Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38787366

RESUMEN

Flaviviruses target their replication on membranous structures derived from the ER, where both viral and host proteins play crucial structural and functional roles. Here, we have characterized the involvement of the ER-associated degradation (ERAD) pathway core E3 ligase complex (SEL1L-HRD1) regulator proteins in the replication of Japanese encephalitis virus (JEV). Through high-resolution immunofluorescence imaging of JEV-infected HeLa cells, we observe that the virus replication complexes marked by NS1 strongly colocalize with the ERAD adapter SEL1L, lectin OS9, ER-membrane shuttle factor HERPUD1, E3 ubiquitin ligase HRD1 and rhomboid superfamily member DERLIN1. NS5 positive structures also show strong overlap with SEL1L. While these effectors show significant transcriptional upregulation, their protein levels remain largely stable in infected cells. siRNA mediated depletion of OS9, SEL1L, HERPUD1 and HRD1 significantly inhibit viral RNA replication and titres, with SEL1L depletion showing the maximum attenuation of replication. By performing protein translation arrest experiments, we show that SEL1L, and OS9 are stabilised upon JEV infection. Overall results from this study suggest that these ERAD effector proteins are crucial host-factors for JEV replication.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana , Ubiquitina-Proteína Ligasas , Replicación Viral , Humanos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Virus de la Encefalitis Japonesa (Especie)/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células HeLa , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Interacciones Huésped-Patógeno , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Proteínas/metabolismo , Proteínas/genética , Antígenos de Diferenciación
2.
J Cell Sci ; 136(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37676109

RESUMEN

Derlin family members participate in the retrotranslocation of endoplasmic reticulum (ER) lumen proteins to the cytosol for ER-associated degradation (ERAD); however, the proteins facilitating this retrotranslocation remain to be explored. Using CRISPR library screening, we have found that derlin-2 and surfeit locus protein 4 (Surf4) are candidates to facilitate degradation of cyclooxygenase-2 (COX-2, also known as PTGS2). Our results show that derlin-2 acts upstream of derlin-1 and that Surf4 acts downstream of derlin-2 and derlin-1 to facilitate COX-2 degradation. Knockdown of derlin-2 or Surf4 impedes the ubiquitylation of COX-2 and the interaction of COX-2 with caveolin-1 (Cav-1) and p97 (also known as VCP) in the cytosol. Additionally, COX-2 degradation is N-glycosylation dependent. Although derlin-2 facilitates degradation of N-glycosylated COX-2, the interaction between derlin-2 and COX-2 is independent of COX-2 N-glycosylation. Derlin-1, Surf4 and p97 preferentially interact with non-glycosylated COX-2, whereas Cav-1 preferentially interacts with N-glycosylated COX-2, regardless of the N-glycosylation pattern. Collectively, our results reveal that Surf4 collaborates with derlin-2 and derlin-1 to mediate COX-2 translocation from the ER lumen to the cytosol. The derlin-2-derlin-1-Surf4-Cav-1 machinery might represent a unique pathway to accelerate COX-2 degradation in ERAD.

3.
Arch Med Sci ; 19(4): 1108-1115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560720

RESUMEN

Introduction: This study was undertaken to examine the expression of miR-575 in thyroid cancer tissues and to explore its therapeutic potential. Material and methods: Expression analysis was carried out by qRT-PCR. The MTT assay was used for cell viability. DAPI and annexin V/PI assays were used to detect apoptosis. Wound healing and Transwell assays were used for cell migration and invasion respectively. Western blot analysis was used to determine the expression of proteins. Results: The results showed significant downregulation of miR-575 in thyroid cancer tissues and cell lines. The role of miR-575 was deciphered by overexpression of miR-575 in MDA-T32 and MDA-T68 thyroid cancer cells. The results showed that overexpression of miR-575 caused significant inhibition of the proliferation of the MDA-T32 and MDA-T68 cells via induction of apoptotic cell death. The expression of Bax was also enhanced while that of Bax was decreased upon miR-575 overexpression in MDA-T32 and MDA-T68 cells. Additionally, miR-575 overexpression inhibited the migration and invasion of the MDA-T32 and MDA-T68 thyroid cancer cells. Bioinformatic approaches and the dual luciferase assay indicated Derlin 1 (DERL1) to be the potential target of miR-575 in thyroid cancer. DERL1 was significantly upregulated in thyroid cancer tissues and cell lines and overexpression of miR-575 caused suppression of DERL1 in MDA-T68 cells. Silencing of DERL1 inhibited the proliferation of the MDA-T68 cells while overexpression of DERL1 could abolish the effects of miR-575 overexpression on the proliferation of MDA-T68 thyroid cancer cells. Conclusions: miR-575 may be used as a therapeutic target for thyroid cancer treatment.

4.
Free Radic Biol Med ; 207: 260-271, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499886

RESUMEN

BACKGROUND AND AIMS: The functions of liver fatty acid binding protein 1 (FABP1) in the regulation of nonalcoholic fatty liver disease (NAFLD) have been previously established. However, how FABP1 expression is dynamically regulated in metabolic disorders is unclear. Previous studies have reported that ubiquitin proteasome-mediated degradation of FABP1 is involved, but the mechanism remains unknown. METHODS: Dysregulated expression of hepatic FABP1 and Derlin-1 was observed in NAFLD patients. We performed mice hepatic tissue coimmunoprecipitation based mass spectrum assays. Interaction between Derlin-1 and FABP1, and its impact on FABP1 ubiquitination status was evaluated by coimmunoprecipitation. The role of Derlin-1 in lipid deposition was tested using adenovirus-mediated overexpression in C57BL/6 mice, as well as by Derlin-1 overexpression or knockdown in HepG2 cells. RESULTS: As a subunit of the endoplasmic reticulum-associated degradation complex, Derlin-1 was negatively associated with NAFLD patients, interacted with and ubiquitinated FABP1. Derlin-1 suppressed FABP1 levels and inhibited lipid deposition through a FABP1-dependent pathway. Additionally, Trim25, an E3 ubiquitin ligase present in the endoplasmic reticulum, was recruited to promote Derlin-1-related polyubiquitylation of FABP1, thereby creating a ubiquitin-associated network for FABP1 regulation. Derlin-1 overexpression ameliorated hepatic steatosis in both C57BL/6 mice and HepG2 cells, and contributed to attenuated weight gain, lower liver weight, and visceral fat mass. CONCLUSIONS: FABP1 was degraded by Derlin-1 through ubiquitin modification. Negative regulation of FABP1 by Derlin-1 overexpression, suppressed lipid metabolism and alleviated lipid deposition in vivo and in vitro. Hence, Derlin-1 activation in hepatocytes may represent a potential therapeutic strategy for NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Dieta Alta en Grasa , Degradación Asociada con el Retículo Endoplásmico , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Humanos
5.
Redox Biol ; 56: 102479, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36122532

RESUMEN

The transmembrane protein p22phox heterodimerizes with NADPH oxidase (Nox) 1-4 and is essential for the reactive oxygen species-producing capacity of oxidases. Missense mutations in the p22phox gene prevent the formation of phagocytic Nox2-based oxidase, which contributes to host defense. This results in chronic granulomatous disease (CGD), a severe primary immunodeficiency syndrome. In this study, we characterized missense mutations in p22phox (L51Q, L52P, E53V, and P55R) in the A22° type (wherein the p22phox protein is undetectable) of CGD. We demonstrated that these substitutions enhanced the degradation of the p22phox protein in the endoplasmic reticulum (ER) and the binding of p22phox to Derlin-1, a key component of ER-associated degradation (ERAD). Therefore, the L51-L52-E53-P55 sequence is responsible for protein stability in the ER. We observed that the oxidation of the thiol group of Cys-50, which is adjacent to the L51-L52-E53-P55 sequence, suppressed p22phox degradation. However, the suppression effect was markedly attenuated by the serine substitution of Cys-50. Blocking the free thiol of Cys-50 by alkylation or C50S substitution promoted the association of p22phox with Derlin-1. Derlin-1 depletion partially suppressed the degradation of p22phox mutant proteins. Furthermore, heterodimerization with p22phox (C50S) induced rapid degradation of not only Nox2 but also nonphagocytic Nox4 protein, which is responsible for redox signaling. Thus, the redox-sensitive Cys-50 appears to determine whether p22phox becomes a target for degradation by the ERAD system through its interaction with Derlin-1.


Asunto(s)
Enfermedad Granulomatosa Crónica , Proteínas de la Membrana , NADPH Oxidasas , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Mutantes , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina , Compuestos de Sulfhidrilo
6.
Cancers (Basel) ; 14(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35205628

RESUMEN

Little is known regarding the molecular characterization of upper tract urothelial carcinoma (UTUC). Novel therapeutic targets and prognostic predictors are imminent. In the present study, we aim to examine the oncogenic function and molecular mechanism of Derlin-1 in UTUC. Derlin-1 overexpression is significantly associated with poor prognosis in patients with UTUC. In vitro, knockdown or over-expression of Derlin-1 markedly regulated UTUC cell invasion and migration. We further discovered miR-375-3p suppresses cell invasion and migration by inversely regulating Derlin-1 and blocking EMT in UTUC cells. Taking this together, miR-375-3p functions as a tumor suppressive microRNA by directly targeting Derlin-1 and blocking epithelial-mesenchymal transition (EMT) in UTUC.

7.
J Genet Genomics ; 49(3): 195-207, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34547438

RESUMEN

Adult stem cells are critical for the maintenance of residential tissue homeostasis and functions. However, the roles of cellular protein homeostasis maintenance in stem cell proliferation and tissue homeostasis are not fully understood. Here, we find that Derlin-1 and TER94/VCP/p97, components of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, restrain intestinal stem cell proliferation to maintain intestinal homeostasis in adult Drosophila. Depleting any of them results in increased stem cell proliferation and midgut homeostasis disruption. Derlin-1 is specifically localized in the ER of progenitors, and its C-terminus is required for its function. Interestingly, we find that increased stem cell proliferation is resulted from elevated ROS levels and activated JNK signaling in Derlin-1- or TER94-deficient progenitors. Further removal of reactive oxygen species (ROS) or inhibition of JNK signaling almost completely suppresses increased stem cell proliferation. Together, these data demonstrate that the ERAD pathway is critical for stem cell proliferation and tissue homeostasis. Thus, we provide insights into our understanding of the mechanisms underlying cellular protein homeostasis maintenance (ER protein quality control) in tissue homeostasis and tumor development.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de la Membrana , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Drosophila/genética , Drosophila/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Homeostasis , Proteínas de la Membrana/metabolismo , Proteína que Contiene Valosina/metabolismo
8.
Front Immunol ; 12: 795912, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046954

RESUMEN

Background: The goal of this study was to identify potential predictive biomarkers for the therapeutic effect of infliximab (IFX) in Rheumatoid arthritis (RA) and explore the potential molecular mechanism of nonresponse to IFX treatment to achieve individualized treatment of RA. Methods: Differential gene expression between IFX responders and nonresponders in the GSE58795 and GSE78068 datasets was identified. Coexpression analysis was used to identify the modules associated with nonresponse to IFX therapy for RA, and enrichment analysis was conducted on module genes. Least absolute shrink and selection operator (LASSO) regression was used to develop a gene signature for predicting the therapeutic effect of IFX in RA, and the area under the receiver operating characteristic curve (AUC) was used to evaluate the predictive value of the signature. Correlation analysis and single-sample gene set enrichment analysis (ssGSEA) were used to explore the potential role of the hub genes. Experimental validation was conducted in synovial tissue and RA fibroblast-like synoviocytes (RA-FLSs). Results: A total of 46 common genes were obtained among the two datasets. The yellow-green module was identified as the key module associated with nonresponse to IFX therapy for RA. We identified a 25-gene signature in GSE78068, and the AUC for the signature was 0.831 in the internal validation set and 0.924 in the GSE58795 dataset(external validation set). Derlin-1 (DERL1) was identified as the hub gene and demonstrated to be involved in the immune response and autophagy regulation. DERL1 expression was increased in RA synovial tissue compared with OA synovial tissue, and DERL1-siRNA partially inhibited autophagosome formation in RA-FLSs. Conclusion: The 25-gene signature may have potential predictive value for the therapeutic effect of IFX in RA at the beginning of IFX treatment, and autophagy may be involved in nonresponse to IFX treatment. In particular, DERL1 may be associated with the regulation of autophagy.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Autofagia/fisiología , Resistencia a Medicamentos/fisiología , Infliximab/uso terapéutico , Proteínas de la Membrana/metabolismo , Anciano , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Transcriptoma
9.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32858914

RESUMEN

Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a quality control system that induces the degradation of ER terminally misfolded proteins. The ERAD system consists of complexes of multiple ER membrane-associated and luminal proteins that function cooperatively. We aimed to reveal the role of Derlin-3 in the ERAD system using the liver, pancreas, and kidney obtained from different mouse genotypes. We performed coimmunoprecipitation and sucrose density gradient centrifugation to unravel the dynamic nature of ERAD complexes. We observed that Derlin-3 is exclusively expressed in the pancreas, and its deficiency leads to the destabilization of Herp and accumulation of ERAD substrates. Under normal conditions, Complex-1a predominantly contains Herp, Derlin-2, HRD1, and SEL1L, and under ER stress, Complex-1b contains Herp, Derlin-3 (instead of Derlin-2), HRD1, and SEL1L. Complex-2 is upregulated under ER stress and contains Derlin-1, Derlin-2, p97, and VIMP. Derlin-3 deficiency suppresses the transition of Derlin-2 from Complex-1a to Complex-2 under ER stress. In the pancreas, Derlin-3 deficiency blocks Derlin-2 transition. In conclusion, the composition of ERAD complexes is tissue-specific and changes in response to ER stress in a Derlin-3-dependent manner. Derlin-3 may play a key role in changing ERAD complex compositions to overcome ER stress.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Páncreas/metabolismo , Animales , Estrés del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Genotipo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Especificidad de Órganos
10.
Onco Targets Ther ; 13: 5407-5417, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606758

RESUMEN

INTRODUCTION: Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. In the present research, we explored a new oncogene, derlin-1 (DERL1), and studied its role and mechanism in human HCC. METHODS: We assessed the expression and prognosis value of DERL1 in human HCC by using GEPIA dataset analysis and immunohistochemistry. To elucidate the specific function of DERL1, we suppressed its expression in two HCC cell lines, HuH7 and Hep3B, and overexpressed DERL1 in Hep3B cells. Cell proliferation and migration was detected by CCK8 and transwell assays. Cell flow cytometry was used to evaluate cell apoptosis. RESULTS: Our results demonstrated that DERL1 was highly expressed in HCC samples (n = 369) than in normal samples (n = 160). Similar results were obtained in 60 clinical samples that we collected from the local hospital. The high expression rate of DERL1 reached 78.3% (47/60). DERL1 overexpression samples were concentrated in patients with tumor diameters >5cm or lymph node metastases. Thus, we speculated that DERL1 operated as a tumor promotor in HCC, and its expression might be proposed as a predictor for tumor metastasis of human HCC. Interference of DERL1 markedly blocked cell proliferation and migration, and induced the apoptosis of HCC cells in vitro. Phosphorylation of Akt was significantly inhibited in cells transfected with DERL1 siRNA compared to their control cells in HuH7 and Hep3B cell lines. The opposite result was observed in the DERL1 overexpression cells. CONCLUSION: Our findings prove that DERL1 promotes tumor progression via AKT pathway and provide a new potential target for the clinical treatment and diagnosis of human HCC.

11.
Biol Chem ; 401(3): 377-387, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31721721

RESUMEN

Breast cancer is one of the most common malignant tumors in women. Derlin-1 has been found to be overexpressed in several human cancers in addition to playing an important role in tumor processes; however, the expression patterns and functions of Derlin-1 in human breast cancer are not fully understood. In this study, we found that Derlin-1 overexpression was higher in breast cancer compared to normal samples through TCGA and GTEx database analyses. Kaplan-Meier plotter analysis showed that Derlin-1 was a predicting factor for patient prognosis. Derlin-1 expression was significantly up-regulated in breast cancer tissues (18/30, 60.00%) compared to corresponding paracancerous tissue (9/30, 30.00%, p < 0.05) as detected by immunohistochemistry, and the expression of Derlin-1 was correlated to pathological grading. siRNA interference of Derlin-1 inhibited cell proliferation, which is associated with the promotion of apoptosis and migration. Derlin-1 knockdown suppressed the protein levels of p-AKT and Cyclin D1 while up-regulating Caspase3 and Bax. GEPIA database analysis showed that MTDH and ATAD2 were downstream target genes, and the expression of MTDH and was suppressed in Derlin-1 knockdown cells. Taken together, our results demonstrated ATAD2 that Derlin-1 is overexpressed in breast cancer and promoted a malignant phenotype through the AKT signaling pathway.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de la Membrana/metabolismo , Apoptosis , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Proteínas de la Membrana/genética , Células Tumorales Cultivadas
12.
Cell Biol Int ; 44(2): 593-602, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31670413

RESUMEN

Derlin-1 is involved in the elimination of misfolded proteins and has been implicated in the progression of human cancers. However, its prognostic value and biological function in breast cancer remain unknown. Here, we show that Derlin-1 is overexpressed in breast cancer and exhibits oncogenic activities via interaction with UBE2C. Increased expression of Derlin-1 is correlated with lymph node metastasis, advanced clinical stage, and unfavorable overall survival in two cohorts containing over 1,000 patients. Multivariate analyses by the Cox regression model suggest Derlin-1 is an independent factor for poor prognosis. In vitro experiments demonstrate that Derlin-1 expression is transcriptionally upregulated by c-Myc. Ectopic expression of Derlin-1 promotes breast cancer cell proliferation and migration, whereas the knockdown of Derlin-1 results in the opposite phenotypes. Mechanistically, Derlin-1 directly binds to UBE2C to increase the phosphorylation of AKT and ERK. The treatment of UBE2C siRNA markedly attenuates Derlin-1-mediated cell growth and migration. Collectively, our data suggest Derlin-1 is a potential prognostic factor and functions as an oncogene in breast cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Femenino , Humanos , Proteínas de la Membrana/genética , Fosforilación , Pronóstico , Transducción de Señal , Células Tumorales Cultivadas , Enzimas Ubiquitina-Conjugadoras/genética
13.
Biol Res ; 52(1): 8, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30808417

RESUMEN

BACKGROUND: Cervical cancer (CC) ranks third in the morbidity and mortality of female cancer around the world. Derlin1 has been found to be overexpressed in several human cancers. However, it is still unclear about its roles in CC. The research aims to explore the relationship between Derlin1 and CC. METHODS: We purchased a human CC tissues microarray, which contained CC tissues and corresponding para-cancerous tissues from 93 patients with primary cervical squamous cell carcinoma. Immunohistochemical staining was used to confirm the expression of Derlin1 in these tissues. And we detected the differential expression of Derlin1 in cervical cancer cell lines and normal cervical epithelial cells (H8). Further, the cervical cancer cell lines SiHa and C33A were used as an in vitro model, which was down-regulated the expression of Derlin1 using siRNA interference technology. The effects of Derlin1 down-regulating in CC cell lines on cell proliferation and migration were detected by CCK8 assay and transwell assay, respectively. The effect of Derlin1 down-regulating on apoptosis was analyzed by flow cytometry, and apoptosis-related proteins were detected using western blotting. In-depth mechanisms were studied using western blotting. In addition, the effects of Derlin1 up-regulating in normal cervical epithelial cells also were exposed. RESULTS: Derlin1 was significantly elevated in CC tissues (81.7%, 76/93), and the expression of Derlin1 was positively correlated with the tumor size, pathological grade, and lymph node metastasis in CC patients. And Derlin1 was high expressed in cervical cancer cell lines compared to H8 cells. Knockdown of Derlin1 in cervical cancer cell lines inhibited cell proliferation and migration. Moreover, knockdown of Derlin1 induced apoptosis and affected the expression of apoptosis-related proteins, including Bcl-2, Bax, Bim, caspase3 and caspase9. Further experiments showed that AKT/mTOR signal pathway might be involve in this processes that knockdown of Derlin1 inhibited the expression of p-AKT and p-mTOR. Over-expression of Derlin1 in H8 cells promoted cell proliferation and migration via up-regulated the expression of p-AKT and p-mTOR. CONCLUSION: Derlin1 is an oncogene in CC via AKT/mTOR pathway. It might be a potential therapeutic target for CC.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Apoptosis , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Inmunohistoquímica , Análisis por Matrices de Proteínas , Proteínas Proto-Oncogénicas c-akt/fisiología , Neoplasias del Cuello Uterino/patología
14.
Transl Cancer Res ; 8(1): 180-190, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35116747

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play an essential role in the initiation, progression and metastasis of breast cancer. It has been confirmed that miR-30b is involved in various cancers. However, the specific involvement of miR-30b on breast cancer metastasis remains unknown. In the current study, we aimed to investigate the role of miR-30b in the progression and metastasis of breast cancer in vitro. METHODS: We up-regulated the expression of miR-30b in breast cancer cell lines SKBR3 and MDA-MB-231 by transfecting pCMV-miR-30b vector. CCK8, colony formation, Transwell, and flow cytometry assays were used to examine cell proliferation, migration, invasion and apoptosis, respectively. A dual-luciferase reporter assay was performed to identify the relationship between miR-30b and the target gene. Western blot assay was used to detect related proteins. RESULTS: Our data showed that the overexpression of miR-30b significantly inhibited proliferation, migration and invasion abilities in SKBR3 and MDA-MB-231 cells. Meanwhile, overexpression of miR-30b induced cell apoptosis for both SKBR3 and MDA-MB-231 cells by regulating the expression of apoptosis-related proteins (Bcl-2, Bax, active Caspase-3, and Caspase-9). Moreover, miR-30b inhibited the activation of the PI3K/Akt signaling pathway by decreasing the phosphorylation levels of Akt and mTOR. Furthermore, we determined that miR-30b could down-regulate the expression of Derlin-1 in a post-transcriptional manner by employing the dual-luciferase reporter and western blot assays. Further analysis demonstrated that depletion of Derlin-1 inhibited Akt phosphorylation, and Derlin-1 could restore the effect of miR-30b on Akt. In addition, the CCK8 assay showed that Derlin-1 could partly reverse the inhibition of cell proliferation of SKBR3 and MDA-MB-231 cells mediated by miR-30b. CONCLUSIONS: Our data demonstrated that miR-30b suppresses the progression and metastasis of breast cancer via inhibition of the PI3K/Akt signaling pathway by targeting Derlin-1 in vitro. This suggests that miR-30b might be a novel potent target for breast cancer therapy.

15.
Biol. Res ; 52: 8, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1011404

RESUMEN

BACKGROUND: Cervical cancer (CC) ranks third in the morbidity and mortality of female cancer around the world. Derlin1 has been found to be overexpressed in several human cancers. However, it is still unclear about its roles in CC. The research aims to explore the relationship between Derlin1 and CC. METHODS: We purchased a human CC tissues microarray, which contained CC tissues and corresponding para-cancerous tissues from 93 patients with primary cervical squamous cell carcinoma. Immunohistochemical staining was used to confirm the expression of Derlin1 in these tissues. And we detected the differential expression of Derlin1 in cervical cancer cell lines and normal cervical epithelial cells (H8). Further, the cervical cancer cell lines SiHa and C33A were used as an in vitro model, which was down-regulated the expression of Derlin1 using siRNA interference technology. The effects of Derlin1 down-regulating in CC cell lines on cell proliferation and migration were detected by CCK8 assay and transwell assay, respectively. The effect of Derlin1 down-regulating on apoptosis was analyzed by flow cytometry, and apoptosis-related proteins were detected using western blotting. In-depth mechanisms were studied using western blotting. In addition, the effects of Derlin1 up-regulating in normal cervical epithelial cells also were exposed. RESULTS: Derlin1 was significantly elevated in CC tissues (81.7%, 76/93), and the expression of Derlin 1 was positively correlated with the tumor size, pathological grade, and lymph node metastasis in CC patients. And Derlin 1 was high expressed in cervical cancer cell lines compared to H8 cells. Knockdown of Derlin 1 in cervical cancer cell lines inhibited cell proliferation and migration. Moreover, knockdown of Derlin 1 induced apoptosis and affected the expression of apoptosis-related proteins, including Bcl-2, Bax, Bim, caspase3 and caspase9. Further experiments showed that AKT/mTOR signal pathway might be involve in this processes that knockdown of Derlin 1 inhibited the expression of p-AKT and p-mTOR. Over-expression of Derlin 1 in H8 cells promoted cell proliferation and migration via up-regulated the expression of p-AKT and p-mTOR. CONCLUSION: Derlin 1 is an oncogene in CC via AKT/mTOR pathway. It might be a potential therapeutic target for CC.


Asunto(s)
Humanos , Femenino , Carcinoma de Células Escamosas/metabolismo , Transducción de Señal/fisiología , Neoplasias del Cuello Uterino/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de la Membrana/metabolismo , Inmunohistoquímica , Carcinoma de Células Escamosas/patología , Neoplasias del Cuello Uterino/patología , Apoptosis , Análisis por Matrices de Proteínas , Línea Celular Tumoral , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt/fisiología
16.
Cell Physiol Biochem ; 47(1): 245-256, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29768262

RESUMEN

BACKGROUND/AIMS: MicroRNAs regulate a wide range of biological processes of non-small cell lung cancer (NSCLC). Although miR-598 has been reported to act as a suppressor in osteosarcoma and colorectal cancer, the physiological function of miR-598 in NSCLC remains unknown. In this study, the role of miR-598 in NSCLC was investigated. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to estimate the expression of miR-598 and Derlin-1 (DERL1) in both NSCLC tissues and cell lines. Immunohistochemistry (IHC) analyzed the association between the miR-598 expression and epithelial-mesenchymal transition (EMT) hallmark genes (E-cadherin, Vimentin) by staining the tumors representative of the high- and low-expression groups. The effect of miR-598 and DERL1 on invasion and migration was determined in vitro using transwell and wound-healing assays. The molecular mechanism underlying the relevance between miR-598 and DERL1 was elucidated by luciferase assay and Western blot. Western blot assessed the expression levels of EMT hallmark genes in cell lines. Xenograft tumor formation assay was conducted as an in vivo experiment. RESULTS: In this study, a relatively low level of miR-598 and high DERL1 expressions were found in NSCLC specimens and cell lines. IHC results established a positive correlation between the miR-598 expression and E-cadherin and a negative with Vimentin. DERL1 was verified as a direct target of miR-598 by luciferase assay. In vitro, the over-expression of miR-598 negatively regulated DERL1 and EMT for the suppression of invasion and migration. In vivo, the over-expression of miR-598 could inhibit tumor cell metastasis in NSCLC. CONCLUSIONS: These findings for the first time revealed that miR-598, as a tumor suppressor, negatively regulate DERL1 and EMT to suppress the invasion and migration in NSCLC, thereby putatively serving as a novel therapeutic target for NSCLC clinical treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Invasividad Neoplásica/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica/patología
17.
Cancer Cell Int ; 18: 59, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686537

RESUMEN

OBJECTIVE: Recently, long non-coding RNA (lncRNA) MIAT has been demonstrated as an oncogenic gene in several types of cancer. However, the role and mechanism of MIAT in colorectal cancer (CRC) have not been investigated. METHODS: Real-time PCR was used to measure MIAT expression in CRC tissues and cells. Small interfering RNA specific for MIAT (si-MIAT) was used to down-regulate MIAT expression in CRC cells. The interaction of MIAT and miR-132 was measured by RNA pull-down assay. The effect of si-MIAT on CRC cells apoptosis and metastasis were measured by flow cytometry assay, invasion and migration assay, respectively. RESULTS: In present study, we found that MIAT was highly expressed in CRC tissues and cells. MIAT knockdown inhibited proliferation, migration and invasion and enhanced apoptosis of CRC cells. Further, we demonstrated that MIAT acted as a competing endogenous RNA for miR-132, antagonized its functions, and resulted in the de-repression of its target gene Derlin-1, which acted as an oncogene in promoting growth and metastasis of CRC cells. In LOVO and SW480 cells with si-MIAT, miR-132 inhibitor resulted in an increase of cell proliferation, migration and invasion and a decrease of cell apoptosis, which was partially abolished by transfection of Derlin-1 shRNA. CONCLUSIONS: Our data indicated that highly expressed MIAT was an oncogenic lncRNA that promoted the growth and metastasis of CRC through miR-132/Derlin-1 axis.

18.
Ann Clin Lab Sci ; 48(1): 29-34, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29530993

RESUMEN

BACKGROUND: Recent studies indicated that Derlin-1 has an important function in cancer progression. However, its expression pattern and relationships with clinicopathologic characteristics in non-small cell lung cancer (NSCLC) have not been completely found. In the current study, we aimed to evaluate the prognostic significance of Derlin-1 in NSCLC. METHODS: Cancer tissues and paracancer tissues were collected from 168 patients with NSCLC. The expression of Derlin-1 was detected by RT-PCR, Western blot, and immunohistochemistry. The correlation between Derlin-1 expression and various clinicopathologic features was investigated. RESULTS: The results showed that mRNA and protein of Derlin-1 was overexpressed in NSCLC and the positive rate of Derlin-1 was significantly correlated with TNM stage, histologic grade, lymph node metastasis and overall survival. CONCLUSION: Derlin-1 is overexpressed in NSCLC and promotes the malignancy of NSCLC. Derlin-1 maybe served as a potential therapeutic target for NSCLC.


Asunto(s)
Adenocarcinoma/secundario , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/secundario , Neoplasias Pulmonares/patología , Proteínas de la Membrana/metabolismo , Recurrencia Local de Neoplasia/patología , Adenocarcinoma/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/metabolismo , Metástasis Linfática , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Recurrencia Local de Neoplasia/metabolismo , Pronóstico , Tasa de Supervivencia
19.
Oncotarget ; 8(33): 55135-55146, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903408

RESUMEN

Radiotherapy is widely used for treatment of esophageal squamous cell carcinoma (ESCC). This study aimed to explore the role of Derlin-1 on the sensitivity of ESCC to radiotherapy and its underlying mechanism. We examined the clinical significance of Derlin-1 in 125 ESCC tissues. We found that Derlin-1 protein was higher in ESCC tissues than that in normal esophageal epithelial tissues. Derlin-1 overexpression was correlated with chemoradiotherapy resistance in ESCC patients and served an independent predictor for short overall survival. siRNA knockdown and plasmid transfection were carried out in ESCC cell lines. Derlin-1 depletion inhibited cell growth while its overexpression facilitated cell growth. Derlin-1 overexpression in Eca-109 cells dramatically enhanced its resistance to radiotherapy with decreased apoptosis rate. On the contrary, Derlin-1 depletion in TE-1 cell line showed the opposite effects. In addition, radioresistance conferred by Derlin-1 was attributed to its role of activating AKT/Bcl-2 signaling pathway and reducing caspase3 cleavage. Blockage of AKT signaling attenuated the role of Derlin-1 on radioresistance. Furthermore, Derlin-1 could interact with PI3K p110α in ESCC cell lines. Taken together, Our data demonstrate that Derlin-1 overexpression predicts poor prognosis and protects ESCC from irradiation induced apoptosis through PI3K/AKT/Bcl-2 signaling pathway. Derlin-1 may serve as a novel predictor for radiosentivity and a molecular target for ESCC.

20.
J Cancer ; 8(12): 2336-2345, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28819438

RESUMEN

Derlin-1 is over-expressed to function as an oncoprotein in breast, lung and colon cancers. However, the implications of Derlin-1 involved in squamous cell carcinoma of the head and neck (SCCHN) remain unknown. This study aims to investigate the effects of Derlin-1 expression on SCCHN tissues and cells. The potential mechanism of Derlin-1 regulating SCCHN cell proliferation, apoptosis and metastasis was also indicated in this work. Western blot and immunohistochemistry (IHC) assays showed that Derlin-1 was over-expressed in 114 SCCHN samples and five SCCHN cell lines. We found that the expression of Derlin-1 was positively associated with lymph node metastasis, clinical stage and recurrence in our SCCHN patients' samples. Survival analysis indicated that high expression of Derlin-1 was significantly associated with shorter overall survival (OS) and disease-free survival (DFS). Knock down expression of Derlin-1 in SCCHN cell lines was found to inhibit cell proliferation, metastasis and promote cell apoptosis. Further experiments showed that signals of PI3K/Akt, p53 and Smad2/3 may involve in these processes. In all, Derlin-1 might be a novel prognostic marker of SCCHN patients and plays an oncogenic role in SCCHN cell progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...