Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 180: 108933, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096612

RESUMEN

Medical image segmentation demands precise accuracy and the capability to assess segmentation uncertainty for informed clinical decision-making. Denoising Diffusion Probability Models (DDPMs), with their advancements in image generation, can treat segmentation as a conditional generation task, providing accurate segmentation and uncertainty estimation. However, current DDPMs used in medical image segmentation suffer from low inference efficiency and prediction errors caused by excessive noise at the end of the forward process. To address this issue, we propose an accelerated denoising diffusion probabilistic model via truncated inverse processes (ADDPM) that is specifically designed for medical image segmentation. The inverse process of ADDPM starts from a non-Gaussian distribution and terminates early once a prediction with relatively low noise is obtained after multiple iterations of denoising. We employ a separate powerful segmentation network to obtain pre-segmentation and construct the non-Gaussian distribution of the segmentation based on the forward diffusion rule. By further adopting a separate denoising network, the final segmentation can be obtained with just one denoising step from the predictions with low noise. ADDPM greatly reduces the number of denoising steps to approximately one-tenth of that in vanilla DDPMs. Our experiments on four segmentation tasks demonstrate that ADDPM outperforms both vanilla DDPMs and existing representative accelerating DDPMs methods. Moreover, ADDPM can be easily integrated with existing advanced segmentation models to improve segmentation performance and provide uncertainty estimation. Implementation code: https://github.com/Guoxt/ADDPM.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Modelos Estadísticos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Relación Señal-Ruido
2.
Comput Biol Med ; 180: 108981, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39146839

RESUMEN

Early detection of polyps is essential to decrease colorectal cancer(CRC) incidence. Therefore, developing an efficient and accurate polyp segmentation technique is crucial for clinical CRC prevention. In this paper, we propose an end-to-end training approach for polyp segmentation that employs diffusion model. The images are considered as priors, and the segmentation is formulated as a mask generation process. In the sampling process, multiple predictions are generated for each input image using the trained model, and significant performance enhancements are achieved through the use of majority vote strategy. Four public datasets and one in-house dataset are used to train and test the model performance. The proposed method achieves mDice scores of 0.934 and 0.967 for datasets Kvasir-SEG and CVC-ClinicDB respectively. Furthermore, one cross-validation is applied to test the generalization of the proposed model, and the proposed methods outperformed previous state-of-the-art(SOTA) models to the best of our knowledge. The proposed method also significantly improves the segmentation accuracy and has strong generalization capability.


Asunto(s)
Pólipos del Colon , Neoplasias Colorrectales , Humanos , Pólipos del Colon/diagnóstico por imagen , Neoplasias Colorrectales/diagnóstico por imagen , Modelos Estadísticos , Interpretación de Imagen Asistida por Computador/métodos , Algoritmos
3.
Int J Neural Syst ; 34(9): 2450047, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38864575

RESUMEN

While many seizure detection methods have demonstrated great accuracy, their training necessitates a substantial volume of labeled data. To address this issue, we propose a novel method for unsupervised seizure anomaly detection called SAnoDDPM, which uses denoising diffusion probabilistic models (DDPM). We designed a novel pipeline that uses a variable lower bound on Markov chains to identify potential values that are unlikely to occur in anomalous data. The model is first trained on normal data, then anomalous data is input to the trained model. The model resamples the anomalous data and converts it to normal data. Finally, the presence of seizures can be determined by comparing the before and after data. Moreover, the input 2D spectrograms are encoded into vector-quantized representations, which enables powerful and efficient DDPM while maintaining its quality. Experimental comparisons on the publicly available datasets, CHB-MIT and TUH, show that our method delivers better results, significantly reduces inference time, and is suitable for deployment in a clinical environments. As far as we are aware, this is the first DDPM-based method for seizure anomaly detection. This novel approach significantly contributes to the progression of seizure detection algorithms, thereby augmenting their practicality in clinical settings.


Asunto(s)
Electroencefalografía , Cadenas de Markov , Modelos Estadísticos , Convulsiones , Humanos , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Electroencefalografía/métodos , Aprendizaje Automático no Supervisado , Algoritmos , Procesamiento de Señales Asistido por Computador
4.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38544214

RESUMEN

Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filtering algorithms. However, the filtering algorithms we proposed have a limitation in that they can only be applied when the distance between the direct current (DC) spectrum and sidebands are sufficiently far. To address these limitations, among the proposed filtering algorithms, the HiVA algorithm and deep learning algorithm, which effectively filter by distinguishing between noise and detailed information of the object, are used to enable filtering regardless of the distance between the DC spectrum and sidebands. In this paper, a combination of deep learning technology and traditional image processing methods is proposed, aiming to reduce noise in 3D profile imaging using the Improved Denoising Diffusion Probabilistic Models (IDDPM) algorithm.

5.
Sci Rep ; 14(1): 6498, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499588

RESUMEN

Three-dimensional (3D) images provide a comprehensive view of material microstructures, enabling numerical simulations unachievable with two-dimensional (2D) imaging alone. However, obtaining these 3D images can be costly and constrained by resolution limitations. We introduce a novel method capable of generating large-scale 3D images of material microstructures, such as metal or rock, from a single 2D image. Our approach circumvents the need for 3D image data while offering a cost-effective, high-resolution alternative to existing imaging techniques. Our method combines a denoising diffusion probabilistic model with a generative adversarial network framework. To compensate for the lack of 3D training data, we implement chain sampling, a technique that utilizes the 3D intermediate outputs obtained by reversing the diffusion process. During the training phase, these intermediate outputs are guided by a 2D discriminator. This technique facilitates our method's ability to gradually generate 3D images that accurately capture the geometric properties and statistical characteristics of the original 2D input. This study features a comparative analysis of the 3D images generated by our method, SliceGAN (the current state-of-the-art method), and actual 3D micro-CT images, spanning a diverse set of rock and metal types. The results shown an improvement of up to three times in the Frechet inception distance score, a typical metric for evaluating the performance of image generative models, and enhanced accuracy in derived properties compared to SliceGAN. The potential of our method to produce high-resolution and statistically representative 3D images paves the way for new applications in material characterization and analysis domains.

6.
Phys Med ; 119: 103307, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325221

RESUMEN

PURPOSE: Radiotherapy outcome modelling often suffers from class imbalance in the modelled endpoints. One of the main options to address this issue is by introducing new synthetically generated datapoints, using generative models, such as Denoising Diffusion Probabilistic Models (DDPM). In this study, we implemented DDPM to improve performance of a tumor local control model, trained on imbalanced dataset, and compare this approach with other common techniques. METHODS: A dataset of 535 NSCLC patients treated with SBRT (50 Gy/5 fractions) was used to train a deep learning outcome model for tumor local control prediction. The dataset included complete treatment planning data (planning CT images, 3D planning dose distribution and patient demographics) with sparsely distributed endpoints (6-7 % experiencing local failure). Consequently, we trained a novel conditional 3D DDPM model to generate synthetic treatment planning data. Synthetically generated treatment planning datapoints were used to supplement the real training dataset and the improvement in the model's performance was studied. Obtained results were also compared to other common techniques for class imbalanced training, such as Oversampling, Undersampling, Augmentation, Class Weights, SMOTE and ADASYN. RESULTS: Synthetic DDPM-generated data were visually trustworthy, with Fréchet inception distance (FID) below 50. Extending the training dataset with the synthetic data improved the model's performance by more than 10%, while other techniques exhibited only about 4% improvement. CONCLUSIONS: DDPM introduces a novel approach to class-imbalanced outcome modelling problems. The model generates realistic synthetic radiotherapy planning data, with a strong potential to increase performance and robustness of outcome models.


Asunto(s)
Bisacodilo/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Difusión , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia
7.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38400307

RESUMEN

This work explores the generation of James Webb Space Telescope (JWSP) imagery via image-to-image translation from the available Hubble Space Telescope (HST) data. Comparative analysis encompasses the Pix2Pix, CycleGAN, TURBO, and DDPM-based Palette methodologies, assessing the criticality of image registration in astronomy. While the focus of this study is not on the scientific evaluation of model fairness, we note that the techniques employed may bear some limitations and the translated images could include elements that are not present in actual astronomical phenomena. To mitigate this, uncertainty estimation is integrated into our methodology, enhancing the translation's integrity and assisting astronomers in distinguishing between reliable predictions and those of questionable certainty. The evaluation was performed using metrics including MSE, SSIM, PSNR, LPIPS, and FID. The paper introduces a novel approach to quantifying uncertainty within image translation, leveraging the stochastic nature of DDPMs. This innovation not only bolsters our confidence in the translated images but also provides a valuable tool for future astronomical experiment planning. By offering predictive insights when JWST data are unavailable, our approach allows for informed preparatory strategies for making observations with the upcoming JWST, potentially optimizing its precious observational resources. To the best of our knowledge, this work is the first attempt to apply image-to-image translation for astronomical sensor-to-sensor translation.

8.
Neural Netw ; 172: 106096, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38194885

RESUMEN

Medical image segmentation faces challenges because of the small sample size of the dataset and the fact that images often have noise and artifacts. In recent years, diffusion models have proven very effective in image generation and have been used widely in computer vision. This paper presents a new feature map denoising module (FMD) based on the diffusion model for feature refinement, which is plug-and-play, allowing flexible integration into popular used segmentation networks for seamless end-to-end training. We evaluate the performance of the FMD module on four models, UNet, UNeXt, TransUNet, and IB-TransUNet, by conducting experiments on four datasets. The experimental data analysis shows that adding the FMD module significantly positively impacts the model performance. Furthermore, especially for small lesion areas and minor organs, adding the FMD module allows users to obtain more accurate segmentation results than the original model.


Asunto(s)
Artefactos , Análisis de Datos , Difusión , Tamaño de la Muestra , Procesamiento de Imagen Asistido por Computador
9.
Med Image Anal ; 93: 103088, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38228075

RESUMEN

The ability to detect anomalies, i.e. anything not seen during training or out-of-distribution (OOD), in medical imaging applications is essential for successfully deploying machine learning systems. Filtering out OOD data using unsupervised learning is especially promising because it does not require costly annotations. A new class of models called AnoDDPMs, based on denoising diffusion probabilistic models (DDPMs), has recently achieved significant progress in unsupervised OOD detection. This work provides a benchmark for unsupervised OOD detection methods in digital pathology. By leveraging fast sampling techniques, we apply AnoDDPM on a large enough scale for whole-slide image analysis on the complete test set of the Camelyon16 challenge. Based on ROC analysis, we show that AnoDDPMs can detect OOD data with an AUC of up to 94.13 and 86.93 on two patch-level OOD detection tasks, outperforming the other unsupervised methods. We observe that AnoDDPMs alter the semantic properties of inputs, replacing anomalous data with more benign-looking tissue. Furthermore, we highlight the flexibility of AnoDDPM towards different information bottlenecks by evaluating reconstruction errors for inputs with different signal-to-noise ratios. While there is still a significant performance gap with fully supervised learning, AnoDDPMs show considerable promise in the field of OOD detection in digital pathology.


Asunto(s)
Benchmarking , Procesamiento de Imagen Asistido por Computador , Humanos , Difusión , Aprendizaje Automático , Modelos Estadísticos
10.
J Arthroplasty ; 39(3): 727-733.e4, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37619804

RESUMEN

BACKGROUND: This study introduces THA-Net, a deep learning inpainting algorithm for simulating postoperative total hip arthroplasty (THA) radiographs from a single preoperative pelvis radiograph input, while being able to generate predictions either unconditionally (algorithm chooses implants) or conditionally (surgeon chooses implants). METHODS: The THA-Net is a deep learning algorithm which receives an input preoperative radiograph and subsequently replaces the target hip joint with THA implants to generate a synthetic yet realistic postoperative radiograph. We trained THA-Net on 356,305 pairs of radiographs from 14,357 patients from a single institution's total joint registry and evaluated the validity (quality of surgical execution) and realism (ability to differentiate real and synthetic radiographs) of its outputs against both human-based and software-based criteria. RESULTS: The surgical validity of synthetic postoperative radiographs was significantly higher than their real counterparts (mean difference: 0.8 to 1.1 points on 10-point Likert scale, P < .001), but they were not able to be differentiated in terms of realism in blinded expert review. Synthetic images showed excellent validity and realism when analyzed with already validated deep learning models. CONCLUSION: We developed a THA next-generation templating tool that can generate synthetic radiographs graded higher on ultimate surgical execution than real radiographs from training data. Further refinement of this tool may potentiate patient-specific surgical planning and enable technologies such as robotics, navigation, and augmented reality (an online demo of THA-Net is available at: https://demo.osail.ai/tha_net).


Asunto(s)
Artroplastia de Reemplazo de Cadera , Aprendizaje Profundo , Prótesis de Cadera , Humanos , Artroplastia de Reemplazo de Cadera/métodos , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/cirugía , Radiografía , Estudios Retrospectivos
11.
Front Plant Sci ; 14: 1267810, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146275

RESUMEN

Problems: Plant Disease diagnosis based on deep learning mechanisms has been extensively studied and applied. However, the complex and dynamic agricultural growth environment results in significant variations in the distribution of state samples, and the lack of sufficient real disease databases weakens the information carried by the samples, posing challenges for accurately training models. Aim: This paper aims to test the feasibility and effectiveness of Denoising Diffusion Probabilistic Models (DDPM), Swin Transformer model, and Transfer Learning in diagnosing citrus diseases with a small sample. Methods: Two training methods are proposed: The Method 1 employs the DDPM to generate synthetic images for data augmentation. The Swin Transformer model is then used for pre-training on the synthetic dataset produced by DDPM, followed by fine-tuning on the original citrus leaf images for disease classification through transfer learning. The Method 2 utilizes the pre-trained Swin Transformer model on the ImageNet dataset and fine-tunes it on the augmented dataset composed of the original and DDPM synthetic images. Results and conclusion: The test results indicate that Method 1 achieved a validation accuracy of 96.3%, while Method 2 achieved a validation accuracy of 99.8%. Both methods effectively addressed the issue of model overfitting when dealing with a small dataset. Additionally, when compared with VGG16, EfficientNet, ShuffleNet, MobileNetV2, and DenseNet121 in citrus disease classification, the experimental results demonstrate the superiority of the proposed methods over existing approaches to a certain extent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...