Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 645-654, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39116562

RESUMEN

Aqueous zinc-ion batteries (AZIBs) have recently been paid great attention due to their robust safety features, high theoretical capacity, and eco-friendliness, yet their practical application is hindered by the serious dendrite formation and side reactions of Zn metal anode during cycling. Herein, a low-cost small molecule, nicotinamide (NIC), is proposed as an electrolyte additive to effectively regulate the Zn interface, achieving a highly reversible and stable zinc anode without dendrites. NIC molecules not only modify the Zn2+ solvation structure but also preferentially adsorb on the Zn surface than solvated H2O to protect the Zn anode and provide numerous nucleation sites for Zn2+ to homogenize Zn deposition. Consequently, the addition of 1 wt% NIC enables Zn||Zn symmetric cells an ultra-long lifespan of over 9700 h at 1 mA cm-2, which expands nearly 808 times compared to that without NIC. The advantages of NIC additives are further demonstrated in NaVO||Zn full cells, which exhibit exceptional capacity retention of 90.3 % after 1000 cycles with a high Coulombic efficiency of 99.9 % at 1 A/g, while the cell operates for only 42 cycles without NIC additive. This strategy presents a promising approach to solving the anode problem, fostering advancements in practical AZIBs.

2.
Methods Mol Biol ; 2831: 113-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134847

RESUMEN

Neuronal development is characterized by the unidirectional flow of signal from the axon to the dendrites via synapses. Neuronal polarization is a critical step during development that allows the specification of the different neuronal processes as a single axon and multiple dendrites both structurally and functionally, allowing the unidirectional flow of information. Along with extrinsic and intrinsic signaling, a whole network of molecular complexes involved in positive and negative feedback loops play a major role in this critical distinction of neuronal processes. As a result, neuronal morphology is drastically altered during establishment of polarity. In this chapter, we discuss how we can analyze the morphological alterations of neurons in vitro in culture to assess the development and polarity status of the neuron. We also discuss how these studies can be conducted in vivo, where polarity studies pose a greater challenge with promising results for addressing multiple pathological conditions. Our experimental model is limited to rodent hippocampal/cortical neurons in culture and cortical neurons in brain tissues, which are well-characterized model systems for understanding neuronal polarization.


Asunto(s)
Polaridad Celular , Hipocampo , Neuronas , Animales , Neuronas/citología , Neuronas/fisiología , Neuronas/metabolismo , Ratones , Hipocampo/citología , Células Cultivadas , Ratas , Axones/fisiología , Axones/metabolismo , Dendritas/fisiología , Dendritas/metabolismo , Corteza Cerebral/citología
3.
Small ; : e2405396, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136423

RESUMEN

Covalent organic frameworks (COFs) are promising porous materials due to their high specific surface area, adjustable structure, highly ordered nanochannels, and abundant functional groups, which brings about wide applications in the field of gas adsorption, hydrogen storage, optics, and so forth. In recent years, COFs have attracted considerable attention in electrochemical energy storage and conversion. Specifically, COF-based functional separators are ideal candidates for addressing the ionic transport-related issues in high-energy batteries, such as dendritic formation and shuttle effect. Therefore, it is necessary to make a comprehensive understanding of the mechanism of COFs in functional separators. In this review, the advantages, applications as well as synthesis of COFs are firstly presented. Then, the mechanism of COFs in functional separators for high-energy batteries is summarized in detail, including pore channels regulating ionic transport, functional groups regulating ionic transport, adsorption effect, and catalytic effect. Finally, the application prospect of COFs-based separators in high-energy batteries is proposed. This review may provide new insights into the design of functional separators for advanced electrochemical energy storage and conversion systems.

4.
Sci Rep ; 14(1): 18226, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107382

RESUMEN

Theory predicts that nonlinear summation of synaptic potentials within dendrites allows neurons to perform linearly non-separable computations (LNSCs). Using Boolean analysis approaches, we predicted that both supralinear and sublinear synaptic summation could allow single neurons to implement a type of LNSC, the feature binding problem (FBP), which does not require inhibition contrary to the exclusive-or function (XOR). Notably, sublinear dendritic operations enable LNSCs when scattered synaptic activation generates increased somatic spike output. However, experimental demonstrations of scatter-sensitive neuronal computations have not yet been described. Using glutamate uncaging onto cerebellar molecular layer interneurons, we show that scattered synaptic-like activation of dendrites evoked larger compound EPSPs than clustered synaptic activation, generating a higher output spiking probability. Moreover, we also demonstrate that single interneurons can indeed implement the FBP. Using a biophysical model to explore the conditions in which a neuron might be expected to implement the FBP, we establish that sublinear summation is necessary but not sufficient. Other parameters such as the relative sublinearity, the EPSP size, depolarization amplitude relative to action potential threshold, and voltage fluctuations all influence whether the FBP can be performed. Since sublinear synaptic summation is a property of passive dendrites, we expect that many different neuron types can implement LNSCs.


Asunto(s)
Dendritas , Interneuronas , Modelos Neurológicos , Dendritas/fisiología , Animales , Interneuronas/fisiología , Potenciales de Acción/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Sinapsis/fisiología , Cerebelo/fisiología , Cerebelo/citología , Neuronas/fisiología , Ratones
5.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125029

RESUMEN

Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode-electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology's industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement.

6.
ChemSusChem ; : e202401217, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087441

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are garnering substantial research interest in electric vehicles, energy storage systems, and portable electronics, primarily for the reason that the inexpensive cost, high theoretical specific capacity, and environmental sustainability of zinc metal anodes, which are an essential component to their design. Nonetheless, the progress of AZIBs is hindered by significant obstacles, such as the occurrence of anodic side reactions (SR) and the formation of zinc dendrites. Metal-organic framework (MOF)-based materials are being explored as promising alternatives owing to homogeneous porous structure and large specific surface areas. There has been a rare overview and discussion on strategies for protecting anodes using MOF-based materials. This review specifically aims to investigate cutting-edge strategies for the design of highly stable MOF-based anodes in AZIBs. Firstly, the mechanisms of dendrites and SR are summarized. Secondly, the recent advances in MOF-based anodic protection including those of pristine MOFs, MOF composites, and MOF derivatives are reviewed. Furthermore, the strategies involving MOF-based materials for zinc anode stabilization are presented, including the engineering of surface coatings, three-dimensional zinc structures, artificial solid electrolyte interfaces, separators, and electrolytes. Finally, the ongoing challenges and prospective directions for further enhancement of MOF-based anodic protection technologies in AZIBs are highlighted.

7.
Angew Chem Int Ed Engl ; : e202409096, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982569

RESUMEN

Three dimensional (3D) framework structure is one of the most effective ways to achieve uniform zinc deposition and thus inhibit the Zn dendrites growth in working Zn metallic anode. A major challenge facing for the most commonly used 3D zincophilic hosts is that the zincophilic layer tends to peel off during repeatedly cycling, making it less stable. Herein, for the first time, a hetero-superlattice Zn/ZnLi (HS-Zn/ZnLi) anode containing periodic arrangements of metallic Zn phase and zincophilic ZnLi phase at the nanoscale, is well designed and fabricated via electrochemical lithiation method. Based on binding energy and stripping energy calculation, and the operando optical observation of plating/stripping behaviors, the zincophilic ZnLi sites with a strong Zn adsorption ability in the interior of the 3D ZnLi framework structure can effectively guide uniform Zn nucleation and dendrite-free zinc deposition, which significantly improves the cycling stability of the HS-Zn/ZnLi alloy (over 2800 h without a short-circuit at 2 mA cm-2). More importantly, this strategy can be extended to HS-Zn/ZnNa and HS-Zn/ZnK anodes that are similar to the HS-Zn/ZnLi microstructure, also displaying significantly enhanced cycling performances in AZIBs. This study can provide a novel strategy to develop the dendrite-free metal anodes with stable cycling performance.

8.
bioRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39005474

RESUMEN

Background: Repetitive transcranial magnetic stimulation (rTMS) induces long-term changes of synapses, but the mechanisms behind these modifications are not fully understood. Although there has been progress in the development of multi-scale modeling tools, no comprehensive module for simulating rTMS-induced synaptic plasticity in biophysically realistic neurons exists.. Objective: We developed a modelling framework that allows the replication and detailed prediction of long-term changes of excitatory synapses in neurons stimulated by rTMS. Methods: We implemented a voltage-dependent plasticity model that has been previously established for simulating frequency-, time-, and compartment-dependent spatio-temporal changes of excitatory synapses in neuronal dendrites. The plasticity model can be incorporated into biophysical neuronal models and coupled to electrical field simulations. Results: We show that the plasticity modelling framework replicates long-term potentiation (LTP)-like plasticity in hippocampal CA1 pyramidal cells evoked by 10-Hz repetitive magnetic stimulation (rMS). This plasticity was strongly distance dependent and concentrated at the proximal synapses of the neuron. We predicted a decrease in the plasticity amplitude for 5 Hz and 1 Hz protocols with decreasing frequency. Finally, we successfully modelled plasticity in distal synapses upon local electrical theta-burst stimulation (TBS) and predicted proximal and distal plasticity for rMS TBS. Notably, the rMS TBS-evoked synaptic plasticity exhibited robust facilitation by dendritic spikes and low sensitivity to inhibitory suppression. Conclusion: The plasticity modelling framework enables precise simulations of LTP-like cellular effects with high spatio-temporal resolution, enhancing the efficiency of parameter screening and the development of plasticity-inducing rTMS protocols.

9.
Adv Sci (Weinh) ; : e2403513, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018207

RESUMEN

Uncontrollable growth of Zn dendrites, irreversible dissolution of cathode material and solidification of aqueous electrolyte at low temperatures severely restrict the development of aqueous Zn-ion batteries. In this work, 2,2,2-trifluoroethanol (TFEA) with a volume fraction of 50% as a highly compatible polar-solvent is introduced to 1.3 M Zn(CF3SO3)2 aqueous electrolyte, achieving stable high-performance Zn-ion batteries. Massive theoretical calculations and characterization analysis demonstrate that TFEA weakens the tip effect of Zn anode and restrains the growth of Zn dendrites due to electrostatic adsorption and coordinate with H2O to disrupt the hydrogen bonding network in water. Furthermore, TFEA increases the wettability of the cathode and alleviates the dissolution of V2O5, thus improving the capacity of the full battery. Based on those positive effects of TFEA on Zn anode, V2O5 cathode, and aqueous electrolyte, the Zn//Zn symmetric cell delivers a long cycle-life of 782 h at 5 mA cm-2 and 2 mA h cm-2. The full battery still declares an initial capacity of 116.78 mA h g-1, and persists 87.73% capacity in 2000 cycles at -25 °C. This work presents an effective strategy for fully compatible co-solvent to promote the stability of Zn anode, V2O5 cathode and aqueous electrolyte for high-performance Zn-ion batteries.

10.
Insects ; 15(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39057261

RESUMEN

The antennae of the shield bug Graphosoma italicum (Müller, 1766) were examined through scanning and transmission electron microscopy to reveal their general morphology, as well as the antennal sensilla's distribution, size, and ultrastructure of their dendrites and function. The antennae comprise five antennomeres (one scape, two pedicels, and two flagellomeres). Different lengths of chaetic mechanosensilla (Ch1-Ch4) exist on all antennomeres, and several highly sensitive campaniform sensilla are embedded in the exoskeleton and measure cuticular strain. One pair of peg sensilla, the typical proprioceptive, is only on the proximal edge of the first pedicel and directed to the distal edge of the scapus. The antennal flagellum possesses two subtypes of trichoid and basiconic sensilla, each with one type of coeloconic olfactory sensilla. The distinctive characteristics of G. italicum are also apparent in two subtypes of coeloconic sensilla embedded in different cavities on both antennomeres of the flagellum, probably with a thermo-hypersensitive function. All studied morphological types of the sensilla and their function were supported by ultrastructural elements. The long and thin trichoid sensilla type 2 (TrS2) with an olfactive function was the most abundant sensilla localized on both flagellomeres. The peripheral antennal sensilla system consists of six main types of sensilla divided into twelve subtypes.

11.
Nanomicro Lett ; 16(1): 257, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073457

RESUMEN

The lithium (Li) metal anode is widely regarded as an ideal anode material for high-energy-density batteries. However, uncontrolled Li dendrite growth often leads to unfavorable interfaces and low Coulombic efficiency (CE), limiting its broader application. Herein, an ether-based electrolyte (termed FGN-182) is formulated, exhibiting ultra-stable Li metal anodes through the incorporation of LiFSI and LiNO3 as dual salts. The synergistic effect of the dual salts facilitates the formation of a highly robust SEI film with fast Li+ transport kinetics. Notably, Li||Cu half cells exhibit an average CE reaching up to 99.56%. In particular, pouch cells equipped with high-loading lithium cobalt oxide (LCO, 3 mAh cm-2) cathodes, ultrathin Li chips (25 µm), and lean electrolytes (5 g Ah-1) demonstrate outstanding cycling performance, retaining 80% capacity after 125 cycles. To address the gas issue in the cathode under high voltage, cathode additives 1,3,6-tricyanohexane is incorporated with FGN-182; the resulting high-voltage LCO||Li (4.4 V) pouch cells can cycle steadily over 93 cycles. This study demonstrates that, even with the use of ether-based electrolytes, it is possible to simultaneously achieve significant improvements in both high Li utilization and electrolyte tolerance to high voltage by exploring appropriate functional additives for both the cathode and anode.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39084210

RESUMEN

Lithium metal anode has attracted wide attention due to its ultrahigh theoretical specific capacity, lowest reduction potential, and low density. However, uncontrollable dendritic growth and volume change caused by uneven Li+ deposition still seriously hinder the large-scale commercial application of lithium metal batteries, even causing serious battery explosions and other safety problems. Hence, gold nanoparticles with a gradient distribution anchored on 3D carbon fiber paper (CP) current collectors followed by the encapsulation of polydopamine (PDA) (CP/Au/PDA) are constructed for stable and dendrite-free Li metal anodes for the first time. Significantly, lithiophilic Au nanoparticles showing a gradient distribution in the carbon fiber paper could guide the transfer of Li+ from the outside to the inside of the CP/Au/PDA electrode as well as lower the nucleation overpotential of Li, thereby obtaining the uniform Li deposition. Meanwhile, the PDA layer could in situ be converted to Li-PDA which could serve as an efficient Li+ conductor to further facilitate uniform Li+ transport among the whole CP/Au/PDA electrode. Besides, 3D carbon fiber paper could effectively accommodate the volume change during the plating/stripping process of Li metal. As a result, CP/Au/PDA electrodes deliver a low nucleation overpotential (∼9 mV) and a high Coulombic efficiency (mean value of ∼98.8%) at a current density of 1 mA cm-2 with the capacity of 1 mA h cm-2. Furthermore, Li@CP/Au/PDA electrodes also can demonstrate an ultralow voltage hysteresis (∼20 mV) and a long cycle life (1000 h) in symmetric cells. Finally, with LiFePO4 (LFP) as the cathode, the Li@CP/Au/PDA-LFP full cell delivers a high discharge capacity of 136 mA h g-1 even after 350 cycles at 1C, exhibiting a per cycle loss as low as 0.01%. This gradient lithium ion regulation current collector is of great significance for the development of lithium metal anodes.

13.
ACS Appl Mater Interfaces ; 16(27): 35217-35224, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38940306

RESUMEN

Aqueous zinc-ion batteries (AZIBs) have emerged as one of the most promising energy storage technologies due to their high safety and cost-effectiveness. However, several challenges associated with the Zn metal anode, such as dendrite growth, corrosion, and hydrogen evolution reaction (HER), have hindered further applications of AZIBs. Herein, maltose (MT) is used as a functional electrolyte additive to protect the Zn metal electrode during the interface deposition process. The additive can effectively affect the interface of Zn metal, suppressing HER and corrosion reactions. Moreover, it facilitates the uniform deposition of Zn by inducing Zn2+ to form a stable (100) crystal plane. As a result, the symmetric cell exhibited stable cycling performance for 2000 h at a current density of 2 mA cm-2, and the Zn||NH4V4O10 full cell maintained steady cycling for 1000 cycles at 2 A g-1. This study provides an approach to achieve uniform Zn deposition through additives.

14.
Cell Rep ; 43(7): 114413, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38943640

RESUMEN

Basal dendrites of layer 5 cortical pyramidal neurons exhibit Na+ and N-methyl-D-aspartate receptor (NMDAR) regenerative spikes and are uniquely poised to influence somatic output. Nevertheless, due to technical limitations, how multibranch basal dendritic integration shapes and enables multiplexed barcoding of synaptic streams remains poorly mapped. Here, we combine 3D two-photon holographic transmitter uncaging, whole-cell dynamic clamp, and biophysical modeling to reveal how synchronously activated synapses (distributed and clustered) across multiple basal dendritic branches are multiplexed under quiescent and in vivo-like conditions. While dendritic regenerative Na+ spikes promote millisecond somatic spike precision, distributed synaptic inputs and NMDAR spikes regulate gain. These concomitantly occurring dendritic nonlinearities enable multiplexed information transfer amid an ongoing noisy background, including under back-propagating voltage resets, by barcoding the axo-somatic spike structure. Our results unveil a multibranch dendritic integration framework in which dendritic nonlinearities are critical for multiplexing different spatial-temporal synaptic input patterns, enabling optimal feature binding.


Asunto(s)
Dendritas , Holografía , Dendritas/metabolismo , Dendritas/fisiología , Animales , Holografía/métodos , Células Piramidales/metabolismo , Células Piramidales/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Potenciales de Acción/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Fotones , Ratones , Masculino
15.
Cell Rep ; 43(7): 114361, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38900634

RESUMEN

Neurons receive correlated levels of excitation and inhibition, a feature that is important for proper brain function. However, how this relationship between excitatory and inhibitory inputs is established during the dynamic period of circuit wiring remains unexplored. Using multiple techniques, including in utero electroporation, electron microscopy, and electrophysiology, we reveal a tight correlation in the distribution of excitatory and inhibitory synapses along the dendrites of developing CA1 hippocampal neurons. This correlation was present within short dendritic stretches (<20 µm) and, surprisingly, was most pronounced during early development, sharply declining with maturity. The tight matching between excitation and inhibition was unexpected, as inhibitory synapses lacked an active zone when formed and exhibited compromised evoked release. We propose that inhibitory synapses form as a stabilizing scaffold to counterbalance growing excitation levels. This relationship diminishes over time, suggesting a critical role for a subcellular balance in early neuronal function and circuit formation.


Asunto(s)
Sinapsis , Animales , Sinapsis/metabolismo , Sinapsis/fisiología , Dendritas/metabolismo , Dendritas/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/metabolismo , Hipocampo/citología , Femenino
16.
Neuron ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38917805

RESUMEN

Inhibitory interneurons in the dorsolateral geniculate nucleus (dLGN) are situated at the first central synapse of the image-forming visual pathway, but little is known about their function. Given their anatomy, they are expected to be multiplexors, integrating many different retinal channels along their dendrites. Here, using targeted single-cell-initiated rabies tracing, we found that mouse dLGN interneurons exhibit a degree of retinal input specialization similar to thalamocortical neurons. Some are anatomically highly specialized, for example, toward motion-selective information. Two-photon calcium imaging performed in vivo revealed that interneurons are also functionally specialized. In mice lacking retinal horizontal direction selectivity, horizontal direction selectivity is reduced in interneurons, suggesting a causal link between input and functional specialization. Functional specialization is not only present at interneuron somata but also extends into their dendrites. Altogether, inhibitory interneurons globally display distinct visual features which reflect their retinal input specialization and are ideally suited to perform feature-selective inhibition.

17.
ACS Nano ; 18(26): 16610-16621, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38889966

RESUMEN

Manipulating the crystallographic orientation of zinc deposition is recognized as an effective approach to address zinc dendrites and side reactions for aqueous zinc-ion batteries (ZIBs). We introduce 2-methylimidazole (Mlz) additive in zinc sulfate (ZSO) electrolyte to achieve vertical electrodeposition with preferential orientation of the (100) and (110) crystal planes. Significantly, the zinc anode exhibited long lifespan with 1500 h endurance at 1 mA cm-2 and an excellent 400 h capability at a depth of discharge (DOD) of 34% in Zn||Zn battery configurations, while in Zn||MnO2 battery assemblies, a capacity retention of 68.8% over 800 cycles is attained. Theoretical calculation reveals that the strong interactions between Mlz and (002) plane impeding its growth, while Zn atoms exhibit lower migration energy barrier and superior mobility on (100) and (110) crystal planes guaranteed the heightened mobility of zinc atoms on the (100) and (110) crystal planes, thus ensuring their superior ZIB performance than that with only ZSO electrolyte, which offers a route for designing next-generation high energy density ZIB devices.

18.
ACS Appl Mater Interfaces ; 16(26): 33559-33570, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38914926

RESUMEN

Aqueous zinc (Zn) ion batteries have received broad attention recently. However, their practical application is limited by severe Zn dendrite growth and the hydrogen evolution reaction. In this study, three alkali metal ions (Li+, Na+, and K+) are added in ZnSO4 electrolytes, which are subjected to electrochemical measurements and molecular dynamics simulations. The studies show that since K+ has the highest mobility and self-diffusion coefficient among the four ions (Li+, Na+, K+, and Zn2+), it enables K+ to preferentially approach a zinc dendrite at an earlier time, driven by a negative electric field during a cathodic process. The electric double layer, with K+ around the negatively charged Zn dendrite, inhibits dendrite growth and mitigates the hydrogen evolution reaction on the Zn anode. Under this kinetic effect, the Zn-Zn symmetric cell with K+ exhibits a long cycling stability of 1000 h at 1 mA·cm-2 of 1 mAh·cm-2 and 190 h at 30 mA·cm-2 of 2 mAh·cm-2. Such a kinetic effect is also observed with additives Na+ and Li+, though less profound than that of K+.

19.
Nanomicro Lett ; 16(1): 229, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940902

RESUMEN

Poor cycling stability in lithium-sulfur (Li-S) batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures. Heterogeneous catalysis has emerged as a promising approach, leveraging the adsorption and catalytic performance on lithium polysulfides (LiPSs) to inhibit LiPSs shuttling and improve redox kinetics. In this study, we report an ultrathin and laminar SnO2@MXene heterostructure interlayer (SnO2@MX), where SnO2 quantum dots (QDs) are uniformly distributed across the MXene layer. The combined structure of SnO2 QDs and MXene, along with the creation of numerous active boundary sites with coordination electron environments, plays a critical role in manipulating the catalytic kinetics of sulfur species. The Li-S cell with the SnO2@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling. As a result, an areal capacity of 7.6 mAh cm-2 under a sulfur loading of 7.5 mg cm-2 and a high stability over 500 cycles are achieved. Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li-S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics.

20.
ACS Nano ; 18(25): 16063-16090, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38868937

RESUMEN

Aqueous zinc-ion batteries (AZIBs) have emerged as one of the most promising candidates for next-generation energy storage devices due to their outstanding safety, cost-effectiveness, and environmental friendliness. However, the practical application of zinc metal anodes (ZMAs) faces significant challenges, such as dendrite growth, hydrogen evolution reaction, corrosion, and passivation. Fortunately, the rapid rise of nanomaterials has inspired solutions for addressing these issues associated with ZMAs. Nanomaterials with unique structural features and multifunctionality can be employed to modify ZMAs, effectively enhancing their interfacial stability and cycling reversibility. Herein, an overview of the failure mechanisms of ZMAs is presented, and the latest research progress of nanomaterials in protecting ZMAs is comprehensively summarized, including electrode structures, interfacial layers, electrolytes, and separators. Finally, a brief summary and optimistic perspective are given on the development of nanomaterials for ZMAs. This review provides a valuable reference for the rational design of efficient ZMAs and the promotion of large-scale application of AZIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...