Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1321: 343018, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39155102

RESUMEN

BACKGROUND: Food safety has become an essential aspect of public concern and there are lots of detection means. Liquid chromatography plays a dominating role in food safety inspection because of its high separation efficiency and reproducibility. However, with the increasing complexity of real samples and monitoring requirements, conventional single-mode chromatography would require frequent column replacement and cannot separate different kinds of analytes on a single column simultaneously, which is costly and time-consuming. There is a great need for fabricating mixed-mode stationary phases and validating the feasibility of employing mixed-mode stationary phases for food safety inspection. RESULTS: This work fabricated multifunctional stationary phases for liquid chromatography to determine diverse food additives under the mixed mode of RPLC/HILIC/IEC. Two dicationic ionic liquid silanes were synthesized and bonded onto the silica gel surface. The functionalized silica was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and elemental analysis. Both columns provide satisfactory separation performance towards 6 hydrophilic nucleosides, 4 hydrophobic polycyclic aromatic hydrocarbons, and 5 anions. Great repeatability of retention (RSD <0.1 %) and column efficiency (100330 plate/m) were obtained. Thermomechanical analysis and linear solvation energy relationship investigated the retention mechanism. Finally, the better in two prepared columns was employed to separate and determine the contents of NO2- and NO3- in vegetables(highest 4906 mg kg-1 NO3- in spinach), preservatives in bottled beverages (180.8 mg kg-1 sodium benzoate in soft drink), and melamine in milk with satisfactory performance and recovery rates ranging from 96.4 % to 105.6 %. SIGNIFICANCE: This work developed a novel scheme for preparing mixed-mode stationary phases by dicationic ionic liquid which provides great separation selectivity. Most importantly, this work proved the superiority of employing mixed-mode stationary phases for food safety inspection, which might avoid high-cost and frequent changes of columns and chromatography systems in the near future.


Asunto(s)
Aditivos Alimentarios , Líquidos Iónicos , Dióxido de Silicio , Líquidos Iónicos/química , Dióxido de Silicio/química , Aditivos Alimentarios/análisis , Aditivos Alimentarios/aislamiento & purificación , Cromatografía Liquida/métodos , Nucleósidos/aislamiento & purificación , Nucleósidos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Aniones/análisis , Aniones/aislamiento & purificación , Aniones/química , Silanos/química
2.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893533

RESUMEN

Thiosulfate leaching has been regarded as a promising alternative to cyanidation, but it still faces the challenge of the recovery of low content of gold from high concentrations of thiosulfate solutions. Liquid-liquid extraction is a method to address this issue but is still limited by the use of volatile and toxic organic solvents. To overcome this limitation, this work synthesized some functionalized dicationic ionic liquids (DILs) to serve as extraction solvents for the recovery of the gold-thiosulfate complex, [Au(S2O3)2]3-, from thiosulfate solutions. Experimental results indicated that the DILs showed higher extraction rates toward [Au(S2O3)2]3- compared with their monocationic-based counterparts, likely due to the stronger electrostatic interaction between the dications of the ILs and [Au(S2O3)2]3-. The transfer of [Au(S2O3)2]3- from the water phase to the IL phase was identified as an anion exchange and endothermic process. The rate of extraction was limited by the anion exchange process occurring at the IL-water interface. The extraction ability of ILs highly depended on the type of anion; specifically, the ILs with anions that had strong hydrogen-bonding ability exhibited high extraction ability toward [Au(S2O3)2]3-. Finally, DILs proved effective in the recovery of [Au(S2O3)2]3- from an actual gold leaching solution and exhibited high selectivity toward coexisting ions, indicating their potential as environmentally friendly solvents for gold recovery.

3.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731623

RESUMEN

A panel of dicationic ionic liquids (DILs) with different rigid xylyl (ortho, meta, para) spacers and different anions (bromide and tungstate) has been synthetised and characterised through different experimental and computational techniques. Differences and analogies between the systems are analysed using information derived from their DFT structures, semiempirical dynamics, thermal behaviour, and catalytic properties versus the well-known reaction of CO2 added to epichlorohydrin. A comparison between the proposed systems and some analogues that present non-rigid spacers shows the key effect displayed by structure rigidity on their characteristics. The results show an interesting correlation between structure, flexibility, properties, and catalytic activity.

4.
Heliyon ; 10(8): e29657, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38655364

RESUMEN

The need to find alternative materials to replace aqueous amine solutions for the capture of CO2 in post-combustion technologies is pressing. This study assesses the CO2 sorption capacity and CO2/N2 selectivity of three dicationic ionic liquids with distinct anions immobilized in commercial mesoporous silica support (SBA- 15). The samples were characterized by UART-FTIR, NMR, Raman, FESEM, TEM, TGA, Magnetometry (VSM), BET and BJH. The highest CO2 sorption capacity and CO2/N2 selectivity were obtained for sample SBA@DIL_2FeCl4 [at 1 bar and 25 °C; 57.31 (±0.02) mg CO2/g; 12.27 (±0.72) mg CO2/g]. The results were compared to pristine SBA-15 and revealed a similar sorption capacity, indicating that the IL has no impact on the CO2 sorption capacity of silica. On the other hand, selectivity was improved by approximately 3.8 times, demonstrating the affinity of the ionic liquid for the CO2 molecule. The material underwent multiple sorption/desorption cycles and proved to be stable and a promising option for use in industrial CO2 capture processes.

5.
Environ Res ; 248: 118420, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316384

RESUMEN

The hydrophobic nature of an extractant is particularly critical in the treatment of wastewater. Considering that dicationic ionic liquids (DILs) are likely to be more hydrophobic, a comparative study of the separation of phenol from waters using [NTf2]- based monocationic ionic liquids (MILs) and DILs is carried out both from experimental and theoretical analysis perspectives. Experimental results revealed that DILs exhibited superior extraction ability compared to MILs, with extraction efficiencies of 93.7% and 97.4% using [BMIM][NTf2] and [C6(MIM)2][NTf2]2 as extractants, respectively. The microscopic examination through theoretical calculations elucidated the higher hydrophobicity and extraction efficiency of DILs over MILs. The results indicated that the DIL showed stronger hydrophobicity than the MIL because the hydrogen bond strength between the DIL and water was lower than that of the MIL. Although the hydrogen bond strength between the DIL and phenol was lower than that of the MIL, the stronger van der Waals forces existed between DIL and phenol, so DIL was more efficient in extracting phenol. In addition, the experimental parameters were optimized to provide basic data for application, such as mass ratio of ILs to water, extraction time and temperature, pH, and initial phenol content. Finally, the DILs were recovered using rotary evaporation apparatus, and the results demonstrated that DILs had good recovery and reuse performance. In brief, this work could provide an effective method for the treatment of phenol-containing wastewater. And the revelation of molecular mechanism is expected to positively impact the design of high-performance task-specific ILs.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Fenol , Aguas Residuales , Fenoles , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas
6.
J Environ Manage ; 351: 119767, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109826

RESUMEN

Ten novel hydrophobic dicationic ionic liquids (DILs) were synthesized and applied for the extraction of heavy metals in aqueous solutions. Their physicochemical properties were measured at ambient temperature, and the leaching behaviors of the as-prepared DILs in water were assessed by TOC analysis. Metal extraction experiments were carried out to evaluate the extraction performances of the DILs. It was found that the extraction rates of up to 0.45 and 0.53 mg·(g·min)-1 were achieved with 100 mg DILs for 5 mL of 5 mg/L Cd2+ and Pb2+ solutions. Besides, the extraction efficiencies of Cd2+ and Pb2+ were respectively up to 95.48% and 98.46%, when the volumes of the simulated wastewater were expanded by a factor of 20 at a constant extraction phase ratio (1000 mg DILs for 50 mL of 5 mg/L Cd2+ or Pb2+ solutions). The reusability of the novel DILs was successfully proved by the back-extraction experiments with 0.5 M HNO3. Finally, taking Cd2+ extraction as an example, the extraction mechanism based on FTIR analysis and quantum chemical calculations showed that both S and O atoms in the anions of DILs had physical and quasi-chemical interactions with Cd2+, which were stronger than the electrostatic attraction.


Asunto(s)
Líquidos Iónicos , Metales Pesados , Líquidos Iónicos/química , Cadmio , Agua , Plomo , Metales Pesados/química
7.
J Colloid Interface Sci ; 656: 47-57, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37984170

RESUMEN

The ionic active centers and hydrogen-bond donors (HBDs) in heterogeneous catalytic materials are highly beneficial for enhancing the interaction between solid-liquid-gas three-phase interfaces and promoting effective fixation of carbon dioxide (CO2). Diamide-linked imidazolyl poly(dicationic ionic liquid)s catalysts PIMDILs (PMAIL-x and PBAIL-2) were synthesized through the copolymerization of diamide-linked imidazolyl dicationic ionic liquids (IMDILs) with divinylbenzene (DVB), which successfully enable the simultaneous construction of high-density and uniformly distributed ionic active centers (2.014-4.883 mmol g-1) and hydrogen-bond donors (HBDs). The as-synthesized PIMDILs present excellent catalytic activity in promoting the cycloaddition of CO2 with epoxides. PMAIL-2 could convert epichlorohydrin (ECH) with a quantitative conversion of 99.8 % (selectivity > 99 %) under ambient pressure. Furthermore, only a decrease in activity of 5 % was observed even after six cycles of recycling. The excellent conversions (>97.3 %) were achieved for various terminal substituted epoxides. The experimental and characterization results reveal that the high-density ionic active centers and amide HBDs can effectively activate the reaction substrates, their synergistic effect plays a crucial role at the catalyst interface. This work is expected to provide some useful insights for the rational construction of heterogeneous catalysts for CO2 conversion.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37879671

RESUMEN

Yolk-shell metal-organic framework (YS-MOF) liquids are candidate materials in large-size species with high-efficiency separation, owing to their hierarchical porosity, faster mass transfer, better compatibility, and higher solution processability than MOF liquids with micropores. Nevertheless, facile synthesis strategies of yolk-shell porous ionic liquids (YSPILs) with regulations of size and morphology are an ongoing challenge. Herein, we propose a general strategy to construct YSPILs based on Z67@PDA with tunable core sizes and morphologies. Benefiting from the unique hierarchical yolk-shell structure, as-prepared YSPILs exhibit promise in C3H6/C3H8 capture and separation with the increased sizes of core in yolk-shell ZIF-67@PDA. Advanced YS-MOF liquids have improved the adsorption properties and increased our ability to tailor chemical composition and pore architecture. Impressively, the adsorption capacity of C3H6 and C3H8 of YSPILs exhibits an approximately 3-fold enhancement compared with that of the neat ILs, confirming that the accessible porosities are retained. Effective C3H6/C3H8 separation performance of YSPILs over PILs based on ZIF-67, revealing the hierarchical porosity of YS-Z67@PDA liquids, benefits larger-size gas separation. Therefore, we believe that this work can not only help us to rationally design novel hierarchically porous ionic liquids but also promote candidate applications in large-size species separation, catalysis, and nanoreactors.

9.
Chemistry ; 29(45): e202300644, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37272320

RESUMEN

Carbene-stabilized symmetrical and unsymmetrical dicationic tetraboranes, featuring an electron-precise tetraborane chain, were synthesized and fully characterized. Reactions of these tetraboranes with reductants/bases give rise to different outcomes according to the conditions employed, including: 1) reduction and rearrangement of the tetraborane chain to give a zwitterionic alkylidene borate-borenium species; 2) cleavage of the tetraborane chain to afford a 1,3-azaborinine; and 3) reduction of the supporting ligands to provide a diamino dipotassium salt. The zwitterionic alkylidene borate-borenium species can be viewed as an analogue of the base-stabilized diborenes. NMR spectroscopy and DFT calculations reveal a highly polarized B-B bond in the zwitterionic alkylidene borate-borenium, in which the formal oxidation states of the boron atoms can be considered as -1 and +2. These results suggest the considerable potential of tetraboranes as synthons for low-valent boron species.

10.
Front Cell Infect Microbiol ; 13: 1186117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265495

RESUMEN

Airborne transmission is one of the most unpredictable routes of infection. Nowadays, airborne diseases increase ever than before because of the complex living air environment. Apart from the inorganic particles, active microorganisms including bacteria, viruses, and fungi are incorporated in the pathogens acting as threaten to public health, which can hardly be treated by the traditional air purification methods based on adsorption. Therefore, effective filtration material with antimicrobial activity is demanded to solve the problem. Ionic liquids (ILs) are a category of salts that remain liquid at room temperature. The stable physico-chemical properties and extremely low vapor pressure make them suitable for a wide range of applications. Thanks to the numerous combinations of cations and anions, as well as the ability of inheriting properties from the parent ions, Ils are believed to be a promising industrial material. In recent decades, several Ils, such as imidazolium, pyridinium, pyrrolidinium, phosphonium, and choline, have been found to have antimicrobial activity in their monomeric or polymeric forms. This work focuses on the antimicrobial activity and safety of the latest types of ionic liquids, discussing the synthesis or manufacturing methods of Ils for air purification and filtration. Furthermore, possible applications of Ils antimicrobial materials in medical instruments and indoor environments are mentioned to encourage the scientific community to further explore the potential applications of Ils.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Líquidos Iónicos/farmacología , Líquidos Iónicos/química , Desinfección , Antiinfecciosos/farmacología , Antiinfecciosos/química , Bacterias , Aniones/química , Aniones/farmacología
11.
Heliyon ; 9(4): e15431, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37151718

RESUMEN

Focused bis-pyridinium based-ionic liquids were successfully synthesized through the quaternization of the selected 1,2-di(pyridin-4-yl)ethane followed by metathetical anion exchange. The synthesized pyridinium derivatives were fully characterized using various NMR-spectroscopic techniques including 1H, 13C, 11B, 31P and 19F NMR. The synthesized compounds were tested for their potential effect against Toxoplasma gondii. It was revealed that compound 5 had higher antiparasitic activity compared to other compounds. Parasitic reduction percentage reached 38, 50, 77 and 79 for groups III, IV, V and VI respectively in the liver with noticed distortion and deformation in tachyzoites' shape. Surprisingly there was no statistically significant difference between the synthesized compound 5 and the known anti-toxoplasmosis drug pyrimethamine. Histopathological study proved the effectiveness of the synthesized compound 5 on liver, spleen and brain tissues with observed better histological features compared to pyrimethamine treated group. The present investigation may pave the way to the possible use of compound 5 to replace the known drug pyrimethamine with better antiparasitic profile and fewer side effects.

12.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985405

RESUMEN

The spread of antibiotic-resistant opportunistic microbes is a huge socioeconomic burden and a growing concern for global public health. In the current study, two endophytic fungal strains were isolated from Mangifera Indica roots and identified as Aspergillus niger MT597434.1 and Trichoderma lixii KU324798.1. Secondary metabolites produced by A. niger and T. lixii were extracted and tested for their antimicrobial activity. The highest activity was noticed against Staphylococcus aureus and E. coli treated with A. niger and T. lixii secondary metabolites, respectively. A. niger crude extract was mainly composed of Pentadecanoic acid, 14-methyl-, methyl ester and 9-Octadecenoic acid (Z)-, methyl ester (26.66 and 18.01%, respectively), while T. lixii crude extract's major components were 2,4-Decadienal, (E,E) and 9-Octadecenoic acid (Z)-, and methyl ester (10.69 and 10.32%, respectively). Moreover, a comparative study between the fungal extracts and dicationic pyridinium iodide showed that the combination of A. niger and T. lixii secondary metabolites with dicationic pyridinium iodide compound showed a synergistic effect against Klebsiella pneumoniae. The combined formulae inhibited the bacterial growth after 4 to 6 h through cell wall breakage and cells deformation, with intracellular components leakage and increased ROS production.


Asunto(s)
Escherichia coli , Yoduros , Yoduros/metabolismo , Ácido Oléico/metabolismo , Aspergillus niger/metabolismo , Mezclas Complejas/metabolismo
13.
ChemistryOpen ; 12(1): e202200229, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36599708

RESUMEN

A series of imidazolium-based symmetrical and asymmetrical dicationic ionic liquids (DcILs) with alkyl spacers of different length and with [FeCl3 Br]- as counter ion have been synthesized. The synthesized DcILs are characterized by using FTIR and Raman spectroscopy as well as mass spectrometry, along with single-crystal XRD analysis. Physicochemical properties such as solubility, thermal stability and magnetic susceptibility are also measured. These compounds show low melting points, good solubility in water and organic solvents, thermal stability, and paramagnetism. The products of molar susceptibility and temperature (χmol ⋅T) for the synthesized DcILs have been found between 4.05 to 4.79 emu mol-1 K Oe-1 and effective magnetic moment values have also been determined to be compared to that expected from the spin-only approximation.

14.
Materials (Basel) ; 15(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499976

RESUMEN

Two couples of dicationic ionic liquids, featuring pyrrolidinium and piperidinium cations and different linker chains, were prepared and characterized. 1,1'-(propane-1,3-diyl)bis(1-methylpyrrolidinium) bromide, 1,1'-(octane-1,8-diyl)bis(1-methylpyrrolidinium) bromide, 1,1'-(propane-1,3-diyl)bis(1-methylpiperidinium) bromide, and 1,1'-(octane-1,8-diyl)bis(1-methylpiperidinium) bromide were synthesized in quantitative yields and high purity and thermally characterized through TGA and DSC analysis. In this study, we propose a preliminary comparative evaluation of the effect of the linker chain length and of the size of the aliphatic ammonium ring on the thermal and solubility properties of bromide dicationic ionic liquids.

15.
Antibiotics (Basel) ; 11(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36009984

RESUMEN

Antibiotic resistance among bacteria is a growing global challenge. A major reason for this is the limited progress in developing new classes of antibiotics active against Gram-negative bacteria. Here, we investigate the antibacterial activity of a dicationic bisguanidine-arylfuran, originally developed as an antitrypanosomal agent, and new derivatives thereof. The compounds showed good activity (EC50 2-20 µM) against antibiotic-resistant isolates of the Gram-negative members of the ESKAPE group (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Escherichia coli with different antibiotic susceptibility patterns, including ESBL isolates. Cytotoxicity was moderate, and several of the new derivatives were less cytotoxic than the lead molecule, offering better selectivity indices (40-80 for several ESKAPE isolates). The molecular mechanism for the antibacterial activity of these molecules is unknown, but sensitivity profiling against human ESKAPE isolates and E. coli collections with known susceptibility patterns against established antibiotics indicates that it is distinct from lactam and quinolone antibiotics.

16.
Molecules ; 27(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458695

RESUMEN

Quaternization and metathesis approaches were used to successfully design and synthesize the targeted dicationic bis-dipyridinium hydrazones carrying long alkyl side chain extending from C8 to C18 as countercation, and attracted to halide (I-) or fluorinated ion (PF6-, BF4-, CF3COO-) as counteranion. Spectroscopic characterization using NMR and mass spectroscopy was used to establish the structures of the formed compounds. In addition, their thermal properties were investigated utilizing thermogravimetric analyses (TGA), and differential scanning calorimetry (DSC). The thermal study illustrated that regardless of the alkyl group length (Cn) or the attracted anions, the thermograms of the tested derivatives are composed of three stages. The mode of thermal decomposition demonstrates the important roles of both anion and alkyl chain length. Longer chain length results in greater van der Waals forces; meanwhile, with anions of low nucleophilicity, it could also decrease the intramolecular electrostatic interaction, which leads to an overall interaction decrease and lower thermal stability. The DFT theoretical calculations have been carried out to investigate the thermal stability in terms of the Tonset. The results revealed that the type of the counteranion and chain length had a substantial impact on thermal stability, which was presumably related to the degree of intermolecular interactions. However, the DFT results illustrated that there is no dominant parameter affecting the thermal stability, but rather a cumulative effect of many factors of different extents.


Asunto(s)
Hidrazonas , Aniones , Rastreo Diferencial de Calorimetría , Teoría Funcional de la Densidad , Hidrazonas/química , Espectroscopía de Resonancia Magnética
17.
Materials (Basel) ; 15(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35160810

RESUMEN

Imidazolium-based dicationic ionic liquids (DILs) are gaining considerable space in the field of organocatalysis mainly due to the opportunities in offering new possible applicable structural variations. In addition to the well-known variables which made the ionic liquids (ILs) famous as the type of cation and anion used, the nature of the molecular spacer moiety turns out a further possibility to improve some physicochemical properties, for example, solubility, acidity, electrochemical behavior, and so on. For this reason, this class of ionic liquids has been considered as possible competitors to their corresponding monocationic salts in replacing common catalysts in organic synthesis, particularly in cases in which their bidentate nature could positively affect the catalytic activity. This mini-review is intended to highlight the progress carried out in the last six years in the field of organocatalysis, including DILs as such and as hybrids with polymers, nanomaterials, and composites.

18.
Materials (Basel) ; 15(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35161194

RESUMEN

This work presents an in-depth kinetic thermal degradation comparison between traditional monocationic and the newly developed dicationic ionic liquid (IL), both coupled with a bromide (Br-) anion by using non-isothermal thermogravimetric analysis. Thermal analyses of 1-butyl-1-methylpyrrolidinium bromide [C4MPyr][Br] and 1,4-bis(1-methylpyrrolidinium-1-yl)butane dibromide [BisC4MPyr][Br2] were conducted at a temperature range of 50-650 °C and subjected to various heating rates, which are 5, 10, 15, 20 and 25 °C/min. Thermogravimetric analysis revealed that dicationic IL, [BisC4MPyr][Br2] is less thermally stable compared to monocationic [C4MPyr][Br]. A detailed analysis of kinetic parameters, which are the activation energy (Ea) and pre-exponential factor (log A), was calculated by using Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO) and Starink. This study revealed that the average Ea and log A of [BisC4MPyr][Br2] are lower than [C4MPyr][Br], which may be contributed to by its low thermal stability. Conclusively, it proved that the Ea and log A of ILs are strongly related to the thermal stability of ILs.

19.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34884951

RESUMEN

Antimicrobial, membranotropic and cytotoxic properties of dicationic imidazolium surfactants of n-s-n (Im) series with variable length of alkyl group (n = 8, 10, 12, 14, 16) and spacer fragment (s = 2, 3, 4) were explored and compared with monocationic analogues. Their activity against a representative range of Gram-positive and Gram-negative bacteria, and also fungi, is characterized. The relationship between the biological activity and the structural features of these compounds is revealed, with the hydrophobicity emphasized as a key factor. Among dicationic surfactants, decyl derivatives showed highest antimicrobial effect, while for monocationic analogues, the maximum activity is observed in the case of tetradecyl tail. The leading compounds are 2-4 times higher in activity compared to reference antibiotics and prove effective against resistant strains. It has been shown that the antimicrobial effect is not associated with the destruction of the cell membrane, but is due to specific interactions of surfactants and cell components. Importantly, they show strong selectivity for microorganism cells while being of low harm to healthy human cells, with a SI ranging from 30 to 100.


Asunto(s)
Antiinfecciosos/síntesis química , Hongos/crecimiento & desarrollo , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/crecimiento & desarrollo , Imidazoles/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Línea Celular , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Hemólisis , Interacciones Hidrofóbicas e Hidrofílicas , Imidazoles/química , Imidazoles/farmacología , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Relación Estructura-Actividad , Tensoactivos/síntesis química , Tensoactivos/química , Tensoactivos/farmacología
20.
Metabolites ; 11(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34940568

RESUMEN

Mass spectrometry imaging is a powerful tool to analyze a large number of metabolites with their spatial coordinates collected throughout the sample. However, the significant differences in ionization efficiency pose a big challenge to metabolomic mass spectrometry imaging. To solve the challenge and obtain a complete data profile, researchers typically perform experiments in both positive and negative ionization modes, which is time-consuming. In this work, we evaluated the use of the dicationic reagent, 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride (abbreviated to [C5(bpyr)2]F2) to detect a broad range of metabolites in the positive ionization mode by infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging (IR-MALDESI MSI). [C5(bpyr)2]F2 at 10 µM was doped in 50% MeOH/H2O (v/v) electrospray solvent to form +1 charged adducted ions with anionic species (-1 charged) through post-electrospray ionization. This method was demonstrated with sectioned rat liver and hen ovary. A total of 73 deprotonated metabolites from rat liver tissue sections were successfully adducted with [C5(bpyr)2]2+ and putatively identified in the adducted positive ionization polarity, along with 164 positively charged metabolite ions commonly seen in positive ionization mode, which resulted in 44% increased molecular coverage. In addition, we were able to generate images of hen ovary sections showing their morphological features. Following-up tandem mass spectrometry (MS/MS) indicated that this dicationic reagent [C5(bpyr)2]2+ could form ionic bonds with the headgroup of glycerophospholipid ions. The addition of the dicationic reagent [C5(bpyr)2]2+ in the electrospray solvent provides a rapid and effective way to enhance the detection of metabolites in positive ionization mode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...