Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Más filtros












Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39340607

RESUMEN

Agricultural and forestry biomass wastes, often discarded or burned without adequate management, lead to significant environmental harm. However, cellulose nanocrystals (CNCs), derived from such biomass, have emerged as highly promising materials due to their unique properties, including high tensile strength, large surface area, biocompatibility, and renewability. This review provides a detailed analysis of the lignocellulosic composition, as well as the elemental and proximate analysis of different biomass sources. These assessments help determine the yield and characteristics of CNCs. Detailed discussion of CNC synthesis methods -ranging from biomass pretreatment to hydrolysis techniques such as acid, mineral, solid acid, ionic liquid, and enzymatic methods-are provided. The key physical, chemical, and thermal properties of CNCs are also highlighted, particularly in relation to their industrial applications. Recommendations for future research emphasize the need to optimize CNC synthesis processes, identify suitable biomass feedstocks, and explore new industrial applications.

2.
J Biosci Bioeng ; 138(5): 445-451, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39227278

RESUMEN

The effect of delignification on the adsorption capacity of loofah sponge-based immobilized metal affinity chromatography adsorbents was investigated with recombinant His-tagged trehalose synthase as the model protein. Pretreatments with [EMIM][Ac] ionic liquid at 80 °C for 5 h and with sodium chlorite/acetic acid at 80 °C for 2 h were found effective for the removal of lignin, leading to a loss in biomass of 15.7% and 25.2%, respectively. Upon delignification, the metal chelating capacities of the loofah sponge-based adsorbents prepared with 5-h ionic liquid pretreatment (712 ± 82 µmole Cu(II)/g) and with 2-h sodium chlorite/acetic acid pretreatment (1012 ± 18 µmole Cu(II)/g) were 38% and 97% higher than that of the control (514 ± 55 µmole Cu(II)/g), adsorbent prepared with untreated loofah sponge, respectively. Results of protein adsorption study indicated that the Co(II)-loaded adsorbent prepared with 2-h sodium chlorite/acetic acid pretreatment exhibited the highest adsorption capacity and selectivity for the recombinant His-tagged trehalose synthase, giving a purification product with a specific activity of 7.62 U/mg protein. The predicted maximum adsorption capacity of the delignified loofah sponge-based adsorbent, 2.04 ± 0.14 mg/g, was 73% higher than that of the control.


Asunto(s)
Cromatografía de Afinidad , Glucosiltransferasas , Cromatografía de Afinidad/métodos , Adsorción , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Luffa/química , Cobre/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Histidina/química , Histidina/metabolismo , Líquidos Iónicos/química , Biomasa
3.
Sci Total Environ ; 953: 176030, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39250978

RESUMEN

Anaerobic digestion (AD) of lignocellulosic wastes (LW) has garnered substantial interest because of its notable energy and nutrient recovery, along with its potential for reducing greenhouse gas emissions. However, the LW is resistant to degradation, and its hydrolysis typically requires harsh conditions, hence the need for a pretreatment. Conducting a life cycle assessment (LCA) to evaluate the pretreatment of LW is an effective way to assess the environmental impacts associated with various pretreatment methods. This work evaluates and compares three scenarios for handling lignified tomato green waste (TGW), generated in the Greater of Agadir in Morocco, in terms of their environmental impacts and energy demand, using the LCA approach, performed with OpenLCA software. To achieve this aim, the impact of these scenarios on 11 indicators is studied. The analyzed management options include a base case scenario S0 where TGW undergoes a direct anaerobic digestion (AD), organosolv pretreatment of TGW followed by AD of the free-lignin fraction (S1), and choline chloride-based deep eutectic solvent (DES) delignification followed by AD of the free-lignin fraction (S2). The data used for the analysis comes from the Tamelast landfill, laboratory tests, literature, CML-IA baseline and Monte Carlo simulation calculations. The results obtained showed that the introduction of pretreatments in S1 and S2 mitigates significantly the environmental impact in different categories compared to S0. Scenario S2, with its enhanced recovery processes, shows the highest positive environmental contributions, despite its reliance on additional external electricity. S1 and S0 both respect energy circularity. Through this study, it has been demonstrated that chemical pretreatment of LW is energy, water and solvent-intensive and requires a large investment. It opens up perspectives for further works on pretreatment using natural DES technology, its development and its applications in the delignification of ligneous biomass on an industrial scale.


Asunto(s)
Biomasa , Colina , Solanum lycopersicum , Anaerobiosis , Disolventes Eutécticos Profundos , Etanol , Lignina/química
4.
Biochem Biophys Res Commun ; 734: 150642, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39316949

RESUMEN

Lignin-carbohydrate complexes (LCCs) present a considerable hurdle to the economic utilization of lignocellulosic biomass. Glucuronoyl esterase (GE) is an LCC-degrading enzyme that catalyzes the cleavage of the cross-linkages between lignin and xylan in LCCs. Benzyl-d-glucuronate (Bn-GlcA), a commercially available substrate, is widely used to evaluate GE activity assays. However, since Bn-GlcA lacks the structural backbone of naturally occurring LCCs, the mechanisms underlying the activity of GEs and their diversity in the structure-activity relationship are not fully understood. Herein, we provided a synthesis scheme for designing 1,23-α-d-(6-benzyl-4-O-methyl-glucuronyl)-1,4-ß-d-xylotriose (Bn-MeGlcA3Xyl3) as a natural core substrate bearing cross-linkage between lignin and glucuronoxylan. A well-defined and yet more realistic synthetic substrate was successfully synthesized via a key step of the benzyl esterification of 4-O-methyl-glucuronyl-1,4-ß-d-xylotriose (MeGlcA3Xyl3), a minimized fragment of glucuronoxylan enzymatically digested by ß-1,4-xylanase. To the best of our knowledge, this is the first report of the productive GE kinetic analysis using this substrate. Kinetic parameters of the GE from the fungal Pestalotiopsis sp. AN-7 (PesGE), i.e., the Km, Vmax, and kcat of Bn-MeGlcA3Xyl3, were 0.43 mM, 55.5 µmol min-1·mg-1, and 35.8 s-1, respectively. On the other hand, as reported to date, the productive kinetic parameters for Bn-GlcA were not obtained because of its excessively high Km value (>16 mM). The substantial variance in the enzymatic activity of PesGE regarding substrate-binding affinity between Bn-MeGlcA3Xyl3 and Bn-GlcA was also demonstrated using in silico docking simulation. These results suggested that the extended xylan fragment is a key structural determinant affecting PesGE's substrate recognition. Furthermore, the presence of a natural xylan backbone allows for evaluating the enzyme activity of xylan-degrading enzymes. Accordingly, the synthesized substrate with the natural core structure of LCC allowed us to unveil the productive kinetic parameters of GEs, serving as a versatile substrate for further elucidating the cascade reaction of GE and xylan-degrading enzymes.

5.
Polymers (Basel) ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274063

RESUMEN

Alpha-cellulose, a unique, natural, and essential polymer for the fiber industry, was isolated in an ecofriendly manner using eleven novel systems comprising recycling, defibrillation, and delignification of prosenchyma cells (vessels and fibers) of ten lignocellulosic resources. Seven hardwood species were selected, namely Conocorpus erectus, Leucaena leucocephala, Simmondsia chinensis, Azadirachta indica, Moringa perigrina, Calotropis procera, and Ceiba pentandra. Moreover, three recycled cellulosic wastes were chosen due to their high levels of accumulation annually in the fibrous wastes of Saudi Arabia, namely recycled writing papers (RWPs), recycled newspapers (RNPs), and recycled cardboard (RC). Each of the parent samples and the resultant alpha-cellulose was characterized physically, chemically, and anatomically. The properties examined differed significantly among the ten resources studied, and their mean values lies within the cited ranges. Among the seven tree species, L. leucocephala was the best cellulosic precursor due to its higher fiber yield (55.46%) and holocellulose content (70.82%) with the lowest content of Klasson lignin (18.86%). Moreover, RWP was the best α-cellulose precursor, exhibiting the highest holocellulose (87%) and the lowest lignin (2%) content. Despite the high content of ash and other additives accompanied with the three lignocellulosic wastes that were added upon fabrication to enhance their quality (10%, 11%, and 14.52% for RWP, RNP, and RC, respectively), they can be considered as an inexhaustible treasure source for cellulose production due to the ease and efficiency of discarding their ash minerals using the novel CaCO3-elimination process along with the other innovative techniques. Besides its main role for adjusting the pH of the delignification process, citric acid serves as an effective and environmentally friendly additive enhancing lignin breakdown while preserving cellulose integrity. Comparing the thermal behavior of the ten cellulosic resources, C. procera and C. pentandra exhibited the highest moisture content and void volume as well as having the lowest specific gravity, crystallinity index, and holocellulose content and were found to yield the highest mass loss during their thermal degradation based on thermogravimetric and differential thermal analysis in an inert atmosphere. However, the other resources used were found to yield lower mass losses. The obtained results indicate that using the innovative procedures of recycling, defibrillation, and delignification did not alter or distort either the yield or structure of the isolated α-cellulose. This is a clear indicator of their high efficiency for isolating cellulose from lignocellulosic precursors.

6.
Int J Biol Macromol ; 280(Pt 1): 135496, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39255883

RESUMEN

Alcoholysis (organosolv delignification)-induced changes in cell wall surfaces were investigated to verify whether structural assessments are required for effective delignification. Softwood blocks of Cryptomeria japonica were subjected to alcoholysis at 100-150 °C, which gradually decreased their lignin content. Scanning electron microscopy revealed the emergence of amorphous mesh structures on the intercellular side and their transformation into spherical particles with increasing temperature. In addition, warty layers changed from uneven structures into spherical particles on the lumen side of tracheids. These particles produced in cell walls under harsh alcoholysis conditions, damaging the cell wall layers on both sides. Confocal laser scanning microscopy identified that they were mainly lignin eluted by alcoholysis. Alcoholysis at 130 °C providing the largest specific surface area showed intermediate stages of growth into spherical particles but allowed complete delignification when combined with NaClO2 bleaching. Therefore, the role of the spherical particles, which has so far been debatable, was clarified as causing damage rather than a bleaching accelerant. Focusing only on compositional changes while ignoring structural ones leads to the incorrect identification of optimal conditions that remove lignin but damage the cell walls. Our findings demonstrate that structural considerations are required for effective and noninvasive delignification.

7.
Bioresour Technol ; : 131455, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260725

RESUMEN

Biomass pretreatment and conversion are crucial for sustainable development, but lack information on equipment that ensures effective mass transfer and easy biomass separation post-process. This work introduces a novel basket reactor with a stationary bed (StatBioChem) for biomass processing using deep eutectic solvents (DESs). We compared the delignification efficiencies of soft and hard biomass samples processed in the StatBioChem reactor, a stirred tank reactor (STR), and a commercial SpinChem® reactor. The StatBioChem design allowed DES to flow evenly through biomass in the basket, achieving the highest delignification degree, particularly for hard biomass. This effect was not observed in the SpinChem® basket reactor. High delignification led to increased glucose yields in subsequent enzymatic hydrolysis. The StatBioChem effectively combines the simplicity and efficiency of an STR with the ease of solvent recovery typical of basket reactors.

8.
Adv Sci (Weinh) ; : e2403215, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263934

RESUMEN

Although bioluminescence is documented both anecdotally and experimentally, the parameters involved in the production of fungal bioluminescence during wood colonization have not been identified to date. Here, for the first time, this work develops a methodology to produce a hybrid living material by manipulating wood colonization through merging the living fungus Desarmillaria tabescens with nonliving balsa (Ochroma pyramidale) wood to achieve and control the autonomous emission of bioluminescence. The hybrid material with the highest bioluminescence is produced by soaking the wood blocks before co-cultivating them with the fungus for 3 months. Regardless of the incubation period, the strongest bioluminescence is evident from balsa wood blocks with a moisture content of 700-1200%, highlighting the fundamental role of moisture content for bioluminescence production. Further characterization reveals that D. tabescens preferentially degraded hemicelluloses and lignin in balsa wood. Fourier-transform infrared spectroscopy reveals a decrease in lignin, while X-ray diffraction analysis confirms that the cellulose crystalline structure is not altered during the colonization process. This information will enable the design of ad-hoc synthetic materials that use fungi as tools to maximize bioluminescence production, paving the way for an innovative hybrid material that could find application in the sustainable production of light.

9.
Int J Biol Macromol ; 280(Pt 1): 135745, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293621

RESUMEN

Laccase is a multicopper oxidase enzyme that target different types of phenols and aromatic amines. The enzyme can be isolated and characterized from microbes, plants and insects. Its ubiquitous nature and delignification ability makes it a valuable tool for research and development. Sustainable production methods are being employed to develop low cost biomanufacturing of the enzyme while achieving high titers. Laccase have significant industrial application ranging from food industry where it can be used for wine stabilization, texture improvement and detection of phenolic compounds in food products, to cosmetics offering benefits such as skin brightening and hair colouring. Dye decolourization/degradation, removal of pharmaceutical products/emerging pollutants and hydrocarbons from wastewater, biobleaching of textile fabrics, biofuel production and delignification of biomass making laccase a promising green biocatalyst. Innovative methods such as using inducers, microbial co-culturing, recombinant DNA technology, protein engineering have pivotal role in developing laccase with tailored properties. Enzyme immobilization using new age compounds including nanoparticles, carbonaceous components, agro-industrial residues enhance activity, stability and reusability. Commercial formulations of laccase have been prepared and readily available for a variety of applications. Certain challenges including production cost, metabolic stress in response to heterologous expression, difficulty in purification needs to be addressed.

10.
Int J Biol Macromol ; 280(Pt 2): 135949, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39317279

RESUMEN

Previous studies on the modification of fast-growing wood have extensively examined the effects of density and lignin content on the strength and high-temperature properties of modified wood. However, a comprehensive quantitative analysis of their effects on high-temperature performance remains insufficient. To address this knowledge gap, we applied alkali treatment and compression densification to fast-growing poplar, resulting in modified specimens with varying densities and lignin levels. The quantitative effects of density and lignin content on high-temperature properties were meticulously evaluated. Chemical changes were analyzed using Fourier transform infrared spectroscopy (FT-IR), while the mechanical and high-temperature properties were comprehensively assessed. Delignification was found to be positively correlated with treatment duration, with hemicellulose degradation also detected via FT-IR analysis. Significant enhancements were recorded in flexural strength, tensile strength, and modulus of elasticity, accompanied by improvements in ductility ratio and compressive strength. The modified poplar wood exhibited increased thermal stability at elevated temperatures. Furthermore, density and lignin content were identified as significant factors affecting high-temperature performance, establishing minimum density thresholds for various lignin contents in modified poplar wood to ensure optimal performance. This study enhances to the understanding of the intricate relationships among wood properties, modification techniques, and high-temperature performance.

11.
Front Bioeng Biotechnol ; 12: 1441075, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108598

RESUMEN

The persistent expansion in world energy and synthetic compounds requires the improvement of renewable alternatives in contrast to non-sustainable energy wellsprings. Lignocellulose is an encouraging feedstock to be utilized in biorefineries for its conversion into value-added products, including biomaterials, biofuels and several bio-based synthetic compounds. Aside from all categories, biofuel, particularly bioethanol is the most substantial fuel derived from lignocellulosic biomass and can be obtained through microbial fermentation. Generally, extreme settings are required for lignocellulosic pretreatment which results in the formation of inhibitors during biomassdegradation. Occasionally, lignin polymers also act as inhibitors and are left untreated during the pretreatment, engendering inefficient hydrolysis. The valorization of lignocellulosic biomass by laccases can be viewed as a fundamental trend for improving bioethanol production. However, one of the main obstacles for developing commercially viable biofuel industries is the cost of enzymes, which can be resolved by utilizing laccases derived from microbial sources. Microbial laccases have been considered an exceptionally integral asset for delignification and detoxification of pretreated LCB, which amplify the resultant fermentation and saccharification processes. This review provides a summary of microbial laccases and their role in valorizing LCB to bioethanol, compelling enthralling applications in bio-refining industries all across the globe.

12.
ACS Appl Mater Interfaces ; 16(31): 41390-41399, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042040

RESUMEN

Recovery and reuse of bulk waste wood are particularly challenging because of usage defects and contaminations. Here, we present a robust and efficient strategy for regenerating used wood veneers into high-performance structural materials through micro/nano interface manipulation. Our approach involves using cellulose-based interlayers to bind together two waste wood plates without an external adhesive by partially dissolving and regenerating the interlayer using a solution of ionic liquids and dimethyl sulfoxide. The mechanical properties of the regenerated wood exceed that of natural wood, displaying over a 16 and 20 times increase in transverse tensile strength and modulus, respectively, and 4-6 times improvement in longitudinal tensile strength and modulus. Nanoscale mechanical analyses show that the improvement is possible as a result of several factors, including the robust network structure of the interlayer, the good adhesion at the wood-interlayer interface, the compacted wood structure, and the low stiffness and deformation gradients between the interlayer and the wood structure. The interlayers can be created from waste papers and wood particles by taking advantage of the nanofibrillar structure of cellulose.

13.
Environ Sci Pollut Res Int ; 31(36): 48928-48954, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39083176

RESUMEN

The most abundant natural renewable resource in the world, lignocellulosic biomass (LCB), has the potential to be exploited as a substitute green feedstock for the synthesis of various chemicals, materials, and biofuels. The annual global production of 13 billion tonnes of LCB offers an opportunity to cater to the increasing energy and materials requirement of process industries and also restricts the discharge of greenhouse gases. Although LCB is enriched with valuable ingredients such as cellulose, lignin, and hemicellulose, its recalcitrant nature limits its efficient utilisation. These components of LCB are strongly interlinked with each other, which resists their isolation and conversion valorisation into useful products. To disrupt the complicated structure of LCB and to isolate the lignocellulosic components in pure form, pretreatment is a crucial process in the bio-refinery, ensuring the economic feasibility of downstream processes. This review provides an outline of the structure, composition, and various sources of LCB; and the necessity of the pretreatment. Moreover, this article provides an in-depth analysis of the underlying mechanisms, advantages, and limitations of various pretreatment methods, such as physical, chemical, biological, and physicochemical. Further, the impact of chemical pretreatment techniques on the physicochemical characteristics of the material that is extracted from the biomass is also covered in detail through the rigorous evaluation of performance metrics, including substrate digestibility, sugar yield, inhibitor production, and energy requirements. This review provides a balanced and comprehensive overview of the state-of-the-art pretreatment strategies and their impact on biomass valorisation that will be useful to the scientists, engineers, and policy makers interested in biomass conversion technologies.


Asunto(s)
Biocombustibles , Biomasa , Lignina , Lignina/química , Celulosa/química
14.
Polymers (Basel) ; 16(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000804

RESUMEN

The efficient exploitation of planted fast-growing wood is crucial for enhancing wood resource utilization. In this study, the fast-growing poplar wood was modified by in situ impregnation through vacuum impregnation with polyvinyl alcohol and nano-silica sol as impregnation modifiers, combined with delignification-freezing pretreatment. The samples were characterized by FTIR, XRD, SEM, and the universal mechanical testing machine. The results showed that the wrinkle deformation and cracking of the wood blocks were greatly alleviated after the delignification-freezing pretreatment and the polyvinyl alcohol and nano-silica sol were successfully integrated into the wood. The resulting polyvinyl alcohol-silica sol poplar composites exhibited about 216%, 80% and 43% higher compressive strength with respect to delignified wood, natural wood and impregnated natural wood, respectively, thereby demonstrating superior mechanical properties and potential opportunities for value-added and efficient utilization of low-quality wood.

15.
Int J Biol Macromol ; 274(Pt 2): 133443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942405

RESUMEN

Lignocellulose is an abundant renewable bio-macromolecular complex, which can be used to produce biomethane and other high-value products. The lignin, presents in lignocellulose is typically regarded as an inhibitor of anaerobic digestion. Therefore, it is crucial to develop a novel selective separation strategy to achieve efficient biomethane production and all-component utilization of biomass. Hence, a combination of two-step pretreatment and solid-state anaerobic digestion was employed to enhance the production of biomethane and to generate valuable chemicals from poplar waste. Optimal conditions (4 % acetic acid, 170 °C, and 40 min) resulted in 70.85 % xylan removal, yielding 50.28 % xylo-oligosaccharides. The effect of a strong acid 4-CSA-based novel three-constituent DES on delignification was investigated from 80 °C to 100 °C; the cellulose content of DES pretreated poplar increased from 64.11 % to 80.92 %, and the delignification rate increased from 49.0 % to 90.4 %. However, high delignification of the pretreated poplar (DES-100 and DES-110) led to a rapid accumulation of volatile organic acids during the hydrolysis and acidogenesis stages, resulting in methanogenesis inhibition. The highest biomethane yield of 208 L/kg VS was achieved with DES-80 (49.0 % delignification), representing a 148 % improvement compared over untreated poplar. This approach demonstrates the potential for comprehensive utilization of all components of biomass waste.


Asunto(s)
Lignina , Metano , Populus , Lignina/química , Populus/química , Populus/metabolismo , Metano/química , Metano/metabolismo , Anaerobiosis , Hidrólisis , Oligosacáridos/química , Biomasa , Glucuronatos/química , Residuos
16.
Carbohydr Polym ; 339: 122263, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823927

RESUMEN

Photochromic wood materials are very important and appealing for smart windows. Herein, we describe the development of transparent photochromic wood that can change its color under ultraviolet and visible lights. Photoluminescent transparent wood was prepared by delignification of wood followed by infiltration with a combination of gum Arabic/chitosan/acrylic acid (ACA), lanthanide-activated aluminum strontium oxide (LASO) as a photoluminescent, and Genipin as a cross-linking agent. The produced mixture was then infused into the lignin-modified wood substrate. In order to develop a luminescent colorless wood, the LASO phosphor must be well-distributed in the ACA solution without aggregation. According to the colorimetric parameters and photoluminescence spectra, this optically active wooden window switched color from transparent in daylight to green when UV-irradiated. Transmission electron microscopy (TEM) was employed to examine the morphological features of phosphor nanoparticles. The morphological features of the developed smart wooden window were investigated by scanning electron microscopy (SEM), X-ray fluorescent spectroscopy (XRF), and energy-dispersive X-ray analyzer (EDX). The mechanical performance was explored by investigating both hardness and resistance to scratches. The luminescent woods displayed an emission band at 518 nm when excited at 365 nm. The superhydrophobic performance and ultraviolet shielding of woods were improved upon increasing the phosphor content.

17.
Int J Biol Macromol ; 270(Pt 2): 132339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754663

RESUMEN

Xylan-type hemicellulose hydrolysis by an organic acid solution for the production of xylo-oligosaccharides (XOS) is efficient and eco-friendly, but the effects of different organic acids on XOS production from Toona sinensis branch (TB) biomass is limited. In this work, under the conditions of 170 °C for 60 min, 33.1 % and 38.7 % XOS yields were obtained from polysaccharides present in TB by 2 % lactic acid (LA) and 6 % propionic acid (PA), respectively. Then 77 % of the lignin was removed by hydrogen peroxide-acetic acid pretreatment system, and 39.5 % and 44.7 % XOS yield were obtained from polysaccharides in delignification TB by 2 % LA and 6 % PA, respectively. It was found that PA hydrolysis, especially from delignified TB, resulted in higher XOS yield and purity compared to LA hydrolysis. Moreover, the content of byproducts (xylose, hydroxymethyl-furfural and furfural) in PA hydrolysate was lower. Following the hydrolysis process, the simultaneous saccharification and fermentation of the TB solid residue achieved an ethanol yield of 71.5 %. This work proposed an integrated process to preferentially convert the TB hemicellulose into valuable XOS and then convert the cellulose into ethanol. This process had the advantages of eliminating the need for isolation and purification of xylan, and the potential to obtain multiple products from the same raw material.


Asunto(s)
Etanol , Ácido Láctico , Polisacáridos , Propionatos , Hidrólisis , Propionatos/química , Etanol/química , Polisacáridos/química , Ácido Láctico/metabolismo , Ácido Láctico/química , Fermentación , Oligosacáridos/química , Biomasa , Lignina/química , Glucuronatos
18.
Polymers (Basel) ; 16(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732729

RESUMEN

Cellulose-based aerogel has attracted considerable attention for its excellent adsorption capacity, biodegradability, and renewability. However, it is considered eco-unfriendly due to defibrillation of agriculture waste and requires harmful/expensive chemical agents. In this study, cornstalk rind-based aerogel was obtained via the following steps: green H2O2/HAc delignification of cornstalk rind to obtain cellulose fibers, binding with carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) and freeze-drying treatment, and hydrophobic modification with stearic acid. The obtained aerogel showed high compressive strength (200 KPa), which is apparently higher (about 32 kPa) than NaClO-delignified cornstalk-based cellulose/PVA aerogel. Characterization of the obtained aerogel through SEM, water contact angle, etc., showed high porosity (95%), low density (0.0198 g/cm-3), and hydrophobicity (water contact angle, 159°), resulting in excellent n-hexane adsorption capacity (35 g/g), higher (about 29.5 g/g) than NaClO-delignified cornstalk-based cellulose/PVA aerogel. The adsorbed oil was recovered by the extrusion method, and the aerogel showed excellent recyclability in oil adsorption.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38753234

RESUMEN

The potential of alkali-assist photocatalytic (AAP) pretreatment to overcome the recalcitrant nature of lignocellulose biomass, i.e. rice straw (RS), was investigated in the present study. Box-Behenken Design (BBD) using standard response surface methodology (RSM) approach was considered to obtain optimal conditions for maximum delignification. The model was designed with three variables: alkali concentration (NaOH, 0-3% w/v), photocatalyst (TiO2 NPs (titania nanoparticles), 0-1 g/L) and pretreatment time (30-240 min). The availability of cellulose was increased by 96.73%, while the concentration of lignin and hemicellulose decreased by 73.89%, and 71.79%, respectively, at a combination of 1.5% NaOH, 0.5 g/L TiO2 NPs and 135 min pretreatment time. The structural and morphological alterations in the RS were assessed via Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) both before and after AAP pretreatment. The FTIR measurement indicated that the original RS included a significant quantity of lignin, which was eliminated after the pretreatment procedure. The XRD pattern demonstrates that cellulose crystallinity is significantly affected by the pretreatment. The SEM analysis revealed structural distortion and surface porosity from the pretreatment procedure.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124497, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795527

RESUMEN

Smart packaging materials have been used to protect human health from environmental hazards by sending real-time colorimetric signals for changes in the food packaging environment. However, the colorimetric material sensors use synthetic sensor dyes, which are toxic, expensive, non-biodegradable, and difficult to prepare. Herein, a simple strategy is presented for the development of an environmentally-friendly halochromic wood able to change color upon exposure to spoilage of food. A combination of anthocyanin (Ac)/aluminum (Al) mordant (Ac/Al) nanoparticles and cellulose nanowhiskers (CNW)-reinforced polyvinyl alcohol (PVA) was infiltrated into a delignified wood to produce a translucent wood with halochromic properties. CNW were employed as reinforcement agent to improve the mechanical performance of PVA. Additionally, CNW function as a dispersing agent to prevent agglomeration of Ac/Al nanoparticles. The diameters of CNW are in the range of 12-19 nm, whereas Ac/Al particles showed diameters of 9-22 nm. The smart wood changed color from purplish to colorless when exposed to food spoilage. A hypsochromic change from 539 nm to 370 nm was shown by the anthocyanin receptor when the spoilage level of food increased. This could be attributed to the pH-driven molecular switching of anthocyanin, leading to charge delocalization.


Asunto(s)
Antocianinas , Celulosa , Embalaje de Alimentos , Alcohol Polivinílico , Madera , Antocianinas/química , Antocianinas/análisis , Celulosa/química , Alcohol Polivinílico/química , Madera/química , Embalaje de Alimentos/métodos , Colorimetría/métodos , Nanopartículas/química , Color , Tecnología Química Verde/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...