Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 486
Filtrar
1.
Orthop Surg ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077885

RESUMEN

OBJECTIVE: As the population ages and technology advances, lateral lumbar intervertebral fusion (LLIF) is gaining popularity for the treatment of degenerative lumbar scoliosis (DLS). This study investigated the feasibility, minimally invasive concept, and benefits of LLIF for the treatment of DLS by observing and assessing the clinical efficacy, imaging changes, and complications following the procedure. METHODS: A retrospective analysis was performed for 52 DLS patients (12 men and 40 women, aged 65.84 ± 9.873 years) who underwent LLIF from January 2019 to January 2023. The operation time, blood loss, complications, clinical efficacy indicators (visual analogue scale [VAS], Oswestry disability index [ODI], and 36-Item Short Form Survey), and imaging indicators (coronal position: Cobb angle and center sacral vertical line-C7 plumbline [CSVL-C7PL]; and sagittal position: sagittal vertical axis [SVA], lumbar lordosis [LL], pelvic incidence angle [PI], and thoracic kyphosis angle [TK] were measured). All patients were followed up. The above clinical evaluation indexes and imaging outcomes of patients postoperatively and at last follow-up were compared to their preoperative results. RESULTS: Compared to the preoperative values, the Cobb angle and LL angle were significantly improved after surgery (p < 0.001). Meanwhile, CSVL-C7PL, SVA, and TK did not change much after surgery (p > 0.05) but improved significantly at follow-up (p < 0.001). There was no significant change in PI at either the postoperative or follow-up timepoint. The operation took 283.90 ± 81.62 min and resulted in a total blood loss of 257.27 ± 213.44 mL. No significant complications occurred. Patients were followed up for to 21.7 ± 9.8 months. VAS, ODI, and SF-36 scores improved considerably at postoperative and final follow-up compared to preoperative levels (p < 0.001). After surgery, the Cobb angle and LL angle had improved significantly compared to preoperative values (p < 0.001). CSVL-C7PL, SVA, and TK were stable after surgery (p > 0.05) but considerably improved during follow-up (p < 0.001). PI showed no significant change at either the postoperative or follow-up timepoints. CONCLUSION: Lateral lumbar intervertebral fusion treatment of DLS significantly improved sagittal and coronal balance of the lumbar spine, as well as compensatory thoracic scoliosis, with good clinical and radiological findings. Furthermore, there was less blood, less trauma, and quicker recovery from surgery.

2.
J Colloid Interface Sci ; 676: 1098-1108, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39079273

RESUMEN

Mesoporous Silica Nanoparticles (MSNs) have been increasingly investigated as versatile drug delivery carriers. A particular challenge for the systemic use of MSNs lies in the control of their degradation, which has not been fully understood until now. We implemented standard dynamic light scattering (DLS) experiments and introduced a novel DLS technique in a confocal volume to track the dynamics of large-pore MSN degradation in situ. This unique DLS technique, which involves a small observation volume, was chosen for its ability to count particle by particle during the degradation process, a method that has not been commonly used in nanoparticle research. The experiments were performed in different media compositions at low particle concentrations, below the silica solubility limit. MSNs with large conical pores were prepared and studied as they offer the possibility to incorporate and release large-sized biomolecules. Large-pore MSNs followed a singular degradation mechanism following a stochastic-like behavior, a finding that challenges the common idea that all nanoparticles (NPs) degrade similarly and homogeneously over time. We showed that some NPs are observed intact over a prolonged period while most other NPs have already vanished or been transformed into swollen NPs. Thus, a heterogeneous degradation process occurs, while the total concentration of NPs undergoes an exponential decay. These large conical pores MSNs will be utilized as reliable biomolecule nanocarriers by predicting the factors underlying the NP hydrolytic stability.

3.
Int J Pharm ; 660: 124321, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38857661

RESUMEN

Aggregation of monoclonal antibodies (mAbs) is the driving force for their undesirable immunogenic effects. There are multiple factors responsible for aggregation in therapeutic proteins. One significant cause is the process-related shear and interfacial stress generated due to impellers and stirrers. This investigation focuses on understanding the possible aggregation arising upon stirring mAb formulations using stirrers made of different materials. We used quantitative laser diffraction (qLD) to monitor and quantify the stirring induced formation of submicron and subvisible aggregates in the size range from 100 nm to 10 µm. We analysed various aspects of aggregate generation, such as onset of aggregation, particle size distribution, and concentration of aggregates generated using stirrers of different materials. We observed that mixing with stainless steel stirrers resulted in a quicker onset of aggregation and led to significantly higher concentrations of aggregates. Analysis of the stirred samples using dynamic light scattering (DLS) and background imaging technique (BMI) were conducted to complement the qLD analysis. All the three techniques resulted in a similar trend, showing presence of larger and higher quantities of aggregates in steel stirred samples, as compared to those stirred using PEEK and glass. Additionally, we performed SEC-HPLC to quantify the soluble fraction of monomer and recorded that the least amount was present in the steel stirred samples. This work highlights the need for optimizing the materials used for fabricating the stirrers/impellers.


Asunto(s)
Anticuerpos Monoclonales , Dispersión Dinámica de Luz , Rayos Láser , Tamaño de la Partícula , Agregado de Proteínas , Acero Inoxidable , Anticuerpos Monoclonales/química , Dispersión Dinámica de Luz/métodos , Acero Inoxidable/química , Polietilenglicoles/química , Vidrio/química , Composición de Medicamentos/métodos
4.
Chem Phys Lipids ; 263: 105418, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944410

RESUMEN

Cholesterol-rich nanoemulsion (LDE) can carry chemotherapeutic agents in the circulation and can concentrate those agents in the neoplastic and inflammatory tissues. This method improves the biodistribution of the drug and reduces toxicity. However, the structural stability of LDE particles, without or with associated drugs, has not been extensively investigated. The aim of the present study is to investigate the structural stability of LDE and LDE associated to paclitaxel, etoposide or methotrexate in aqueous solution over time by small-angle X-ray scattering (SAXS and Ultra SAXS) and dynamic light scattering (DLS). The results show that LDE and LDE associated with those chemotherapeutic agents had reproducible and stable particle diameter, physical structure, and aggregation behavior over 3-month observation period. As estimated from both DLS and Ultra-SAXS methods, performed at pre-established intervals, the average particle diameter of LDE alone was approx. 32 nm, of LDE-paclitaxel was 31 nm, of LDE-methotrexate was 35 nm and of LDE-etoposide was 36 nm. Ultra-SAXS analysis showed that LDE nanoparticles were quasi-spherical, and SAXS showed that drug molecules inside the particles showed a layered-like organization. Formulations of LDE with associated PTX, ETO or MTX were successfully tested in animal experiments and in patients with cancer or with cardiovascular disease, showing markedly low toxicity, good tolerability and possible superior pharmacological action. Our results may be useful for ensuing clinical trials of this novel Nanomedicine tool, by strengthening the knowledge of the structural aspects of those LDE formulations.


Asunto(s)
Colesterol , Emulsiones , Metotrexato , Nanopartículas , Emulsiones/química , Colesterol/química , Nanopartículas/química , Metotrexato/química , Humanos , Animales , Tamaño de la Partícula , Paclitaxel/química , Paclitaxel/farmacología , Dispersión del Ángulo Pequeño , Etopósido/química , Antineoplásicos/química , Antineoplásicos/farmacología , Difracción de Rayos X , Estructura Molecular
5.
Phys Med Biol ; 69(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870999

RESUMEN

Objective.The availability of magnetic nanoparticles (MNPs) with medical approval for human intervention is fundamental to the clinical translation of magnetic particle imaging (MPI). In this work, we thoroughly evaluate and compare the magnetic properties of an magnetic resonance imaging (MRI) approved tracer to validate its performance for MPI in future human trials.Approach.We analyze whether the recently approved MRI tracer Resotran is suitable for MPI. In addition, we compare Resotran with the previously approved and extensively studied tracer Resovist, with Ferrotran, which is currently in a clinical phase III study, and with the tailored MPI tracer Perimag.Main results.Initial magnetic particle spectroscopy (MPS) measurements indicate that Resotran exhibits performance characteristics akin to Resovist, but below Perimag. We provide data on four different tracers using dynamic light scattering, transmission electron microscopy, vibrating sample magnetometry measurements, MPS to derive hysteresis, point spread functions, and a serial dilution, as well as system matrix based MPI measurements on a preclinical scanner (Bruker 25/20 FF), including reconstructed images.Significance.Numerous approved MNPs used as tracers in MRI lack the necessary magnetic properties essential for robust signal generation in MPI. The process of obtaining medical approval for dedicated MPI tracers optimized for signal performance is an arduous and costly endeavor, often only justifiable for companies with a well-defined clinical business case. Resotran is an approved tracer that has become available in Europe for MRI. In this work, we study the eligibility of Resotran for MPI in an effort to pave the way for human MPI trials.


Asunto(s)
Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Humanos , Nanopartículas de Magnetita/química
6.
Methods Mol Biol ; 2796: 73-86, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38856895

RESUMEN

Structural studies require the production of target proteins in large quantities and with a high degree of purity. For membrane proteins, the bottleneck in determining their structure is the extraction of the target protein from the cell membranes. A detergent that improperly mimics the hydrophobic environment of the protein of interest can also significantly alter its structure. Recently, using lipodiscs with styrene-maleic acid (SMA), copolymers became a promising strategy for the purification of membrane proteins. Here, we describe in detail the one-step affinity purification of potassium ion channels solubilized in SMA and sample preparation for future structural studies.


Asunto(s)
Maleatos , Poliestirenos , Canales de Potasio , Maleatos/química , Canales de Potasio/química , Canales de Potasio/metabolismo , Poliestirenos/química , Cromatografía de Afinidad/métodos , Estireno/química , Polímeros/química , Detergentes/química , Humanos
7.
BMC Chem ; 18(1): 107, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816730

RESUMEN

Star-like structural compounds were synthesized from different moles % of either dodecyl acrylate or triethylenetetramine using a one-pot commercial synthesis technique. The polymers that were created had various terminations. Fourier Transform Infrared (FTIR) spectroscopy and 1HNMR were used to verify the produced polymers' chemical composition with different terminations. Furthermore, by analysis of Dynamic Light Scattering (DLS), the size and distribution of the synthesised branched polymers were evaluated. Using a Gel-permeation chromatograph, the modified hyperbranched polymer's molecular weight, synthesized with various end points, were assessed. The unorganized structured prepared compounds with various molar feed ratios dodecyl acrylate: triethylenetetramine (DDA: TETA) was designed as A, B, C, D and E. Moreover, the synthesized additives function as viscosity index improvers (VII). As the concentration of polymeric additives increases, it leads to higher VI values. Similarly, with the increase in percentage of triethylenetetramine in the prepared hyperbranched polymers, the VI also increases. Notably, the most effective VI achieved is (E) = 212. It is noteworthy that all the synthesized hyperbranched polymers exhibited Newtonian behavior in the rheological study.

8.
Eur J Pharm Biopharm ; 200: 114340, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797222

RESUMEN

Lentiviral vectors (LVVs) are used as a starting material to generate chimeric antigen receptor (CAR) T cells. Therefore, LVVs need to be carefully analyzed to ensure safety, quality, and potency of the final product. We evaluated orthogonal and complementary analytical techniques for their suitability to characterize particulate matter (impurities and LVVs) in pharmaceutical LVV materials at development stage derived from suspension and adherent manufacturing processes. Microfluidic resistive pulse sensing (MRPS) with additional manual data fitting enabled the assessment of mode diameters for particles in the expected LVV size range in material from adherent production. LVV material from a suspension process, however, contained substantial amounts of particulate impurities which blocked MRPS cartridges. Sedimentation-velocity analytical ultracentrifugation (SV-AUC) resolved the LVV peak in material from adherent production well, whereas in more polydisperse samples from suspension production, presence of particulate impurities masked a potential signal assignable to LVVs. In interferometric light microscopy (ILM) and nanoparticle tracking analysis (NTA), lower size detection limits close to âˆ¼ 70 nm resulted in an apparent peak in particle size distributions at the expected size for LVVs emphasizing the need to interpret these data with care. Interpretation of data from dynamic light scattering (DLS) was limited by insufficient size resolution and sample polydispersity. In conclusion, the analysis of LVV products manufactured at pharmaceutical scale with current state-of-the-art physical (nano)particle characterization techniques was challenging due to the presence of particulate impurities of heterogeneous size. Among the evaluated techniques, MRPS and SV-AUC were most promising yielding acceptable results at least for material from adherent production.


Asunto(s)
Vectores Genéticos , Lentivirus , Nanopartículas , Tamaño de la Partícula , Ultracentrifugación , Lentivirus/genética , Nanopartículas/química , Ultracentrifugación/métodos , Humanos , Receptores Quiméricos de Antígenos
9.
Heliyon ; 10(9): e30627, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765133

RESUMEN

Hepatotoxin carbon tetrachloride (CCl4) causes liver injury. This research aims to create ZnO-NPs using green synthesis from Moringa oleifera (MO) leaves aqueous extract, and chemically prepared and confirming the synthesis by specialized equipment analysis. The sizes formed of ZnO-NPs were 80 and 55 nm for chemical and green methods, respectively. In addition, to study their ability to protect Wistar Albino male rats against oxidative stress exposed to carbon tetrachloride. MO leaf aqueous extract, green synthesized ZnO-NPs, and ZnO-NPs prepared chemically at 100 and 200 mg/kg BW per day were investigated for their hepatoprotective effects on liver enzyme biomarkers, renal biomarkers, antioxidant enzymes, lipid peroxidation, hematological parameters, and histopathological changes. Compared to the control group, all liver and kidney indicators were considerably elevated after the CCl4 injection. However, the activity of antioxidant enzymes in the liver was significantly reduced after the CCl4 injection. These outcomes indicate that MO leaf aqueous extract, greenly synthesized ZnO-NPs, and ZnO-NPs chemically prepared can restore normal liver and kidney function and activity, as well as hematological and antioxidant enzymes. The highest impact on enhancing the hepatoprotective effect was recorded for rats that received green synthesized ZnO-NPs. The increased drug delivery mechanism of green synthesized ZnO-NPs resulted in a higher protective effect than that of MO leaf aqueous extract.

10.
J Fluoresc ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739318

RESUMEN

A thiourea functionalised fluorescent probe 1-phenyl-3-(pyridin-4-yl)thiourea was synthesized and utilised as a fluorescent turn-on chemosensor for the selective recognition of Hg2+ ion over competitive metal ions including Na+, Mn2+, Li+, Cr2+, Ni2+, Ca2+, Cd2+, Mg2+, K+, Co2+, Cu2+, Zn2+, Al3+ and Fe2+ ions based on the inter-molecular charge transfer (ICT). Intriguingly, the receptor demonstrated unique sensing capabilities for Hg2+ in DMSO: H2O (10:90, v/v). The addition of Hg2+ ions to the sensor resulted in a blue shift in the absorption intensity and also enhancement in fluorescence intensity at 435 nm. Fluorescence emission intensity increased linearly with Hg2+ concentration ranging from 0 to 80 µL. The detection limit and binding constant were determined as 0.134 × 10-6 M and 1.733 × 107 M-1, respectively. The sensing behavior of Hg2+ was further examined using DLS, SEM and FTIR. The probe could detect Hg2+ ions across a wide pH range. Furthermore, the receptor L demonstrated good sensing performance for Hg2+ in bovine serum albumin and actual water samples.

11.
Quant Imaging Med Surg ; 14(5): 3593-3605, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38720864

RESUMEN

Background: The degeneration and functional decline of paravertebral muscles (PVMs) are reported to be closely linked to the incidence of degenerative lumbar scoliosis (DLS), a spinal deformity of the mature skeleton. However, the functional role and degeneration of PVMs and their relationship to the development of spinal deformities remain controversial. Therefore, the present study analyzed the morphological changes in the PVMs of patients with DLS, and explored the relationship between PVM degeneration and spinal osseous parameters. Methods: In this retrospective case-control study, we evaluated the PVM parameters of patients with DLS (n=120) and compared them with patients free of DLS (control group, n=120). The cross-sectional area (CSA) and computed tomography (CT) values of the PVM at the lumbar vertebra 1-5 levels were measured. Further, the lumbar scoliosis Cobb, lumbar lordotic, and apical vertebral rotation angles were measured on CT and radiographs in the DLS group, and the relationship between PVM changes and these factors was analyzed. Results: In the control group, the PVM CSA and CT values differed insignificantly between the bilateral sides at all levels (P>0.05). In the DLS group, the CSAs of the multifidus (MF) and erector spinae (ES) were larger on the convex side than the concave side (P>0.05), whereas that of the psoas major (PM) was smaller on the convex side than the concave side (P<0.05). The CT value of the PVM was lower on the convex side at all levels (P<0.05). The CSA and CT values on both sides of the patients were lower in the DLS group than the control group at all levels (P<0.05). Further, the degree of PVM asymmetry at the apical vertebral level was positively correlated with the lumbar scoliosis (P<0.01) and apical vertebral rotation angles (P<0.05), but negatively correlated with the lumbar lordotic angle (P<0.05). Conclusions: Asymmetric degeneration of the PVM was observed bilaterally in DLS patients, and the degeneration was more pronounced on the concave side than the convex side. This asymmetrical degeneration was closely associated with the severity of lumbar scoliosis, vertebral rotation, and loss of lumbar lordosis, and a stronger correlation was observed with the MF and ES than with the PM.

12.
Nanomedicine (Lond) ; 19(12): 1069-1085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38661738

RESUMEN

Aim: The study was designed to develop and analyze curcumin nanoparticles. Methods: Curcumin nanoparticles were formulated and evaluated. Their efficacy in protecting against brain damage was investigated in a rat model of ischemic stroke, considering motor function, muscle strength and antioxidant enzyme activity. Results: Curcumin nanoparticles displayed a zeta potential of -55 ± 13.5 mV and an average particle size of 51.40 ± 21.70 nm. In ischemic stroke rat models, curcumin nanoparticle treatment significantly improved motor functions, and muscle strength and increased the activities of antioxidant enzymes like glutathione peroxidase, glutathione, glutathione S-transferase, superoxide dismutase and catalase, reducing oxidative stress and inflammation. Conclusion: Curcumin nanoparticles showed significant neuroprotective effects in ischemic stroke models.


[Box: see text].


Asunto(s)
Antioxidantes , Curcumina , Modelos Animales de Enfermedad , Inflamación , Accidente Cerebrovascular Isquémico , Estrés Oxidativo , Animales , Curcumina/farmacología , Curcumina/química , Estrés Oxidativo/efectos de los fármacos , Ratas , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Masculino , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Tamaño de la Partícula , Nanogeles/química , Fármacos Neuroprotectores/farmacología , Superóxido Dismutasa/metabolismo , Ratas Wistar , Polietilenglicoles/química , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo
13.
Heliyon ; 10(8): e29669, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681570

RESUMEN

Because of their high protein content, easy access and low cost, pumpkin seeds are a valuable raw material for the preparation of antioxidant protein hydrolysates. Micro-coating is an effective method to protect bioactive compounds against destruction. In order to strengthen the alginate hydrogel network loaded with pumpkin seed protein hydrolysate (PSPH), CMC was added as part of its formulation in the first step, and chitosan coating was used in the second step. Then, swelling amount, release in the simulated gastrointestinal environment (SGI), antioxidant activity after SGI, Fourier transform infrared spectroscopy (FTIR), zeta potential, dynamic light scattering (DLS), polydispersity index (PDI) and scanning electron microscopy (SEM) of the samples were evaluated. The results showed that, the swelling amount of the chitosan-alginate hydrogel was lower than the chitosan-alginate-CMC sample, and with the increase in chitosan concentration, the swelling amount decreased. The release amount in the chitosan-alginate sample was higher than that in the chitosan-alginate-CMC sample, and with the increase in chitosan concentration, the release rate decreased. Also, the amount of release increased with the passage of time. The highest antioxidant activity belonged to the chitosan-alginate sample in SGI, and it increased with increasing the chitosan concentration. All findings demonstrated that the use of multi-component hybrid systems is a useful method for the protection of bioactive compounds against destruction, their antioxidant activities and their release behavior.

14.
Cureus ; 16(3): e56847, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38659522

RESUMEN

The term "destroyed lung" signifies the complete degradation of lung tissues, typically due to chronic or recurring lung infections, with tuberculosis often identified as a primary culprit. This condition, when occurs after tuberculosis and is known as post-tubercular destroyed lung syndrome, poses considerable difficulties, especially in areas where tuberculosis is prevalent. This paper outlines a case study involving a 50-year-old Indian man afflicted with destroyed lung syndrome. Despite having undergone tuberculosis treatment three years earlier, the patient exhibited symptoms such as a dry cough, coughing up blood, and difficulty breathing. A comprehensive clinical evaluation and radiological assessments confirmed the diagnosis of destroyed lung syndrome, leading to the commencement of appropriate treatment.

15.
Materials (Basel) ; 17(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38473584

RESUMEN

Nanocomposites based on silver nanoparticles and chitosan present important advantages for medical applications, showing over time their role in antibacterial evaluation. This work presents the comparative study of two chemical synthesis procedures of nanocomposites, based on trisodium citrate dihydrate and sodium hydroxide, using various chitosan concentrations for a complex investigation. The nanocomposites were characterized by AFM and DLS regarding their dimensions, while FT-IR and UV-VIS spectrometry were used for the optical properties and to reveal the binding of silver nanoparticles with chitosan. Their antibacterial effect was determined using a disk diffusion method on two bacteria strains, E. coli and S. aureus. The results indicate that, when using both methods, the nanocomposites obtained were below 100 nm, yet the antibacterial effect proved to be stronger for the nanocomposites obtained using sodium hydroxide. Furthermore, the antibacterial effect can be related to the nanocomposites' sizes, since the smallest dimension nanocomposites exhibited the best bacterial growth inhibition on both bacteria strains we tested and for both types of silver nanocomposites.

16.
Molecules ; 29(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542889

RESUMEN

This study describes a simple, cost-effective, and eco-friendly method for synthesizing silver nanoparticles using a rosmarinic acid extract from Perilla frutescens (PFRAE) as the bioreduction agent. The resulting nanoparticles, called PFRAE-AgNPs, were characterized using various analytical techniques. The UV-Vis spectrum confirmed the formation of PFRAE-AgNPs, and the FTIR spectrum indicated the participation of rosmarinic acid in their synthesis and stabilization. The XRD pattern revealed the crystal structure of PFRAE-AgNPs, and the TEM analysis showed their spherical morphology with sizes ranging between 20 and 80 nm. The DLS analysis indicated that PFRAE-AgNPs were monodispersed with an average diameter of 44.0 ± 3.2 nm, and the high negative zeta potential (-19.65 mV) indicated their high stability. In the antibacterial assays, the PFRAE-AgNPs showed potent activity against both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial pathogens, suggesting that they could be used as a potential antibacterial agent in the clinical setting. Moreover, the antioxidant activity of PFRAE-AgNPs against DPPH and ABTS radical scavengers highlights their potential in the treatment of various oxidative stress-related diseases. PFRAE-AgNPs also demonstrated significant anticancer activity against a range of cell lines including human colon cancer (COLO205), human prostate carcinoma (PC-3), human lung adenocarcinoma (A549), and human ovarian cancer (SKOV3) cell lines suggesting their potential in cancer therapy. The nanoparticles may also have potential in drug delivery, as their small size and high stability could enable them to cross biological barriers and deliver drugs to specific target sites. In addition to the aforementioned properties, PFRAE-AgNPs were found to be biocompatible towards normal (CHO) cells, which is a crucial characteristic for their application in cancer therapy and drug delivery systems. Their antibacterial, antioxidant, and anticancer properties make them promising candidates for the development of new therapeutic agents. Furthermore, their small size, high stability, and biocompatibility could enable them to be used in drug delivery systems to enhance drug efficacy and reduce side effects.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Perilla frutescens , Humanos , Antioxidantes/farmacología , Plata/farmacología , Plata/química , Ácido Rosmarínico , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
17.
Methods Mol Biol ; 2789: 31-34, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506988

RESUMEN

Asymmetric-flow field-flow fractionation (AF4) is a valuable tool to separate and assess different size populations in nanotherapeutics. When coupled with both static light scattering and dynamic light scattering, it can be used to qualitatively assess protein binding to nanoparticles by comparing the shape factors for both non-plasma-incubated samples and plasma-incubated samples. The shape factor is defined as the ratio of the derived root mean square radius (by static light scattering) to the measured hydrodynamic radius (by dynamic light scattering). The shape factor gives an idea of where the center of mass lies in a nanoparticle, and any shift in the shape factor to larger values is indicative of a mass addition to the periphery of the nanoparticle and suggests the presence of protein binding. This protocol will discuss how to set up an experiment to assess protein binding in nanoparticles using AF4, multi-angle light scattering (MALS), and dynamic light scattering (DLS).


Asunto(s)
Fraccionamiento de Campo-Flujo , Nanopartículas , Dispersión Dinámica de Luz , Unión Proteica , Tamaño de la Partícula , Fraccionamiento de Campo-Flujo/métodos , Luz , Dispersión de Radiación
18.
Methods Mol Biol ; 2789: 21-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506987

RESUMEN

Nanomaterials are inherently polydisperse. Traditional techniques, such as the widely used batch-mode dynamic light-scattering (DLS) analysis, are not ideal nor thoroughly descriptive enough to define the full complexity of these materials. Asymmetric-flow field-flow fractionation (AF4) with various in-line detectors, such as ultraviolet-visible (UV-vis), multi-angle light scattering (MALS), refractive index (RI), and DLS, is an alternative technique that can provide flow-mode analysis of not only size distribution but also shape, drug release/stability, and protein binding.


Asunto(s)
Fraccionamiento de Campo-Flujo , Nanopartículas , Dispersión Dinámica de Luz , Refractometría , Fraccionamiento de Campo-Flujo/métodos , Luz , Tamaño de la Partícula
19.
Nanomaterials (Basel) ; 14(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38470785

RESUMEN

Different microscopy and scattering methods used in the literature to determine the dimensions of cellulose nanocrystals derived from cotton and bacterial cellulose were compared to investigate potential bias and discrepancies. Atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), depolarized dynamic light scattering (DDLS), and static light scattering (SLS) were compared. The lengths, widths, and heights of the particles and their respective distributions were determined by AFM. In agreement with previous work, the CNCs were found to have a ribbon-like shape, regardless of the source of cellulose or the surface functional groups. Tip broadening and agglomeration of the particles during deposition cause AFM-derived lateral dimensions to be systematically larger those obtained from SAXS measurements. The radius of gyration determined by SLS showed a good correlation with the dimensions obtained by AFM. The hydrodynamic lateral dimensions determined by DDLS were found to have the same magnitude as either the width or height obtained from the other techniques; however, the precision of DDLS was limited due to the mismatch between the cylindrical model and the actual shape of the CNCs, and to constraints in the fitting procedure. Therefore, the combination of AFM and SAXS, or microscopy and small-angle scattering, is recommended for the most accurate determination of CNC dimensions.

20.
Int J Pharm ; 655: 124027, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38554742

RESUMEN

Cancer immunotherapy has emerged as a promising clinical treatment strategy in recent years. Unfortunately, the satisfactory antitumor therapeutic efficacy of immunotherapy is limited by intricate immunosuppressive tumor microenvironment (ITM). To remodel the ITM and alleviate the immune evasion, we constructed FA-PEG-modified liposomes to deliver plasmid IL-15 (pIL-15) and gemcitabine (GEM) (FPCL@pIL-15 + FPGL), respectively. The FPCL@pIL-15 (150 nm) and FPGL (120 nm) exhibited symmetrically spherical structures as well as desirable penetration and accumulation on tumor tissue depending on folic acid (FA) specialized targeting function. The transfected expression of IL-15 efficiently fosters the proliferation and co-activation of Natural killer (NK) cells and CD8+T cells through binding to IL-15R. FPGL upregulated the expression of Natural killer group 2 member D ligands (NKG2DLs) and reinforced recognition by NK cells to alleviate the immune evasion, and simultaneously promoted activation of CD8+T cells through immunogenic cell death (ICD) effects. More importantly, the combinatorial administration achieved intended anti-tumor efficacy in the subcutaneous 4T1 tumor model. In essence, we demonstrated that combining FPCL@pIL-15 with FPGL synergistically stimulates and mobilizes the immune system to reverse the ITM and trigger an anti-tumor immune response, indicating a tremendous potential for application in immunotherapy.


Asunto(s)
Gemcitabina , Neoplasias , Línea Celular Tumoral , Inmunoterapia , Interleucina-15/genética , Plásmidos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...