hypothermic circulatory arrest. The patient recovered from surgery with no apparent neurological sequelae.
Asunto(s)
Hipotermia Inducida , Malformaciones de la Vena de Galeno , Puente Cardiopulmonar , Humanos , Pulmón , Arteria Pulmonar , Malformaciones de la Vena de Galeno/complicaciones , Malformaciones de la Vena de Galeno/cirugíaRESUMEN
The structures, flavor-modifying effects, and CaSR activities of γ-glutamyl peptides comprising sulfur-containing amino acids were investigated. The chemical structures, including the linkage mode of the N-terminal glutamic acid, of γ-L-glutamyl-S-(2-propenyl)-L-cysteine (γ-L-glutamyl-S-allyl-L-cysteine) and its sulfoxide isolated from garlic were established by comparing their NMR spectra with those of authentic peptides prepared using chemical methods. Mass spectrometric analysis also enabled determination of the linkage modes in the glutamyl dipeptides by their characteristic fragmentation. In sensory evaluation, these peptides exhibited flavor-modifying effects (continuity) in umami solutions less pronounced but similar to that of glutathione. Furthermore, the peptides exhibited intrinsic flavor due to the sulfur-containing structure, which may be partially responsible for their flavor-modifying effects. In CaSR assays, γ-L-glutamyl-S-methyl-L-cysteinylglycine was most active, which indicates that the presence of a medium-sized aliphatic substituent at the second amino acid residue in γ-glutamyl peptides enhances CaSR activity.