Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 346: 112139, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38838990

RESUMEN

Dipterocarp species dominate tropical forest ecosystems and provide key ecological and economic value through their use of aromatic resins, medicinal chemicals, and high-quality timber. However, habitat loss and unsustainable logging have endangered many Dipterocarpaceae species. Genomic strategies provide new opportunities for both elucidating the molecular pathways underlying these desirable traits and informing conservation efforts for at-risk taxa. This review summarizes the progress in dipterocarp genomics analysis and applications. We describe 16 recently published Dipterocarpaceae genome sequences, representing crucial genetic blueprints. Phylogenetic comparisons delineate evolutionary relationships among species and provide frameworks for pinpointing functional changes underlying specialized metabolism and wood development patterns. We also discuss connections revealed thus far between specific gene families and both oleoresin biosynthesis and wood quality traits-including the identification of key terpenoid synthases and cellulose synthases likely governing pathway flux. Moreover, the characterization of adaptive genomic markers offers vital resources for supporting conservation practices prioritizing resilient genotypes displaying valuable oleoresin and timber traits. Overall, progress in dipterocarp functional and comparative genomics provides key tools for addressing the intertwined challenges of preserving biodiversity in endangered tropical forest ecosystems while sustainably deriving aromatic chemicals and quality lumber that support diverse human activities.


Asunto(s)
Conservación de los Recursos Naturales , Dipterocarpaceae , Genoma de Planta , Dipterocarpaceae/genética , Dipterocarpaceae/metabolismo , Filogenia , Madera/genética , Genómica , Extractos Vegetales
2.
Oecologia ; 204(3): 717-726, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483587

RESUMEN

Most canopy species in lowland tropical rain forests in Southeast Asia, represented by Dipterocarpaceae, undergo mast reproduction synchronously at community level during a general flowering event. Such events occur at irregular intervals of 2-10 years. Some species do not necessarily participate in every synchronous mast reproduction, however. This may be due to a lack of carbohydrate resources in the trees for masting. We tested the hypothesis that interspecific differences in the time required to store assimilates in trees for seed production are due to the frequency of masting and/or seed size in each species. We examined the relationship between reproductive frequency and the carbon accumulation period necessary for seed production, and between the seed size and the period, using radiocarbon analysis in 18 dipterocarp canopy species. The mean carbon accumulation period was 0.84 years before seed maturation in all species studied. The carbon accumulation period did not have any significant correlation with reproductive frequency or seed size, both of which varied widely across the species studied. Our results show that for seed production, dipterocarp masting species do not use carbon assimilates stored for a period between the masting years, but instead use recent photosynthates produced primarily in a masting year, regardless of the masting interval or seed size of each species. These findings suggest that storage of carbohydrate resources is not a limiting factor in the masting of dipterocarps, and that accumulation and allocation of other resources is important as a precondition for participation in general flowering.


Asunto(s)
Carbono , Bosque Lluvioso , Semillas , Árboles , Reproducción , Carbohidratos
3.
Heliyon ; 10(2): e23649, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293342

RESUMEN

In tropical Southeast Asia, Shorea is the most economically important tree and the largest genus in the Dipterocarpaceae family. It comprises about 150-200 species, of which majority are distributed in Malaysia, with others found in Sumatra and Borneo (Kalimantan) in Indonesia. Research on the chemical constituents of Shorea plants has been ongoing for many years. To date, a total of 113 different compounds, including 83 stilbenes and their resveratrol oligomers, 18 triterpenes/terpenoids, 7 coumarins 3 flavonoids and 2 steroids have been isolated and successfully elucidated from 26 different species of this genus. The diversity of the stilbene resveratrol oligomers in the Shorea genus is primarily due to the difference in the amount of resveratrol constituent units, which include dimers, trimers and tetramers. In addition to the species' traditional usage in the treatment of illnesses, such as diarrhea, toothaches, skin diseases, ear troubles and wounds, the extracts and secondary metabolite compounds isolated from various parts of the plant species are known to have a very potent antioxidant, antimicrobial, anticancer, anti-diabetic, anti-obesity, antiulcer, hepatoprotective and nephroprotective activities. This review aims to summarize the most recent research made from 1999 to date on the secondary metabolite compounds isolated from different species of genus Shorea, as well as the bioactivity (in vitro and in vivo) of the crude extracts and the isolated secondary metabolite compounds.

4.
PeerJ ; 11: e16368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38047035

RESUMEN

Climatic factors have commonly been attributed as the trigger of general flowering, a unique community-level mass flowering phenomenon involving most dipterocarp species that forms the foundation of Southeast Asian tropical rainforests. This intriguing flowering event is often succeeded by mast fruiting, which provides a temporary yet substantial burst of food resources for animals, particularly frugivores. However, the physiological mechanism that triggers general flowering, particularly in dipterocarp species, is not well understood largely due to its irregular and unpredictable occurrences in the tall and dense forests. To shed light on this mechanism, we employed ecological transcriptomic analyses on an RNA-seq dataset of a general flowering species, Shorea curtisii (Dipterocarpaceae), sequenced from leaves and buds collected at multiple vegetative and flowering phenological stages. We assembled 64,219 unigenes from the transcriptome of which 1,730 and 3,559 were differentially expressed in the leaf and the bud, respectively. Differentially expressed unigene clusters were found to be enriched with homologs of Arabidopsis thaliana genes associated with response to biotic and abiotic stresses, nutrient level, and hormonal treatments. When combined with rainfall data, our transcriptome data reveals that the trees were responding to a brief period of drought prior to the elevated expression of key floral promoters and followed by differential expression of unigenes that indicates physiological changes associated with the transition from vegetative to reproductive stages. Our study is timely for a representative general flowering dipterocarp species that occurs in forests that are under the constant threat of deforestation and climate change as it pinpoints important climate sensitive and flowering-related homologs and offers a glimpse into the cascade of gene expression before and after the onset of floral initiation.


Asunto(s)
Dipterocarpaceae , Transcriptoma , Animales , Transcriptoma/genética , Dipterocarpaceae/genética , Flores/genética , Perfilación de la Expresión Génica , Reproducción/genética
5.
Front Plant Sci ; 14: 1241908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023878

RESUMEN

Introduction: Shorea macrophylla is a commercially important tropical tree species grown for timber and oil. It is amenable to plantation forestry due to its fast initial growth. Genomic selection (GS) has been used in tree breeding studies to shorten long breeding cycles but has not previously been applied to S. macrophylla. Methods: To build genomic prediction models for GS, leaves and growth trait data were collected from a half-sib progeny population of S. macrophylla in Sari Bumi Kusuma forest concession, central Kalimantan, Indonesia. 18037 SNP markers were identified in two ddRAD-seq libraries. Genomic prediction models based on these SNPs were then generated for diameter at breast height and total height in the 7th year from planting (D7 and H7). Results and discussion: These traits were chosen because of their relatively high narrow-sense genomic heritability and because seven years was considered long enough to assess initial growth. Genomic prediction models were built using 6 methods and their derivatives with the full set of identified SNPs and subsets of 48, 96, and 192 SNPs selected based on the results of a genome-wide association study (GWAS). The GBLUP and RKHS methods gave the highest predictive ability for D7 and H7 with the sets of selected SNPs and showed that D7 has an additive genetic architecture while H7 has an epistatic genetic architecture. LightGBM and CNN1D also achieved high predictive abilities for D7 with 48 and 96 selected SNPs, and for H7 with 96 and 192 selected SNPs, showing that gradient boosting decision trees and deep learning can be useful in genomic prediction. Predictive abilities were higher in H7 when smaller number of SNP subsets selected by GWAS p-value was used, However, D7 showed the contrary tendency, which might have originated from the difference in genetic architecture between primary and secondary growth of the species. This study suggests that GS with GWAS-based SNP selection can be used in breeding for non-cultivated tree species to improve initial growth and reduce genotyping costs for next-generation seedlings.

6.
J Fungi (Basel) ; 9(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37367561

RESUMEN

Leaf litter is an essential functional aspect of forest ecosystems, acting as a source of organic matter, a protective layer in forest soils, and a nurturing habitat for micro- and macro-organisms. Through their successional occurrence, litter-inhabiting microfungi play a key role in litter decomposition and nutrient recycling. Despite their importance in terrestrial ecosystems and their abundance and diversity, information on the taxonomy, diversity, and host preference of these decomposer taxa is scarce. This study aims to clarify the taxonomy and phylogeny of four saprobic fungal taxa inhabiting Dipterocarpus alatus leaf litter. Leaf litter samples were collected from Doi Inthanon National Park in Chiang Mai, northern Thailand. Fungal isolates were characterized based on morphology and molecular phylogeny of the nuclear ribosomal DNA (ITS, LSU) and protein-coding genes (tub2, tef1-α, rpb2). One novel saprobic species, Ciliochorella dipterocarpi, and two new host records, Pestalotiopsis dracontomelon and Robillarda australiana, are introduced. The newly described taxa are compared with similar species, and comprehensive descriptions, micrographs, and phylogenetic trees are provided.

7.
Ecol Evol ; 13(4): e10004, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091565

RESUMEN

The Janzen-Connell hypothesis proposes that density and distance-dependent mortality generated by specialist natural enemies prevent competitive dominance. Much literature on Janzen-Connell mechanisms comes from the neotropics, and evidence of the role of distance and density-dependence is still relatively sparse. We tested the predictions of the Janzen-Connell hypothesis in a South-East Asian system dominated by mast fruiting species. We hypothesized that seedling survival would decrease with distance and density, seedling growth would increase, and herbivory would decrease, according to the predictions of the Janzen-Connell hypothesis. Experiments were conducted to determine the strength of the Janzen-Connell mechanism by manipulating the density and identity of tree species as a function of the distance from parent trees. Survival of conspecific seedlings was reduced near adult trees of one species, but not another. High densities of seedlings decreased the growth of conspecific seedlings of both species. In both species, herbivory rates decreased with distance in low-density areas. This study indicates that dipterocarp species experienced weak Janzen-Connell effects of distance and density dependence at the growth stage studied. Future studies in this system might focus on earlier life-history stages such as seeds and small seedlings, as well as studying mortality during mast-seeding events.

8.
Data Brief ; 47: 109029, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36936629

RESUMEN

Shorea macrophylla belongs to the Shorea genus under the Dipterocarpaceae family. It is a woody tree that grows in the rainforest in Southeast Asia. The complete chloroplast (cp) genome sequence of S. macrophylla is reported here. The genomic size of S. macrophylla is 150,778 bp and it possesses a circular structure with conserved constitute regions of large single copy (LSC, 83,681 bp) and small single copy (SSC, 19,813 bp) regions, as well as a pair of inverted repeats with a length of 23,642 bp. It has 112 unique genes, including 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The genome exhibits a similar GC content, gene order, structure, and codon usage when compared to previously reported chloroplast genomes from other plant species. The chloroplast genome of S. macrophylla contained 262 SSRs, the most prevalent of which was A/T, followed by AAT/ATT. Furthermore, the sequences contain 43 long repeat sequences, practically most of them are forward or palindrome type long repeats. The genome structure of S. macrophylla was compared to the genomic structures of closely related species from the same family, and eight mutational hotspots were discovered. The phylogenetic analysis demonstrated a close relationship between Shorea and Parashorea species, indicating that Shorea is not monophyletic. The complete chloroplast genome sequence analysis of S. macrophylla reported in this paper will contribute to further studies in molecular identification, genetic diversity, and phylogenetic research.

9.
Proc Biol Sci ; 289(1976): 20220739, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703055

RESUMEN

The role of conspecific density dependence (CDD) in the maintenance of species richness is a central focus of tropical forest ecology. However, tests of CDD often ignore the integrated effects of CDD over multiple life stages and their long-term impacts on population demography. We combined a 10-year time series of seed production, seedling recruitment and sapling and tree demography of three dominant Southeast Asian tree species that adopt a mast-fruiting phenology. We used these data to construct individual-based models that examine the effects of CDD on population growth rates (λ) across life-history stages. Recruitment was driven by positive CDD for all species, supporting the predator satiation hypothesis, while negative CDD affected seedling and sapling growth of two species, significantly reducing λ. This negative CDD on juvenile growth overshadowed the positive CDD of recruitment, suggesting the cumulative effects of CDD during seedling and sapling development has greater importance than the positive CDD during infrequent masting events. Overall, CDD varied among positive, neutral and negative effects across life-history stages for all species, suggesting that assessments of CDD on transitions between just two stages (e.g. seeds seedlings or juveniles mature trees) probably misrepresent the importance of CDD on population growth and stability.


Asunto(s)
Bosques , Árboles , Demografía , Plantones , Semillas , Clima Tropical
10.
Ecol Evol ; 12(5): e8855, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35509611

RESUMEN

While reforestation is gaining momentum to moderate climate change via carbon sequestration, there is also an opportunity to use tree planting to confront declining global biodiversity. Where tree species vary in support of diversity, selecting appropriate species for planting could increase conservation effectiveness. We used a common garden experiment in Borneo using 24 native tree species to examine how variation among tree species in their support of beetle diversity is predicted by plant traits associated with "acquisitive" and "conservative" resource acquisition strategies. We evaluate three hypotheses: (1) beetle communities show fidelity to host identity as indicated by variation in abundance and diversity among tree species, (2) the leaf economic spectrum partially explains this variation as shown by beetle preferences for plant species that are predicted by plant traits, and (3) a small number of selected tree species can capture higher beetle species richness than a random tree species community. We found high variation among tree species in supporting three highly intercorrelated metrics of beetle communities: abundance, richness, and Shannon diversity. Variation in support of beetle communities was predicted by plant traits and varied by plant functional groups; within the dipterocarp family, high beetle diversity was predicted by conservative traits such as high wood density and slow growth, and in non-dipterocarps by the acquisitive traits of high foliar K and rapid growth. Using species accumulation curves and extrapolation to twice the original sample size, we show that 48 tree species were not enough to reach asymptote levels of beetle richness. Nevertheless, species accumulation curves of the six tree species with the highest richness had steeper slopes and supported 33% higher richness than a random community of tree species. Reforestation projects concerned about conservation can benefit by identifying tree species with a disproportional capacity to support biodiversity based on plant traits.

11.
New Phytol ; 235(6): 2183-2198, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35633119

RESUMEN

Fine-scale topographic-edaphic gradients are common in tropical forests and drive species spatial turnover and marked changes in forest structure and function. We evaluate how hydraulic traits of tropical tree species relate to vertical and horizontal spatial niche specialization along such a gradient. Along a topographic-edaphic gradient with uniform climate in Borneo, we measured six key hydraulic traits in 156 individuals of differing heights in 13 species of Dipterocarpaceae. We investigated how hydraulic traits relate to habitat, tree height and their interaction on this gradient. Embolism resistance increased in trees on sandy soils but did not vary with tree height. By contrast, water transport capacity increased on sandier soils and with increasing tree height. Habitat and height only interact for hydraulic efficiency, with slope for height changing from positive to negative from the clay-rich to the sandier soil. Habitat type influenced trait-trait relationships for all traits except wood density. Our data reveal that variation in the hydraulic traits of dipterocarps is driven by a combination of topographic-edaphic conditions, tree height and taxonomic identity. Our work indicates that hydraulic traits play a significant role in shaping forest structure across topographic-edaphic and vertical gradients and may contribute to niche specialization among dipterocarp species.


Asunto(s)
Bosques , Árboles , Borneo , Ecosistema , Suelo , Clima Tropical
12.
PeerJ ; 10: e12949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356469

RESUMEN

The Malay Archipelago is one of the most biodiverse regions on Earth, but it suffers high extinction risks due to severe anthropogenic pressures. Paleobotanical knowledge provides baselines for the conservation of living analogs and improved understanding of vegetation, biogeography, and paleoenvironments through time. The Malesian bioregion is well studied palynologically, but there have been very few investigations of Cenozoic paleobotany (plant macrofossils) in a century or more. We report the first paleobotanical survey of Brunei Darussalam, a sultanate on the north coast of Borneo that still preserves the majority of its extraordinarily diverse, old-growth tropical rainforests. We discovered abundant compression floras dominated by angiosperm leaves at two sites of probable Pliocene age: Berakas Beach, in the Liang Formation, and Kampong Lugu, in an undescribed stratigraphic unit. Both sites also yielded rich palynofloral assemblages from the macrofossil-bearing beds, indicating lowland fern-dominated swamp (Berakas Beach) and mangrove swamp (Kampong Lugu) depositional environments. Fern spores from at least nine families dominate both palynological assemblages, along with abundant fungal and freshwater algal remains, rare marine microplankton, at least four mangrove genera, and a diverse rainforest tree and liana contribution (at least 19 families) with scarce pollen of Dipterocarpaceae, today's dominant regional life form. Compressed leaves and rare reproductive material represent influx to the depocenters from the adjacent coastal rainforests. Although only about 40% of specimens preserve informative details, we can distinguish 23 leaf and two reproductive morphotypes among the two sites. Dipterocarps are by far the most abundant group in both compression assemblages, providing rare, localized evidence for dipterocarp-dominated lowland rainforests in the Malay Archipelago before the Pleistocene. The dipterocarp fossils include winged Shorea fruits, at least two species of plicate Dipterocarpus leaves, and very common Dryobalanops leaves. We attribute additional leaf taxa to Rhamnaceae (Ziziphus), Melastomataceae, and Araceae (Rhaphidophora), all rare or new fossil records for the region. The dipterocarp leaf dominance contrasts sharply with the family's <1% representation in the palynofloras from the same strata. This result directly demonstrates that dipterocarp pollen is prone to strong taphonomic filtering and underscores the importance of macrofossils for quantifying the timing of the dipterocarps' rise to dominance in the region. Our work shows that complex coastal rainforests dominated by dipterocarps, adjacent to swamps and mangroves and otherwise similar to modern ecosystems, have existed in Borneo for at least 4-5 million years. Our findings add historical impetus for the conservation of these gravely imperiled and extremely biodiverse ecosystems.


Asunto(s)
Ecosistema , Fósiles , Humanos , Borneo , Brunei , Plantas , Hojas de la Planta
13.
Plant Biotechnol J ; 20(3): 538-553, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687252

RESUMEN

Dipterocarpaceae are typical tropical plants (dipterocarp forests) that are famous for their high economic value because of their production of fragrant oleoresins, top-quality timber and usage in traditional Chinese medicine. Currently, the lack of Dipterocarpaceae genomes has been a limiting factor to decipher the fragrant oleoresin biosynthesis and gain evolutionary insights into high-quality wood formation in Dipterocarpaceae. We generated chromosome-level genome assemblies for two representative Dipterocarpaceae species viz. Dipterocarpus turbinatus Gaertn. f. and Hopea hainanensis Merr. et Chun. Our whole-genome duplication (WGD) analysis revealed that Dipterocarpaceae underwent a shared WGD event, which showed significant impacts on increased copy numbers of genes related to the biosynthesis of terpene, BAHD acyltransferases, fatty acid and benzenoid/phenylpropanoid, which probably confer to the formation of their characteristic fragrant oleoresin. Additionally, compared with common soft wood plants, the expansion of gene families was also found to be associated with wood formation, such as in CESA (cellulose synthase), CSLE (cellulose synthase-like protein E), laccase and peroxidase in Dipterocarpaceae genomes, which might also contribute to the formation of harder, stronger and high-density timbers. Finally, an integrative analysis on a combination of genomic, transcriptomic and metabolic data from different tissues provided further insights into the molecular basis of fragrant oleoresins biosynthesis and high-quality wood formation of Dipterocarpaceae. Our study contributes the first two representative genomes for Dipterocarpaceae, which are valuable genetic resources for further researches on the fragrant oleoresins and superior-quality timber, genome-assisted breeding and improvement, and conservation biology of this family.


Asunto(s)
Dipterocarpaceae , Cromosomas , Dipterocarpaceae/genética , Fitomejoramiento , Extractos Vegetales
14.
MycoKeys ; 77: 117-141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33551660

RESUMEN

In 1994 Corner published five new species within the genus Psathyrella, all having been collected on the Malay Peninsula between 1929 and 1930. Three of these species belong to the genus Hebeloma and with their vinaceous colored lamellae and spore print, when fresh, they belong to H. sect. Porphyrospora. Of these three species, only one, P. flavidifolia, was validly published and thus we herewith recombine it as H. flavidifolium. The other two species, P. splendens and P. verrucispora, are synonyms of H. parvisporum and H. lactariolens, respectively. We also describe a new Malayan species, H. radicans, which also belongs to H. sect. Porphyrospora. These findings confirm the western Pacific Rim as a diversity hotspot for H. sect. Porphyrospora. The records described within this paper, represent the first recognition that the genus Hebeloma, and indeed that members of the ectomycorrhizal Hymenogastraceae, are present on the Malay Peninsula.

15.
Ecol Evol ; 11(1): 4-10, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437410

RESUMEN

Microsatellite markers were isolated and characterized for Hopea hainanensis Merrill & Chun, an endangered tree species with scattered distribution in Hainan Island and northern Vietnam. Twenty-six microsatellite markers were developed based on next-generation sequencing data and were genotyped by capillary electrophoresis on an ABI 3730xl DNA Analyzer. Twelve markers were found to be polymorphic in H. hainanensis. GENODIVE analyses indicated that the number of alleles ranged from 2 to 6 per locus, and the observed and expected heterozygosity varied from 0 to 0.755 and from 0.259 to 0.779, respectively. Primer transferability was tested with Hopea chinensis Hand.-Mazz. and Hopea reticulata Tardieu, in which 3 and 7 microsatellite markers were found to be polymorphic, separately. The results showed that H. reticulata and H. hainanensis had similar levels of genetic diversity. A neighbor joining dendrogram clustered all individuals into two major groups, one of which was exclusively constituted by H. hainanensis, while the other consisted of two subgroups, corresponding to H. reticulata and H. chinensis, respectively. The 12 polymorphic microsatellite markers could be applied to study genetic diversity, population differentiation, mating system, and fine-scale spatial genetic structures of H. hainanensis as well as its close relatives, facilitating the conservation and restoration of these endangered but valuable Hopea species.

16.
Nat Prod Res ; 35(18): 3156-3160, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31711318

RESUMEN

Phytochemical investigation of the stem bark of Hopea parviflora resulted in the isolation of 9 compounds; which includes friedelin (1), friedelin-3ß-ol (2), (-)-ampelopsin A (3), (-)-ɛ-viniferin (4), (-)-hopeaphenol (5), vaticaphenol A (6), 2,4,8-trihydroxyphenanthrene-2-O-glucoside (7), ellagic acid-3,3',4-trimethoxy-4'-O-α-L-rhamnopyranoside (8) and ß-sitosterol-ß-D-glucoside (9). Among them, compounds 1, 2, 6, 7, 8 and 9 are isolated for the first time from this species. Further, we evaluated the anti-inflammatory activity of compounds 4, 5, 6, 7 and 8. In this study, compound 8 inhibited the activity of proinflammatory mediators like NO, TNF-α, IL-6, 5-LOX and COX-2, also promoted the action of anti-inflammatory mediator like IL-10 via inhibition of the NF-κB pathway in LPS-stimulated RAW 264.7 macrophages.


Asunto(s)
Antiinflamatorios/farmacología , Dipterocarpaceae , Ácido Elágico/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Dipterocarpaceae/química , Ácido Elágico/aislamiento & purificación , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Ratones , FN-kappa B , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Corteza de la Planta/química , Células RAW 264.7
17.
Ecol Evol ; 10(23): 13154-13164, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304525

RESUMEN

Fungal pathogens are implicated in driving tropical plant diversity by facilitating strong, negative density-dependent mortality of conspecific seedlings (C-NDD). Assessment of the role of fungal pathogens in mediating coexistence derives from relatively few tree species and predominantly the Neotropics, limiting our understanding of their role in maintaining hyper-diversity in many tropical forests. A key question is whether fungal pathogen-mediated C-NDD seedling mortality is ubiquitous across diverse plant communities. Using a manipulative shadehouse experiment, we tested the role of fungal pathogens in mediating C-NDD seedling mortality of eight mast fruiting Bornean trees, typical of the species-rich forests of South East Asia. We demonstrate species-specific responses of seedlings to fungicide and density treatments, generating weak negative density-dependent mortality. Overall seedling mortality was low and likely insufficient to promote overall community diversity. Although conducted in the same way as previous studies, we find little evidence that fungal pathogens play a substantial role in determining patterns of seedling mortality in a SE Asian mast fruiting forest, questioning our understanding of how Janzen-Connell mechanisms structure the plant communities of this globally important forest type.

18.
Mitochondrial DNA B Resour ; 5(3): 3750-3751, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33367086

RESUMEN

Vatica guangxiensis S.L. Mo is an evergreen large tree of Dipterocarpaceae. Herein, we assembled the complete chloroplast genome of Vatica guangxiensis by next-generation sequencing technologies. The complete chloroplast genome sequence of Vatica guangxiensis is 151,010 base pairs (bp) in length, including a pair of inverted repeat regions (IRs, 23,827 bp), one large single-copy region (LSC, 83,353 bp), one small single-copy region (SSC, 20,003 bp). Besides, the complete chloroplast genome contains 123 genes in total, including 83 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Phylogenetic analysis showed that Vatica guangxiensis has the closest relationship with Vatica mangachapoi. Our study lay a foundation for further research of Vatica mangachapoi.

19.
J Nat Med ; 74(4): 619-637, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32356240

RESUMEN

Oligostilbenoids are a group of natural products derived from the oxidative coupling of C6-C2-C6 units found in some plant families. A structurally diverse chemical pool is produced after the successive regioselective and stereoselective oligomerization of resveratrol. This review describes the current status and knowledge of the structure of resveratrol oligomers (ROs) in Dipterocarpaceaeous plants (DPs). Beginning with the recently validated formation of ROs in DPs, each downstream conversion is described from the perspective of the resveratrol coupling mode. Particular emphasis is placed upon the regioselectivity of monomer- and dimer-derived radical-radical coupling processes, which are responsible for producing dimers, trimers, and tetramers with various cyclic frame skeletons, as well as related processes that result in highly condensed scaffolds, such as hexamers and octamers. Trimers in oxidized, dearomatized, and rearranged forms are also summarized, as well as the biogenic relationship between the compounds. Furthermore, emphasis is placed on the O- and C-glucosides of ROs, as well as on the hetero-coupled ROs. In addition, several stereoisomers that originate from asymmetric carbons and the stereochemistry with respect to the conformation due to the chiral axis are described. Besides, NMR spectroscopic properties such as coalescence and anisotropy are briefly described. Approaches to determine absolute configuration are also summarized.

20.
Ecology ; 101(8): e03083, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32323299

RESUMEN

While work in temperate forests suggests that there are consistent differences in plant-soil feedback (PSF) between plants with arbuscular and ectomycorrhizal associations, it is unclear whether these differences exist in tropical rainforests. We tested the effects of mycorrhizal type, phylogenetic relationships to overstory species, and soil fertility on the growth of tree seedlings in a tropical Bornean rainforest with a high diversity of both ectomycorrhizal and arbuscular mycorrhizal trees. We found that ectomycorrhizal tree seedlings had higher growth in soils conditioned by close relatives and that this was associated with higher mycorrhizal colonization. By contrast, arbuscular mycorrhizal tree seedlings generally grew more poorly in soils conditioned by close relatives. For ectomycorrhizal species, the phylogenetic trend was insensitive to soil fertility. For arbuscular mycorrhizal seedlings, however, the effect of growing in soils conditioned by close relatives became increasingly negative as soil fertility increased. Our results demonstrate consistent effects of mycorrhizal type on plant-soil feedbacks across forest biomes. The positive effects of ectomycorrhizal symbiosis may help explain biogeographic variation across tropical forests, such as familial dominance of the Dipterocarpaceae in southeast Asia. However, positive feedbacks also raise questions about the role of PSFs in maintaining tropical diversity.


Asunto(s)
Micorrizas , Retroalimentación , Bosques , Hongos , Micorrizas/genética , Filogenia , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...