Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
1.
Biomedicines ; 12(10)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39457595

RESUMEN

Background: AML with NPM1 mutation is the largest subcategory of AML, representing about 35% of AML cases. It is characterized by CD34 negativity, which suggests a relatively differentiated state of the bulk of leukemic blasts. Notably, a significant subset of NPM1-mutated AML cases also exhibit HLA-DR negativity, classifying them as "double-negative", and mimicking, therefore, the CD34- HLA-DR- immunophenotype of acute promyelocytic leukemia (APL). Objectives: This study focuses on the "acute promyelocytic leukemia-like" ("APL-like") subset of NPM1-mutated AML, which can be challenging to distinguish from APL at presentation, prior to confirming RARa translocations. We aim to investigate the hematologic and immunophenotypic parameters that may aid to its distinction from APL. Additionally, we explore differences in genetic profile and prognosis between "APL-like" and "non-APL-like" NPM1-mutated AML cases. Methods: We conducted a retrospective evaluation of 77 NPM1-mutated AML cases and 28 APL cases. Results: Morphological characteristics, hematologic parameters (such as DD/WBC and PT/WBC), and specific immunophenotypic markers (including SSC, CD64, and CD4) can assist in the early distinction of "APL-like" NPM1-mutated AML from APL. Regarding differences in genetic profiles and outcomes between "APL-like" and non-"APL-like" NPM1-mutated AML cases, we observed a significantly higher incidence of IDH1/2 /TET2 mutations, along with a significantly lower incidence of DNMT3A mutations in the "APL-like" subset compared to the non-"APL-like" subset. The frequency of Ras-pathway and FLT3 mutations did not differ between these last two groups, nor did their prognoses. Conclusions: Our findings contribute to a comprehensive characterization of NPM1-mutated AML, enhancing diagnostic accuracy and aiding in the detailed classification of the disease. This information may potentially guide targeted therapies or differentiation-based treatment strategies.

2.
Heliyon ; 10(19): e38663, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39403460

RESUMEN

Lung cancer as the second most death cancer reported cases is becoming a major threat to the global healthcare system. With the different subtypes of lung cancer and their limited therapy options due to the lack of targetable genes, rising cases of treatment resistance further complicate the management. The majority of the reported lung cancer cases are categorised as non-small cell lung cancer (NSCLC) which is highly associated with tobacco smoking. Tumorigenesis and cancer progression have also been associated with epigenetics. Epigenetics is responsible for cancer gene regulation and its reversible mechanisms attract the current trend of cancer management research. One of the most studied mechanisms is DNA methylation which can influence the cancer gene transcription outcomes. The enzyme, DNA methyltransferases (DNMTs) play a role in regulating the whole process of DNA methylation. Thus, abnormalities in DNMTs can lead to aberrant methylation patterns which then disturb the gene regulation and cellular functions as a whole. In this review, NSCLC subtypes are discussed with the current research trend of studies involving DNA methylation mechanism as a potential diagnostic and prognostic cancer biomarker. As DNMTs expression influences the methylation pattern, our review also outlined the abnormal pattern of DNMTs and its potential therapeutic target for NSCLC to restore the aberrant gene regulation and produce a better prognosis.

3.
J Cutan Pathol ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39403984

RESUMEN

Anaplastic lymphoma kinase (ALK)-positive histiocytosis has emerged as a clinically relevant diagnosis featuring a wide span of clinical presentations, which are unified by the presence of ALK-positive histiocytes on histopathology and molecular drivers involving the ALK kinase gene. This report presents an adult case of multisystem ALK-positive histiocytosis with xanthogranuloma-like features on histopathology that was responsive to ALK inhibition, and includes a review of ALK-positive histiocytoses with cutaneous involvement reported in the literature. A 56-year-old male developed a widespread eruption of red-brown papules on the face, trunk, and upper extremities. Histopathological evaluation revealed a well-circumscribed, nodular dermal infiltrate of epithelioid histiocytes with Touton giant cells, rare bizarre multinucleated cells, and focal emperipolesis. The lesional cells were positive for CD68 and ALK1 immunohistochemical stains, and negative for CD1a. Next-generation sequencing identified a DCTN1::ALK fusion. On imaging, he was found to have bone, lung, soft tissue, and salivary gland involvement. ALK inhibition was initiated with alectinib, resulting in rapid improvement of cutaneous lesions and eventual complete resolution of abnormal imaging findings, which was sustained at 24 months of follow-up. This case adds to the spectrum of ALK-positive histiocytoses and further demonstrates the positive response with targeted therapy.

4.
Cancers (Basel) ; 16(19)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39409979

RESUMEN

Histone deacetylase inhibitors (HDACis) are being recognized as a potentially effective treatment approach for peripheral T-cell lymphomas (PTCLs), a heterogeneous group of aggressive malignancies with an unfavorable prognosis. Recent evidence has shown that HDACis are effective in treating PTCL, especially in cases where the disease has relapsed or is resistant to conventional treatments. Several clinical trials have demonstrated that HDACis, such as romidepsin and belinostat, can elicit long-lasting positive outcomes in individuals with PTCLs, either when used alone or in conjunction with conventional chemotherapy. They exert their anti-tumor effects by regulating gene expression through the inhibition of histone deacetylases, which leads to cell cycle arrest, induction of programmed cell death, and,the transformation of cancerous T cells, as demonstrated by gene expression profile studies. Importantly, besides clinical trials, real-world evidence indicated that the utilization of HDACis presents a significant and beneficial treatment choice for PTCLs. However, although HDACis showed potential effectiveness, they could not cure most patients. Therefore, new combinations with conventional drugs as well as new targeted agents are under investigation.

5.
J Cell Biochem ; : e30667, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39422314

RESUMEN

Genomic imprinting is essential for mammalian development. PGC7, an important maternal factor, binds to dimethylated histone H3K9 (H3K9me2), maintaining DNA methylation in zygotes and stem cells. However, the underlying molecular mechanisms of PGC7-maintained genomic imprinting in stem cells are not clear. Our previous study has identified that PGC7 interacts with HP1BP3, a novel member of the histone H1 family. In this study, we found that PGC7 interacts with the central globular domain of HP1BP3 through its C-terminal tail and that HP1BP3 is responsible for the recruitment of PGC7 at the Meg3 differentially methylated region (DMR) in the Dlk1-Dio3 imprinted domain. HP1BP3 or PGC7 depletion decreases enrichment in the Meg3-DMR, leading to DNA hypermethylation in this region. Moreover, the cooperative binding of PGC7 and HP1BP3 can antagonize the enrichment of DNMT3A in the Meg3-DMR, and the depletion of HP1BP3 or PGC7 separately induces chromosome decondensation in this region. In summary, this is the first study demonstrating that PGC7 and HP1BP3 synergistically maintain the methylation status of the Meg3-DMR by enabling a chromatin configuration that interferes with the binding of the de novo DNA methyltransferase DNMT3A.

6.
Ecotoxicol Environ Saf ; 286: 117157, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39393198

RESUMEN

NNK, formally known as 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanoe, is a potent chemical carcinogen prevalent in cigarette smoke and is a key contributor to the development of human lung adenocarcinomas. On the other hand, autophagy plays a complex role in cancer development, acting as a "double-edged sword" whose impact varies depending on the cancer type and stage. Despite this, the relationship between autophagy and NNK-induced lung carcinogenesis remains largely unexplored. Our current study uncovers a marked reduction in p62 protein expression in both lung adenocarcinomas and lung tissues of mice exposed to cigarette smoke. Interestingly, this reduction appears to be contingent upon the activity of extrahepatic cytochrome P450 (CYP450), revealing that NNK metabolic activation by CYP450 enzyme escalates its potential to induce p62 downregulation. Further mechanistic investigations reveal that NNK suppresses autophagy by accelerating the degradation of p62 mRNA, thereby promoting the malignant transformation of human bronchial epithelial cells. This degradation process is facilitated by the hypermethylation of the Human antigen R (HuR) promoter, resulting in the transcriptional repression of HuR - a key regulator responsible for stabilizing p62 mRNA through direct binding. This hypermethylation is triggered by the activation of ribosomal protein S6, which is influenced by NNK exposure and subsequently amplifies the translation of DNA methyltransferase 3 alpha (DNMT3a). These findings provide crucial insights into the nature of p62 in both the development and potential treatment of tobacco-related lung cancer.

7.
Int J Mol Sci ; 25(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39456832

RESUMEN

Cancer cohorts are now known to be associated with increased rates of clonal hematopoiesis (CH). We sort to characterize the hematopoietic compartment of patients with melanoma and non-small cell lung cancer (NSCLC) given our recent population level analysis reporting evolving rates of secondary leukemias. The advent of immune checkpoint blockade (ICB) has dramatically changed our understanding of cancer biology and has altered the standards of care for patients. However, the impact of ICB on hematopoietic myeloid clonal expansion remains to be determined. We studied if exposure to ICB therapy affects hematopoietic clonal architecture and if their evolution contributed to altered hematopoiesis. Blood samples from patients with melanoma and NSCLC (n = 142) demonstrated a high prevalence of CH. Serial samples (or post ICB exposure samples; n = 25) were evaluated in melanoma and NSCLC patients. Error-corrected sequencing of a targeted panel of genes recurrently mutated in CH was performed on peripheral blood genomic DNA. In serial sample analysis, we observed that mutations in DNMT3A and TET2 increased in size with longer ICB exposures in the melanoma cohort. We also noted that patients with larger size DNMT3A mutations with further post ICB clone size expansion had longer durations of ICB exposure. All serial samples in this cohort showed a statistically significant change in VAF from baseline. In the serial sample analysis of NSCLC patients, we observed similar epigenetic expansion, although not statistically significant. Our study generates a hypothesis for two important questions: (a) Can DNMT3A or TET2 CH serve as predictors of a response to ICB therapy and serve as a novel biomarker of response to ICB therapy? (b) As ICB-exposed patients continue to live longer, the myeloid clonal expansion may portend an increased risk for subsequent myeloid malignancy development. Until now, the selective pressure of ICB/T-cell activating therapies on hematopoietic stem cells were less known and we report preliminary evidence of clonal expansion in epigenetic modifier genes (also referred to as inflammatory CH genes).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Hematopoyesis Clonal , ADN Metiltransferasa 3A , Dioxigenasas , Inhibidores de Puntos de Control Inmunológico , Melanoma , Mutación , Humanos , Hematopoyesis Clonal/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Anciano , Melanoma/genética , Melanoma/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Proteínas de Unión al ADN/genética , Proteínas Proto-Oncogénicas/genética , Adulto
8.
Ann Clin Lab Sci ; 54(4): 553-557, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39293839

RESUMEN

OBJECTIVE: Multiple myeloma (MM) and Acute myeloid leukemia (AML) are distinct hematologic malignancies originating from different cell lineages. Their coexistence is extremely rare, and current treatment approaches are even more so. Therefore, exploring the clinical features of their coexistence and the promising treatment strategy is worthwhile. CASE REPORT: We described three cases involving the coexistence of MM and DNMT3A-mutant AML, two of which presented simultaneous occurrences, while Case 3 had secondary AML about 70 months after the MM. DISCUSSION: All cases exhibited DNMT3A mutations, which characterized by one missense mutation and two frameshift mutations; all were likely loss of function mutations. Among them, two patients were treated with Venetoclax-based regimens and achieved favorable effects. The patients were alive for 62,38 and 103 months. CONCLUSIONS: Clonal hematopoiesis of DNMT3A may have a crucial role in the coexistence of MM and AML and Venetoclax-based regimens reveal favorable treatment responses. However, drug resistance still needs to be considered, and further research is required to elucidate the underlying mechanisms and treatment strategies.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Leucemia Mieloide Aguda , Mieloma Múltiple , Sulfonamidas , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/patología , Sulfonamidas/uso terapéutico , Sulfonamidas/farmacología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/complicaciones , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Masculino , Anciano , Persona de Mediana Edad , ADN (Citosina-5-)-Metiltransferasas/genética , Femenino , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Mutación/genética , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
9.
J Hematol Oncol ; 17(1): 87, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334207

RESUMEN

DNA methyltransferase 3 A mutations (DNMT3AMT) are frequent in myeloid neoplasia (MN) and mostly heterozygous. However, cases with multiple DNMT3AMT can be also encountered but their clinical and genetic landscape remains unexplored. We retrospectively analyzed 533 cases with DNMT3AMT identified out of 5,603 consecutive MNs, of whom 8.4% had multiple DNMT3AMT hits. They were most frequent in acute myeloid leukemia (AML) with R882 variant accounting for 13.3% of the multi-hits. Multiple DNMT3AMT more likely coincided with IDH2 (P = 0.005) and ETV6 (P = 0.044) mutations compared to patients with single DNMT3AMT. When the sum of variant allele frequencies (VAFs) for multiple DNMT3AMT exceeded 60%, we found a significant positive clonal burden correlation of the two DNMT3A variants (P < 0.0001) suggesting that they occurred in biallelic configuration. AML patients with biallelic DNMT3A inactivation (n = 52) presented with older age (P = 0.029), higher leukocytes (P < 0.0001) and peripheral blast counts (P = 0.0001) and significantly poorer survival rate (5.6% vs. 47.6% at 2 years; P = 0.002) than monoallelic DNMT3AMT. Multivariate analysis identified biallelic DNMT3AMT (HR 2.65; P = 0.001), male gender (HR 2.05; P = 0.014) and adverse genetic alteration according to the European LeukemiaNet 2022 classification (HR 1.84; P = 0.028) as independent adverse factors for survival, whereas intensive chemotherapy (HR 0.47; P = 0.011) favorably influenced outcomes. Longitudinal molecular analysis of 12 cases with biallelic DNMT3AMT demonstrated that such clones persisted or expanded in 9 relapsed or transformed cases (75%) suggesting the early origin of biallelic hits with strong leukemogenic potential. Our study describes the likelihood that biallelic DNMT3AMT, while rare, are indeed compatible with clonal expansion and thus questions the applicability of synthetic lethality strategies.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Leucemia Mieloide Aguda , Mutación , Humanos , ADN (Citosina-5-)-Metiltransferasas/genética , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Adulto , Anciano , Alelos , Adulto Joven , Anciano de 80 o más Años , Adolescente , Trastornos Mieloproliferativos/genética , Frecuencia de los Genes
10.
Front Neural Circuits ; 18: 1435507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268349

RESUMEN

The L-type Ca2+ channel (LTCC, also known as Cav1,2) is involved in the regulation of key neuronal functions, such as dendritic information integration, cell survival, and neuronal gene expression. Clinical studies have shown an association between L-type calcium channels and the onset of depression, although the precise mechanisms remain unclear. The development of depression results from a combination of environmental and genetic factors. DNA methylation, a significant epigenetic modification, plays a regulatory role in the pathogenesis of psychiatric disorders such as posttraumatic stress disorder (PTSD), depression, and autism. In our study, we observed reduced Dnmt3a expression levels in the hippocampal DG region of mice with LPS-induced depression compared to control mice. The antidepressant Venlafaxine was able to increase Dnmt3a expression levels. Conversely, Bay K 8644, an agonist of the L-type Ca2+ channel, partially ameliorated depression-like behaviors but did not elevate Dnmt3a expression levels. Furthermore, when we manipulated DNA methylation levels during Bay K 8644 intervention in depression-like models, we found that enhancing the expression of Dnmt3a could improve LPS-induced depression/anxiety-like behaviors, while inhibiting DNA methylation exacerbated anxiety-like behaviors, the combined use of BAY K 8644 and L-methionine can better improve depressive-like behavior. These findings indicate that DNA methylation plays a role in the regulation of depression-like behaviors by the L-type Ca2+ channel, and further research is needed to elucidate the interactions between DNA methylation and L-type Ca2+ channels.


Asunto(s)
Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico , Agonistas de los Canales de Calcio , Canales de Calcio Tipo L , Metilación de ADN , ADN Metiltransferasa 3A , Depresión , Metionina , Animales , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/efectos de los fármacos , Metionina/farmacología , Masculino , Depresión/tratamiento farmacológico , Depresión/metabolismo , Ratones , Agonistas de los Canales de Calcio/farmacología , Metilación de ADN/efectos de los fármacos , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Lipopolisacáridos/farmacología , Modelos Animales de Enfermedad
11.
Parkinsonism Relat Disord ; 128: 107145, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39278121

RESUMEN

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) is associated with cardiovascular diseases and other disorders, possibly via inflammation. Recent research suggests a connection of CHIP with neurodegenerative disorders. OBJECTIVE: We aimed to investigate the association between multiple system atrophy (MSA) and CHIP. METHODS: We included 100 patients with MSA and 4457 controls. Targeted sequencing of peripheral blood DNA samples was performed, focusing on a panel of 25 genes commonly. LINKED TO CHIP: The prevalence of CHIP in patients with MSA was assessed against controls at variant allele frequency (VAF) thresholds of 1.5 % and 2.0 %. RESULTS: DNMT3A mutation rates were significantly higher in patients with MSA, with a VAF of 1.5 %, which remained significant after adjusting for age and sex (adjusted odds ratio, 1.848; 95 % CI, 1.024-3.335; p = 0.0416). CONCLUSION: Our results suggest an association between DNMT3A mutations and MSA.


Asunto(s)
Hematopoyesis Clonal , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Atrofia de Múltiples Sistemas , Mutación , Humanos , ADN Metiltransferasa 3A/genética , Masculino , Femenino , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/fisiopatología , Persona de Mediana Edad , ADN (Citosina-5-)-Metiltransferasas/genética , Anciano , Hematopoyesis Clonal/genética , Adulto
12.
Ann Hematol ; 103(11): 4525-4535, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39287653

RESUMEN

Co-occurring mutations are frequently observed in acute myeloid leukemia (AML) with NPM1 mutation, and NPM1 measurable residual disease (MRD) is an effective prognostic biomarker. This retrospective study investigated the impact of gene co-mutations and NPM1 MRD on outcomes in these patients. Among 234 patients, 11.5% carried the rare type NPM1 mutation (NPM1RT). The median age was 49 years (IQR 36-58), with a median follow-up of 30.4 months (IQR 12.1-55.7). Nine genes were mutated in > 10%, with DNMT3A (53.8%) and FLT3-ITD (44.4%) being most prevalent. Univariable analysis in 137 patients showed FLT3-ITD, DNMT3A co-mutations, and MRD2 < 3 log reduction predicted poorer survival. FLT3-ITD and DNMT3A co-mutations correlated with the lowest event-free (EFS) and overall survival (OS) (3-year EFS 30.0%; 3-year OS 34.4%; both p < 0.001). FLT3-ITD alone did not worsen survival compared to patients without FLT3-ITD. Multivariable analysis identified DNMT3A co-mutation [EFS, HR = 1.9, p = 0.021; OS, HR = 2.2, p = 0.023] and MRD2 ≥ 3 log reduction (EFS, HR = 0.2; OS, HR = 0.1, both p < 0.001) as independent survival predictors. Patients with FLT3-ITD and DNMT3A co-mutations or a MRD2 < 3 log reduction were identified as high risk, but allogeneic hematopoietic stem cell transplantation (allo-HSCT) improved survival significantly compared to chemotherapy only (3-year EFS, 57.9% vs. 30.0%, p = 0.012; 3-year OS, 72.9% vs. 34.4%, p = 0.001). In AML patients with NPM1 mutation, the detrimental impact of FLT3-ITD mutation was exacerbated by DNMT3A co-mutation. Poor-risk younger patients identified by FLT3-ITD and DNMT3A co-mutations or MRD2 < 3 log reduction benefit from allo-HSCT.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Leucemia Mieloide Aguda , Mutación , Neoplasia Residual , Proteínas Nucleares , Nucleofosmina , Tirosina Quinasa 3 Similar a fms , Humanos , Persona de Mediana Edad , Tirosina Quinasa 3 Similar a fms/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/mortalidad , Masculino , ADN (Citosina-5-)-Metiltransferasas/genética , Femenino , Adulto , Neoplasia Residual/genética , Estudios Retrospectivos , Proteínas Nucleares/genética , Pronóstico , Tasa de Supervivencia , Estudios de Seguimiento , Trasplante de Células Madre Hematopoyéticas , Supervivencia sin Enfermedad
13.
Adv Sci (Weinh) ; : e2404518, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225325

RESUMEN

With the increase in the aging population, senile osteoporosis (SOP) has become a major global public health concern. Here, it is found that Prx1 and Bmi-1 co-localized in trabecular bone, bone marrow cavity, endosteum, and periosteum. Prx1-driven Bmi-1 knockout in bone-marrow mesenchymal stem cells (BMSCs) reduced bone mass and increased bone marrow adiposity by inhibiting osteoblastic bone formation, promoting osteoclastic bone resorption, downregulating the proliferation and osteogenic differentiation of BMSCs, and upregulating the adipogenic differentiation of BMSCs. However, Prx1-driven Bmi-1 overexpression showed a contrasting phenotype to Prx1-driven Bmi-1 knockout in BMSCs. Regarding mechanism, Bmi-1-RING1B bound to DNMT3A and promoted its ubiquitination and inhibited DNA methylation of Runx2 at the region from 45047012 to 45047313 bp, thus promoting the osteogenic differentiation of BMSCs. Moreover, Bmi-1-EZH2 repressed the transcription of Cebpa by promoting H3K27 trimethylation at the promoter region -1605 to -1596 bp, thus inhibiting the adipogenic differentiation of BMSCs. It is also found that Prx1-driven Bmi-1 overexpression rescued the SOP induced by Prx1-driven Bmi-1 knockout in BMSCs. Thus, Bmi-1 functioned as a hub protein in the epigenetic regulation of BMSCs differentiation to delay bone aging. The Prx1-driven Bmi-1 overexpression in BMSCs can be used as an approach for the translational therapy of SOP.

14.
Transl Oncol ; 49: 102048, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39186862

RESUMEN

The progression of hepatocellular carcinoma (HCC) is influenced by disrupted metabolic processes, presenting challenges in prognostic outcomes. Hepatocellular carcinoma (HCC), a leading cause of cancer-related mortality, is closely associated with metabolic reprogramming and stem cell-like properties in liver cancer stem cells (LCSCs). This study explored the potential molecular mechanisms by which tLyP-1-modified extracellular vesicles (EVs) delivering CTCF shRNA (tLyp-1-EV-shCTCF) regulate mitochondrial DNA methylation-induced glycolytic metabolic reprogramming and LCSC self-renewal. Through a series of methods, including Western blot, nanoparticle tracking analysis, and immunofluorescence, we demonstrated the successful delivery and internalization of tLyp-1-EV in HCC cells. Our results identified SALL3 as a critical factor underexpressed in HCC and LCSCs, while CTCF was overexpressed. Overexpression of SALL3 inhibited LCSC self-renewal and immune evasion by blocking the CTCF-DNMT3A interaction, thus repressing DNMT3A methyltransferase activity and subsequent mitochondrial DNA methylation-mediated glycolytic metabolic reprogramming. In vivo experiments further supported these findings, showing that tLyp-1-EV-shCTCF treatment significantly reduced tumor growth by upregulating SALL3 expression, thereby inhibiting glycolytic metabolic reprogramming and enhancing the immune response against HCC cells. This study provides novel insights into the role of SALL3 and mitochondrial DNA methylation in HCC progression, offering potential therapeutic targets for combating HCC and its stem cell-like properties.

15.
Rinsho Ketsueki ; 65(7): 676-683, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39098019

RESUMEN

Researchers in the field of acute myeloid leukemia have long sought to establish a prognostic stratification system for clinical use that combines multiple genetic mutations. In 2022, the European LeukemiaNet (ELN) proposed a new prognostic model incorporating new genetic mutations. However, Japanese National Health insurance only recently began covering clinical genetic analysis for AML. We established the Multi-center Collaborative Program for Gene Sequencing of Japanese AML (GS-JAML) to contribute to clinical practice by providing rapid genetic analysis results. Retrospective analysis of this research program revealed (1) the clinical significance of CEBPA-bZIP mutations, and (2) the clinical significance of DNMT3A mutations in NPM1 mutated AML.


Asunto(s)
Leucemia Mieloide Aguda , Mutación , Nucleofosmina , Guías de Práctica Clínica como Asunto , Humanos , Leucemia Mieloide Aguda/genética , Pueblo Asiatico/genética , Pruebas Genéticas , Femenino , Masculino , Pronóstico , Pueblos del Este de Asia
16.
J Biol Chem ; 300(9): 107633, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098534

RESUMEN

DNA methylation is one of the major epigenetic mechanisms crucial for gene regulation and genome stability. De novo DNA methyltransferase DNMT3C is required for silencing evolutionarily young transposons during mice spermatogenesis. Mutation of DNMT3C led to a sterility phenotype that cannot be rescued by its homologs DNMT3A and DNMT3B. However, the structural basis of DNMT3C-mediated DNA methylation remains unknown. Here, we report the structure and mechanism of DNMT3C-mediated DNA methylation. The DNMT3C methyltransferase domain recognizes CpG-containing DNA in a manner similar to that of DNMT3A and DNMT3B, in line with their high sequence similarity. However, two evolutionary covariation sites, C543 and E590, diversify the substrate interaction among DNMT3C, DNMT3A, and DNMT3B, resulting in distinct DNA methylation activity and specificity between DNMT3C, DNMT3A, and DNMT3B in vitro. In addition, our combined structural and biochemical analysis reveals that the disease-causing rahu mutation of DNMT3C compromises its oligomerization and DNA-binding activities, explaining the loss of DNA methylation activity caused by this mutation. This study provides a mechanistic insight into DNMT3C-mediated DNA methylation that complements DNMT3A- and DNMT3B-mediated DNA methylation in mice, unraveling a regulatory mechanism by which evolutionary conservation and diversification fine-tune the activity of de novo DNA methyltransferases.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Animales , Ratones , ADN Metiltransferasa 3A , Humanos , ADN Metiltransferasa 3B , Mutación , ADN/metabolismo , ADN/química , ADN/genética , Cristalografía por Rayos X
17.
Bioimpacts ; 14(4): 27640, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104619

RESUMEN

Introduction: High metastasis, resistance to common treatments, and high mortality rate, has made triple-negative breast cancer (TNBC) to be the most invasive type of breast cancer. High telomerase activity and mitochondrial biogenesis are involved in breast cancer tumorigenesis. The catalytic subunit of telomerase, telomerase reverse transcriptase (hTERT), plays a role in telomere lengthening and extra-biological functions such as gene expression, mitochondria function, and apoptosis. In this study, it has been aimed to evaluate intrinsic-, extrinsic-apoptosis and DNMT3a and TET2 expression following the inhibition of telomerase and mitochondria respiration in TNBC cell lines. Methods: TNBC cells were treated with IC50 levels of BIBR1532, tigecycline, and also their combination. Then, telomere length, and DNMT3a, TET2, and hTERT expression were evaluated. Finally, apoptosis rate, apoptosis-related proteins, and genes were analyzed. Results: The present results showed that IC50 level of telomerase and inhibition of mitochondria respiration induced apoptosis but did not leave any significant effect on telomere length. The results also indicated that telomerase inhibition induced extrinsic-apoptosis in MDA-MB-231 and caused intrinsic- apoptosis in MDA-MB-468 cells. Furthermore, it was found that the expression of p53 decreased and was ineffective in cell apoptosis. The expressions of DNMT3a and TET2 increased in cells. In addition, combination treatment was better than BIBR1532 and tigecycline alone. Conclusion: The inhibition of telomerase and mitochondria respiration caused intrinsic- and extrinsic- apoptosis and increased DNMT3a and TET2 expression and it could be utilized in breast cancer treatment.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39207267

RESUMEN

Background: Adult acute leukemia most commonly manifests as acute myeloid leukemia (AML), a highly heterogeneous malignant tumor of the blood system. The application of genetic diagnostic technology is currently prevalent in numerous clinical sectors. According to recent research, the presence of specific gene mutations or rearrangements in leukemia cells is the primary cause of the disease. As different types of leukemia are caused by atypical mutated genes, testing for these mutations or rearrangements can help diagnose leukemia and identify the disease's molecular targets for treatment. Methods: Using the search fields "WT1," "DNMT3A," "Acute myeloid leukemia," and "survival," the CBM, Cochrane Library, Scopus, EMBASE, and PUBMED databases were separately reviewed. The methodology for evaluating the risk of bias developed by the Cochrane Collaboration was used in conjunction with a methodical evaluation of pertinent literature. Excluded studies with the following characteristics: (1) incomplete and repetitive publications, (2) unable to retrieve or convert data, (3) non-English or Chinese articles. Results: This analysis included 13 studies covering a total of 3478 subjects. The frequency of Wilms' Tumor 1 (WT1) mutations is 6.7%-35.73%, and the frequency of DNMT3A mutations is 12.06%-51.1%. The remission rate of patients with WT1 mutations was less than that of patients without WT1 mutations (OR = 0.22; 95% confidence interval [CI]: 0.14, 0.36; p < 0.00001; I2 = 55%). The DNMT3A mutation has no statistical significance for the prognosis of AML (OR = 1.21; 95% CI: 0.93, 1.58; p = 0.16; I2 = 80%). After removing one study, the heterogeneity of the indicator (mitigation rate) among other studies of DNMT3A mutation was dramatically reduced (OR = 0.63; 95% CI: 0.43, 0.93; p = 0.02; I2 = 0%). Conclusions: Our meta-analysis shows that WT1 mutations hurt the remission rate of AML. Moreover, the impact of DNMT3A mutations on AML needs to be treated with caution. Gene diagnosis is critical for the prognosis and clinical management of AML.

19.
Front Immunol ; 15: 1418792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100667

RESUMEN

Background: T lymphocytes in tumor microenvironment play a pivotal role in the anti-tumor immunity, and the memory of T cells contributes to the long-term protection against tumor antigens. Compared to solid tumors, studies focusing on the T-cell differentiation in the acute myeloid leukemia (AML) bone marrow (BM) microenvironment remain limited. Patients and methods: Fresh BM specimens collected from 103 adult AML patients at diagnosis and 12 healthy donors (HDs) were tested T-cell differentiation subsets by multi-parameter flow cytometry. Results: CD4 and CD8 T-cell compartments had different constituted profiles of T-cell differentiated subsets, which was similar between AML patients and HDs. Compared to HDs, AML patients as a whole had a significantly higher proportion of CD8 effector T cells (Teff, P = 0.048). Moreover, the T-cell compartment of AML patients with no DNMT3A mutations skewed toward terminal differentiation at the expense of memory T cells (CD4 Teff: P = 0.034; CD8 Teff: P = 0.030; CD8 memory T: P = 0.017), whereas those with mutated DNMT3A had a decrease in CD8 naïve T (Tn) and CD4 effector memory T cells (Tem) as well as an increase in CD4 central memory T cells (Tcm) (P = 0.037, 0.053 and 0.053). Adverse ELN genetic risk correlated with a lower proportion of CD8 Tn. In addition, the low proportions of CD4 Tem and CD8 Tn independently predicted poorer relapse-free survival (RFS, HR [95%CI]: 5.7 (1.4-22.2), P = 0.017 and 4.8 [1.3-17.4], P = 0.013) and event-free survival (EFS, HR [95% CI]: 3.3 (1.1-9.5), P = 0.029; 4.0 (1.4-11.5), P = 0.010), respectively. Conclusions: AML patients had abnormal profiles of BM T-cell differentiation subsets at diagnosis, which was related to DNMT3A mutations. The low proportions of CD4 Tem and CD8 Tn predicted poor outcomes.


Asunto(s)
Diferenciación Celular , Leucemia Mieloide Aguda , Subgrupos de Linfocitos T , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Adulto , Diferenciación Celular/inmunología , Pronóstico , Anciano , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Adulto Joven , Linfocitos T CD8-positivos/inmunología , Mutación , Microambiente Tumoral/inmunología , Células T de Memoria/inmunología , Linfocitos T CD4-Positivos/inmunología , ADN Metiltransferasa 3A , Anciano de 80 o más Años , Adolescente
20.
Cancers (Basel) ; 16(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123361

RESUMEN

Clonal hematopoiesis (CH), the relative expansion of mutant clones, is derived from hematopoietic stem cells (HSCs) with acquired somatic or cytogenetic alterations that improve cellular fitness. Individuals with CH have a higher risk for hematological and non-hematological diseases, such as cardiovascular disease, and have an overall higher mortality rate. Originally thought to be restricted to a small fraction of elderly people, recent advances in single-cell sequencing and bioinformatics have revealed that CH with multiple expanded mutant clones is universal in the elderly population. Just a few years ago, phylogenetic reconstruction across the human lifespan and novel sensitive sequencing techniques showed that CH can start earlier in life, decades before it was thought possible. These studies also suggest that environmental factors acting through aberrant inflammation might be a common theme promoting clonal expansion and disease progression. However, numerous aspects of this phenomenon remain to be elucidated and the precise mechanisms, context-specific drivers, and pathways of clonal expansion remain to be established. Here, we review our current understanding of the cellular mechanisms driving CH and specifically focus on how pro-inflammatory factors affect normal and mutant HSC fates to promote clonal selection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...