Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Biomed Pharmacother ; 179: 117315, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153434

RESUMEN

Lung cancer represents one of the most prevalent malignant neoplasms, commanding an alarming incidence and mortality rate globally. Non-small cell lung cancer (NSCLC), constituting approximately 80 %-90 % of all lung cancer cases, is the predominant pathological manifestation of this disease, with a disconcerting 5-year survival rate scarcely reaching 10 %. Extensive prior investigations have elucidated that the aberrant expression of X-ray repair cross-complementing gene 2 (XRCC2), a critical meiotic gene intricately involved in the DNA damage repair process, is intimately associated with tumorigenesis. Nevertheless, the precise roles and underlying mechanistic pathways of XRCC2 in NSCLC remain largely elusive. In the present study, we discerned an overexpression of XRCC2 within NSCLC patient tissues, particularly in high-grade samples, when juxtaposed with normal tissues. Targeted knockdown of XRCC2 notably impeded the proliferation of NSCLC both in vitro and in vivo. Comprehensive RNA sequencing and flow rescue assays unveiled that XRCC2 augments the proliferation of NSCLC cells through the down-regulation of FOS expression. Moreover, the c-Myc gene was definitively identified as an XRCC2 transcriptional factor by means of chromatin immunoprecipitation (ChIP) and luciferase reporter assays, whereby pharmacological attenuation of c-Myc expression, in conjunction with Doxorubicin, synergistically curtailed NSCLC cell growth both in vitro and in vivo. Collectively, our findings proffer critical insights into the novel c-Myc-XRCC2-FOS axis in promoting both proliferation and resistance to Doxorubicin in NSCLC cells, thereby extending a promising avenue for potential new diagnostic strategies and therapeutic interventions in NSCLC.

2.
Chem Biol Drug Des ; 104(2): e14587, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39175102

RESUMEN

Natural compounds such as thymoquinone (TQ) have recently gained increasing attention in treating glioblastoma (GBM). However, the effects of TQ in reversing drug resistance are not completely understood. Therefore, we aimed to examine TQ impacts on GBM cells with doxorubicin (DOX) resistance and the involvement of the PI3K/Akt/mTOR pathway. GBM cancer U87 and U87/DOX (resistant cells) cells were exposed to DOX and TQ, and cell proliferation was assessed by the MTT assay. ELISA was applied to evaluate cell apoptosis. The expression of apoptotic mediators such as Caspase-3, Bax, Bcl-2 and PI3K, Akt, mTOR, P-gp, and PTEN was assessed via qRT-PCR and western blot. We found that a combination of TQ and DOX suppressed dose-dependent cell growth capacity in cells and increased the cytotoxic effects of DOX in resistant cells. In addition, TQ treatment increased DOX-mediated apoptosis in U87/DOX cell lines via modulating the pro- and anti-apoptotic markers. A combination of TQ and DOX upregulated PTEN and downregulated PI3K, Akt, and mTOR, suppressing this signal transduction in resistant cells. In conclusion, we showed TQ potentiated doxorubicin-mediated antiproliferative and pro apoptotic function DOX-resistant glioblastoma cells, which is mediated by targeting and suppressing PI3K/Akt/mTOR signal transduction.


Asunto(s)
Apoptosis , Benzoquinonas , Doxorrubicina , Resistencia a Antineoplásicos , Glioblastoma , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Doxorrubicina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Benzoquinonas/farmacología , Benzoquinonas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Transducción de Señal/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
3.
Mol Cell Biochem ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896203

RESUMEN

Triple-negative breast cancer (TNBC) poses a formidable challenge in oncology due to its aggressive nature and limited treatment options. Although doxorubicin, a widely used chemotherapeutic agent, shows efficacy in TNBC treatment, acquired resistance remains a significant obstacle. Our study explores the role of MALSU1, a regulator of mitochondrial translation, in TNBC and its impact on cell proliferation and doxorubicin resistance. We observed increased MALSU1 expression in TNBC, correlating with poor patient prognosis. MALSU1 knockdown in TNBC cells significantly reduced proliferation, indicating its pivotal role in sustaining cell growth. Mechanistically, MALSU1 depletion resulted in decreased activities of mitochondrial respiratory chain complexes, cellular ATP levels, and mitochondrial respiration. Notably, exogenous addition of normal mitochondria restored proliferation and mitochondrial respiration in MALSU1-depleted TNBC cells. Importantly, MALSU1 knockdown enhanced the sensitivity of doxorubicin-resistant TNBC cells to doxorubicin treatment. Furthermore, pharmacological inhibition of mitochondrial translation using tigecycline and chloramphenicol mimicked the effects of MALSU1 knockdown, suggesting mitochondrial translation as a potential therapeutic target. Taken together, our findings not only elucidate the intricate role of MALSU1 in TNBC biology and doxorubicin resistance but also lay the groundwork for future investigations targeting MALSU1 and/or mitochondrial translation as a promising avenue for developing innovative therapeutic strategies against TNBC.

4.
Int J Biochem Cell Biol ; 171: 106581, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642827

RESUMEN

Triple-negative breast cancer (TNBC) poses significant challenges in treatment due to its aggressive nature and limited therapeutic targets. Understanding the underlying molecular mechanisms driving TNBC progression and chemotherapy resistance is imperative for developing effective therapeutic strategies. Thus, in this study, we aimed to elucidate the role of pyrroline-5-carboxylate reductase 3 (PYCR3) in TNBC pathogenesis and therapeutic response. We observed that PYCR3 is significantly upregulated in TNBC specimens compared to normal breast tissues, correlating with a poorer prognosis in TNBC patients. Knockdown of PYCR3 not only suppresses TNBC cell proliferation but also reverses acquired resistance of TNBC cells to doxorubicin, a commonly used chemotherapeutic agent. Mechanistically, we identified the mitochondrial localization of PYCR3 in TNBC cells and demonstrated its impact on TNBC cell proliferation and sensitivity to doxorubicin through the regulation of mtDNA copy number and mitochondrial respiration. Importantly, Selective reduction of mtDNA copy number using the mtDNA replication inhibitor 2', 3'-dideoxycytidine effectively recapitulates the phenotypic effects observed in PYCR3 knockout, resulting in decreased TNBC cell proliferation and the reversal of doxorubicin resistance through apoptosis induction. Thus, our study underscores the clinical relevance of PYCR3 and highlight its potential as a therapeutic target in TNBC management. By elucidating the functional significance of PYCR3 in TNBC, our findings contribute to a deeper understanding of TNBC biology and provide a foundation for developing novel therapeutic strategies aimed at improving patient outcomes.


Asunto(s)
Proliferación Celular , ADN Mitocondrial , Doxorrubicina , Resistencia a Antineoplásicos , Pirrolina Carboxilato Reductasas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Doxorrubicina/farmacología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Pirrolina Carboxilato Reductasas/metabolismo , Pirrolina Carboxilato Reductasas/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
5.
Mol Cell Biochem ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507019

RESUMEN

Understanding the mechanisms underlying doxorubicin resistance in triple-negative breast cancer (TNBC) holds paramount clinical significance. In our study, we investigate the potential of STK32C, a little-explored kinase, to impact doxorubicin sensitivity in TNBC cells. Our findings reveal elevated STK32C expression in TNBC specimens, associated with unfavorable prognosis in doxorubicin-treated TNBC patients. Subsequent experiments highlighted that STK32C depletion significantly augmented the sensitivity of doxorubicin-resistant TNBC cells to doxorubicin. Mechanistically, we unveiled that the cytoplasmic subset of STK32C plays a pivotal role in mediating doxorubicin sensitivity, primarily through the regulation of glycolysis. Furthermore, the kinase activity of STK32C proved to be essential for its mediation of doxorubicin sensitivity, emphasizing its role as a kinase. Our study suggests that targeting STK32C may represent a novel therapeutic approach with the potential to improve doxorubicin's efficacy in TNBC treatment.

6.
Front Pharmacol ; 15: 1303732, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420199

RESUMEN

Background and objective: Osteosarcoma is a common primary malignant tumor of bone, and doxorubicin is one of the most widely used therapeutic drugs. While the problem of doxorubicin resistance limits the long-term treatment benefits in osteosarcoma patients. The role of miRNAs and their target genes in osteosarcoma have become increasingly prominent. Currently, there is no report on miR-506-3p reversing doxorubicin resistance by targeting STAT3 in osteosarcoma. The purpose of this study was to investigate the molecular mechanism that overexpression of miR-506-3p reverses doxorubicin resistance in drug-resistant osteosarcoma cells. Methods: Doxorubicin-resistant osteosarcoma cells (U-2OS/Dox) were constructed by intermittent stepwise increasing stoichiometry. The target genes of miR-506-3p were predicted by bioinformatics approach and the targeting relationship between miR-506-3p and STAT3 was detected using dual luciferase reporter assay. U-2OS/Dox cells were treated with miR-506-3p overexpression and STAT3 silencing respectively. Then Western blot and RT-qPCR were used to detect the protein and mRNA expression levels of JAK2/STAT3 signaling pathway, drug-resistant and apoptotic associated molecules. The migration and invasion were assessed by cell scratch assay and transwell assay. The cell proliferative viability and apoptosis were investigated by CCK8 assay and flow cytometry assay. Results: U-2OS/Dox cells were successfully constructed with a 14.4-fold resistance. MiR-506-3p is directly bound to the 3'-UTR of STAT3 mRNA. Compared with U-2OS cells, the mRNA expression of miR-506-3p was reduced in U-2OS/Dox cells. Overexpression of miR-506-3p decreased the mRNA expression levels of JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and decreased the protein expression levels of p-JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and conversely increased Bax expression. It also inhibited the proliferation, migration and invasion of U-2OS/Dox cells and promoted cells apoptosis. The results of STAT3 silencing experiments in the above indicators were consistent with that of miR-506-3p overexpression. Conclusion: Overexpression of miR-506-3p could inhibit the JAK2/STAT3 pathway and the malignant biological behaviors, then further reverse doxorubicin resistance in drug-resistant osteosarcoma cells. The study reported a new molecular mechanism for reversing the resistance of osteosarcoma to doxorubicin chemotherapy and provided theoretical support for solving the clinical problems of doxorubicin resistance in osteosarcoma.

7.
Cell Biochem Biophys ; 82(2): 659-667, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38411783

RESUMEN

Breast cancer (BC) is a lethal disorder that threatens the life safety of the majority of females globally, with rising morbidity and mortality year by year. Doxorubicin is a cytotoxic anthracycline antibiotic that is widely used as one of the first-line chemotherapy agents for patients with BC. However, the efficacy of doxorubicin in the clinic is largely limited by its serious side effects and acquired drug resistance. Allicin (diallyl thiosulfinate), as the major component and key active compound present in freshly crushed garlic, has shown potential effects in suppressing chemotherapy resistance in various cancers. Our research aimed to explore the relationship between allicin and doxorubicin resistance in BC. To generate doxorubicin-resistant BC cell lines (MCF-7/DOX and MDA-MB-231/DOX), doxorubicin-sensitive parental cell lines MCF-7 and MDA-MB-231 were continuously exposed to stepwise increased concentrations of doxorubicin over a period of 6 months. CCK-8, colony formation, flow cytometry, RT-qPCR, and western blotting assays were performed to investigate the effects of allicin and/or doxorubicin treatment on the viability, proliferation and apoptosis and the expression of Nrf2, HO-1, phosphate AKT and AKT in doxorubicin-resistant BC cells. Our results showed that combined treatment of allicin with doxorubicin exhibited better effects on inhibiting the proliferation and enhancing the apoptosis of doxorubicin-resistant BC cells than treatment with allicin or doxorubicin alone. Mechanistically, allicin suppressed the levels of Nrf2, HO-1, and phosphate AKT in doxorubicin-resistant BC cells. Collectively, allicin improves the doxorubicin sensitivity of BC cells by inactivating the Nrf2/HO-1 signaling pathway.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Disulfuros , Doxorrubicina , Resistencia a Antineoplásicos , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Ácidos Sulfínicos , Humanos , Ácidos Sulfínicos/farmacología , Disulfuros/farmacología , Doxorrubicina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antibióticos Antineoplásicos/farmacología
8.
Curr Med Chem ; 31(22): 3397-3411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347785

RESUMEN

BACKGROUND: Chemotherapy resistance is one of the main causes of clinical chemotherapy failure. Current cancer research explores the drug resistance mechanism and new therapeutic targets. This work aims to elucidate the mechanism of thyroid hormone receptor interactor 13 (TRIP13) affecting doxorubicin (DOX) resistance in colorectal cancer (CRC). METHODS: Bioinformatics analyses were employed to clarify TRIP13 expression in CRC tissues and predict the correlation of the TRIP13 enrichment pathway with glycolysis-related genes and stemness index mRNAsi. Quantitative real-time polymerase chain reaction and western blot were adopted to analyze the expression of TRIP13 and glycolysis- related genes. Cell Counting Kit-8 was utilized to determine the cell viability and IC50 value. Western blot was employed to measure the expression of stemness-related factors. Cell function assays were performed to detect cells' sphere-forming ability and glycolysis level. Animal models were constructed to determine the effects of TRIP13 expression on CRC tumor growth. RESULTS: TRIP13 was significantly overexpressed in CRC, concentrated in the glycolysis signaling pathway, and positively correlated with stemness index mRNAsi. High expression of TRIP13 facilitated DOX resistance in CRC. Further mechanistic studies revealed that overexpression of TRIP13 could promote cell stemness through glycolysis, which was also confirmed in animal experiments. CONCLUSION: TRIP13 was highly expressed in CRC, which enhanced the DOX resistance of CRC cells by activating glycolysis to promote cell stemness. These findings offer new insights into the pathogenesis of DOX resistance in CRC and suggest that TRIP13 may be a new target for reversing DOX resistance in CRC.


Asunto(s)
Neoplasias Colorrectales , Doxorrubicina , Resistencia a Antineoplásicos , Glucólisis , Humanos , Doxorrubicina/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glucólisis/efectos de los fármacos , Animales , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Antibióticos Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ATPasas Asociadas con Actividades Celulares Diversas
9.
J Bioenerg Biomembr ; 55(6): 457-466, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919637

RESUMEN

Doxorubicin (DOX) is the most extensively used drug in the chemotherapy of thyroid cancer (TC). However, the existence of DOX resistance is not conducive to TC treatment. Here, we investigated the role of USP10 in DOX-resistant TC and explored the underlying molecular mechanism. CCK-8 assay was used to measure cell viability in thyroid cancer FTC133 and DOX-resistant FTC133-DOX cells. RT-qPCR and western blot were used to evaluate USP10 expression. Cell migration, invasion, and apoptotic assays were conducted. Western blot was used to detect cellular signaling proteins, EMT-related proteins, and apoptosis-related proteins. We found a lower expression of USP10 in the human TC cell line FTC133 as compared to the normal human thyroid Htori-3 cells. Notably, USP10 expression was further reduced in DOX-resistant (FTC133-DOX) cells compared to the FTC133 cells. FTC133-DOX cells had increased invasion, migration, and EMT properties while less apoptosis by activating the PI3K/AKT pathway. Interestingly, overexpressing USP10 increased the chemosensitivity of FTC133 cells to DOX therapy. Overexpressing USP10 inhibited invasion, migration, and EMT properties of FTC133-DOX cells and promoted apoptosis. Mechanistically, overexpressing USP10 inhibited PI3K/AKT pathway by activating PTEN. Furthermore, overexpressed USP10 controlled all these processes by downregulating ABCG2. This study demonstrates that USP10 could reduce DOX-induced resistance of TC cells to DOX therapy and could suppress TC malignant behavior by inhibiting the PI3K/AKT pathway. Furthermore, USP10 targeted ABCG2 to inhibit all these malignant processes, therefore, either increasing USP10 expression or inhibiting ABCG2 could be used as novel targets for treating DOX-resistant thyroid cancer.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Neoplasias de la Tiroides , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias de la Tiroides/patología , Apoptosis , Proliferación Celular , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Proteínas de Neoplasias/metabolismo , Ubiquitina Tiolesterasa/metabolismo
10.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958656

RESUMEN

The large-conductance Ca2+-activated K+ channel, KCa1.1, plays a pivotal role in cancer progression, metastasis, and the acquisition of chemoresistance. Previous studies indicated that the pharmacological inhibition of KCa1.1 overcame resistance to doxorubicin (DOX) by down-regulating multidrug resistance-associated proteins in the three-dimensional spheroid models of human prostate cancer LNCaP, osteosarcoma MG-63, and chondrosarcoma SW-1353 cells. Investigations have recently focused on the critical roles of intratumoral, drug-metabolizing cytochrome P450 enzymes (CYPs) in chemoresistance. In the present study, we examined the involvement of CYPs in the acquisition of DOX resistance and its overcoming by inhibiting KCa1.1 in cancer spheroid models. Among the CYP isoforms involved in DOX metabolism, CYP3A4 was up-regulated by spheroid formation and significantly suppressed by the inhibition of KCa1.1 through the transcriptional repression of CCAAT/enhancer-binding protein, CEBPB, which is a downstream transcription factor of the Nrf2 signaling pathway. DOX resistance was overcome by the siRNA-mediated inhibition of CYP3A4 and treatment with the potent CYP3A4 inhibitor, ketoconazole, in cancer spheroid models. The phosphorylation levels of Akt were significantly reduced by inhibiting KCa1.1 in cancer spheroid models, and KCa1.1-induced down-regulation of CYP3A4 was reversed by the treatment with Akt and Nrf2 activators. Collectively, the present results indicate that the up-regulation of CYP3A4 is responsible for the acquisition of DOX resistance in cancer spheroid models, and the inhibition of KCa1.1 overcame DOX resistance by repressing CYP3A4 transcription mainly through the Akt-Nrf2-CEBPB axis.


Asunto(s)
Neoplasias Óseas , Citocromo P-450 CYP3A , Humanos , Masculino , Línea Celular Tumoral , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación hacia Abajo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
11.
Cancer Cell Int ; 23(1): 244, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848941

RESUMEN

BACKGROUND: Primary hepatocellular carcinoma (HCC) is a malignancy with high morbidity and mortality. KH domain-containing, RNA-binding signal transduction-associated protein 3 (KHDRBS3) is an RNA-binding protein that is aberrantly expressed in multiple tumors; however, its expression and biological function in HCC have not been reported. METHODS: KHDRBS3 knockdown and overexpression were performed using the lentiviral vector system to investigate the effects of KHDRBS3 on cell proliferation, apoptosis, chemoresistance, and glycolysis. Murine xenograft tumor models were constructed to study the role of KHDRBS3 on tumor growth in vivo. Furthermore, RNA-Pull Down and RNA immunoprecipitation were utilized to explore the interaction between KHDRBS3 and 14-3-3ζ, a phosphopeptide-binding molecule encoded by YWHAZ. RESULTS: KHDRBS3 was highly expressed in human HCC tissues and predicted the poor prognosis of patients with HCC. Knockdown of KHDRBS3 exhibited a carcinostatic effect in HCC and impeded proliferation and tumor growth, reduced glycolysis, enhanced cell sensitivity to doxorubicin, and induced apoptosis. On the contrary, forced expression of KHDRBS3 expedited the malignant biological behaviors of HCC cells. The expression of KHDRBS3 was positively correlated with the expression of 14-3-3ζ. RNA immunoprecipitation and RNA pull-down assays demonstrated that KHDRBS3 bound to YWHAZ. We further confirmed that 14-3-3ζ silencing significantly reversed the promotion of proliferation and glycolysis and the inhibition of apoptosis caused by KHDRBS3 overexpression. CONCLUSIONS: Our findings suggest that KHDRBS3 promotes glycolysis and malignant progression of HCC through upregulating 14-3-3ζ expression, providing a possible target for HCC therapy.

12.
AAPS PharmSciTech ; 24(7): 181, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697172

RESUMEN

In this study, nano-strategy for combined medication of active compounds from traditional Chinese medicine herbs was proposed to achieve the synergistic effects of inhibiting the doxorubicin (DOX) resistance, reducing the cardio-toxicity, and improving the treatment efficacy simultaneously. Dihydroartemisinin (DHA) and tetrandrine (TET) were co-delivered for the first time to treat DOX resistance of breast cancer with multi-pathway mechanism. Tumor micro-environment sensitivity prescription was adopted to enhance the reversal effect of DOX resistance nearly 50 times (resistance index, RI was 46.70) and uptake ability. The DHA-TET pH-sensitive liposomes (DHA-TET pH-sensitive LPs) had a good spherical structure and a uniform dispersion structure with particle size, polydispersity index (PDI), and zeta potential of 112.20 ± 4.80 nm, 0.20 ± 0.02, and - 8.63 ± 0.74 Mv, and was stable until 14 days under the storage environment of 4°C and for 6 months at room temperature environment. With the DOX resistance reversing ability increased, the inhibition effect of DHA-TET pH-sensitive LPs on both MCF-7/ADR cells and MCF-7 cells was significantly enhanced; meanwhile, the toxicity on cardiac cell (H9c2) was lowered. Ferroptosis induced by the DHA was investigated showing that the intracellular reactive oxygen species (ROS) and lipid peroxidation were increased to promote the synergistic effect through the due-loaded nano-carrier, providing a promising alternative for future clinical application.


Asunto(s)
Lipopolisacáridos , Liposomas , Medicina Tradicional China , Doxorrubicina/farmacología , Concentración de Iones de Hidrógeno
13.
Genes Genomics ; 45(10): 1329-1338, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634232

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with the highest degree of malignancy and is easily resistant to drugs due to the lack of hormone receptors. Research on the resistance mechanisms in TNBC is particularly important. Keratin 17 (KRT17) is highly expressed in TNBC. Anthracycline doxorubicin (Dox) is a commonly used chemotherapeutic drug for early stage triple-negative breast cancer. OBJECTIVE: This study investigated the role of KRT17 in TNBC-Dox resistance. METHODS: Immuno-histochemical staining, qPCR, western blotting (WB), and immunofluorescence were used to detect the expression of KRT17 in TNBC-Dox-resistant patients and in TNBC-Dox-resistant MDA-MB-468 and MDA-MB-231. the effect of KRT17 on the proliferation and migration in KRT17 knockdown of TNBC-Dox-resistant cells was determined by the CCK8, clone formation, transwell invasion and wound healing assays were used to determine. RESULTS: KRT17 was highly expressed in the TNBC-Dox-resistant cells. Knockdown of KRT17 significantly reduced the IC50s of TNBC-Dox-resistant and parental strains and also reduced the proliferation and invasion abilities of TNBC-Dox-resistant cell lines. KRT17 regulated the Wnt/ß-catenin signaling pathway. The inhibitory effect of KRT17 knockdown on the proliferation and migration of TNBC-Dox-resistant cells was reversed by an activator of the Wnt signaling pathway. CONCLUSION: KRT17 can inhibit the Wnt/ß-catenin signaling pathway, thereby reducing the proliferation and invasion ability of TNBC-Dox-resistant cells.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Antraciclinas , Doxorrubicina/farmacología , Queratina-17/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Vía de Señalización Wnt
14.
Front Pharmacol ; 14: 1150861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538178

RESUMEN

Breast cancer is the most prevalent malignancy among women. Doxorubicin (Dox) resistance was one of the major obstacles to improving the clinical outcome of breast cancer patients. The purpose of this study was to investigate the relationship between the FABP signaling pathway and Dox resistance in breast cancer. The resistance property of MCF-7/ADR cells was evaluated employing CCK-8, Western blot (WB), and confocal microscopy techniques. The glycolipid metabolic properties of MCF-7 and MCF-7/ADR cells were identified using transmission electron microscopy, PAS, and Oil Red O staining. FABP5 and CaMKII expression levels were assessed through GEO and WB approaches. The intracellular calcium level was determined by flow cytometry. Clinical breast cancer patient's tumor tissues were evaluated by immunohistochemistry to determine FABP5 and p-CaMKII protein expression. In the presence or absence of FABP5 siRNA or the FABP5-specific inhibitor SBFI-26, Dox resistance was investigated utilizing CCK-8, WB, and colony formation methods, and intracellular calcium level was examined. The binding ability of Dox was explored by molecular docking analysis. The results indicated that the MCF-7/ADR cells we employed were Dox-resistant MCF-7 cells. FABP5 expression was considerably elevated in MCF-7/ADR cells compared to parent MCF-7 cells. FABP5 and p-CaMKII expression were increased in resistant patients than in sensitive individuals. Inhibition of the protein expression of FABP5 by siRNA or inhibitor increased Dox sensitivity in MCF-7/ADR cells and lowered intracellular calcium, PPARγ, and autophagy. Molecular docking results showed that FABP5 binds more powerfully to Dox than the known drug resistance-associated protein P-GP. In summary, the PPARγ and CaMKII axis mediated by FABP5 plays a crucial role in breast cancer chemoresistance. FABP5 is a potentially targetable protein and therapeutic biomarker for the treatment of Dox resistance in breast cancer.

15.
Epigenetics ; 18(1): 2217033, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37243702

RESUMEN

Doxorubicin (DOX) resistance in breast cancer (BC) poses a huge challenge for the therapeutic effect on BC. Lnc KCNQ1OT1 play crucial roles in chemotherapy resistance. However, the role and mechanism of lnc KCNQ1OT1 in DOX resistance BC have not been investigated, which merits further exploration. Based on MCF-7 and MDA-MB-231 cells, MCF-7/DOX and MDA-MB-231/DOX cells were established using gradient concentrations of DOX. IC50 values and cell viability were determined using MTT. Cell proliferation was investigated by colony formation. Flow cytometry was performed to examine cell apoptosis and cell cycle. Gene expression was examined using qRT-PCR and western blot. The interactions among METTL3, lnc KCNQ1OT1, miR-103a-3p, and MDR1 were validated with MeRIP-qPCR, RIP, and dual-luciferase reporter gene assays. The results showed that Lnc KCNQ1OT1 was highly expressed in DOX-resistant BC cells, and lnc KCNQ1OT1 depletion could enhance DOX sensitivity in BC cells and DOX-resistant BC cells. Besides, lnc KCNQ1OT1 was modulated by MELLT3 in the manner of m6A modification. MiR-103a-3p could interact with lnc KCNQ1OT1 and MDR1. Overexpression of MDR1 abolished the impacts of lnc KCNQ1OT1 depletion on DOX resistance in BC. In conclusion, our results unveiled that in BC cells and DOX-resistant BC cells, lnc KCNQ1OT1 could be mediated by METTL3 through m6A modification to elevate and stabilize its expression, further inhibiting miR-103a-3p/MDR1 axis to promote DOX resistance, which might provide novel thought to overcome DOX resistance in BC.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , MicroARNs/genética , MicroARNs/metabolismo , Metilación de ADN , Proliferación Celular , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Metiltransferasas/genética , Metiltransferasas/metabolismo
16.
Phytomedicine ; 114: 154780, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004402

RESUMEN

BACKGROUND: Acquired resistance to doxorubicin (DOX) inevitably limits its clinical use against breast cancer (BC). Isorhamnetin (IS), a native flavonoid which extensively available in vegetables, fruits, and phytomedicine, has been deemed to the probable cancer chemopreventive agent in preceding explorations since it exhibits satisfied antitumor activity. So far, the strategy for alleviating DOX resistance by using IS as a sensitizer against resistant BC has not yet been covered. PURPOSE: To investigate the effect of IS on potentiating the chemoreceptivity of drug-resistant BC cells to DOX in vitro and in vivo and elucidate the possible molecular mechanisms. METHODS: MTS assays, colony formation assays, three-dimensional (3D) tumor spheroid model, and migration assay were deployed to verify the inhibiting action of IS in the presence or absence of DOX on resistant BC cells in vitro. Apoptosis, cell cycle regulation, and endocellular reactive oxygen species (ROS) were determined by flow cytometry. Protein levels were monitored by western blotting. Nuclear staining and EdU proliferation were photographed with a confocal laser scanning microscope. The effects of the IS and DOX combination on the tumorigenesis in the xenograft experiments were evaluated for further confirming the in vitro cytotoxicity. RESULTS: IS significantly inhibited cell proliferation and migration and enhanced the antitumor competence of DOX against resistant BC cells both in vitro and in vivo. Adjuvant IS (50 µM) effectively enhanced the proapoptotic impacts of DOX in resistant BC cells (35.38 ± 3.18%, vs. 5.83 ± 0.68% in the DOX group) by suppressing the expression of bcl 2 in addition to enhancing cleaved caspase 3, ultimately leading to DNA condensation and fragmentation. IS (20, 30, and 50 µM) treatments induced significant increases in the G2/M populations (41.60 ± 1.28%, 44.60 ± 1.14%, and 50.64 ± 0.67%, vs. 35.84 ± 1.56% in the untreated control in MCF7/ADR cells, p < 0.01) via regulating CDK1/Cyclin B1 complex expression, subsequently triggering the inhibition of BC proliferation. In addition, IS (10, 20, 30, and 50 µM) stimulated the production of interstitial ROS in MCF7/ADR cells, by 3.99-, 4.20-, 6.29-, and 6.78-fold, respectively, versus the untreated group (p < 0.001), which were involved in DNA damage and AMPK-caused intercept of the mTOR/p70S6K signaling. CONCLUSION: Our study suggested the anti-breast cancer actions of IS as a DOX sensitizer and expounded the underlying molecular mechanisms, showing that IS could be deemed to a capable alternative for resistant BC cure.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias de la Mama , Humanos , Femenino , Proteínas Quinasas Activadas por AMP/metabolismo , Especies Reactivas de Oxígeno , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Doxorrubicina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Puntos de Control del Ciclo Celular , Transducción de Señal , Apoptosis , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , Daño del ADN
17.
Kaohsiung J Med Sci ; 39(6): 605-615, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36960852

RESUMEN

Chemotherapy is one of the common treatment methods for breast cancer, but chemoresistance is a severe challenge. Caffeic acid phenethyl ester (CAPE) is an active ingredient of propolis extract and has been shown to have a variety of beneficial effects, and its potential as a treatment for breast cancer is worth exploring. The effects of CAPE on doxorubicin (DOX) resistance were determined by cell counting kit-8 (CCK-8) assay, colony-formation assay, and flow cytometry. Oil Red O staining and the detection of free fatty acids, triglycerides, phospholipids, and cholesterol were performed to assess the status of lipid metabolism. Quantitative polymerase chain reaction (qPCR) and western blotting were applied to investigate the molecules involved in lipid metabolism and the protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/sterol regulatory element binding protein 1 (SREBP1) pathway. CAPE treatment reversed DOX resistance in breast cancer cells and suppressed their lipid metabolism. In addition, CAPE combined with DOX remarkably suppressed SREBP1 expression in part by inhibiting Akt/mTOR pathway activation. Furthermore, by inhibiting lipid metabolism, partly via the Akt/mTOR/SREBP1 pathway, CAPE ultimately reversed DOX resistance in breast cancer. Our results suggest that CAPE treatment reversed DOX resistance in breast cancer cells, at least in part by inhibiting Akt/mTOR/SREBP1 pathway-mediated lipid metabolism, indicating that CAPE may be an effective substance to assist in the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Proteínas Proto-Oncogénicas c-akt , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/farmacología , Metabolismo de los Lípidos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Serina-Treonina Quinasas TOR/genética , Doxorrubicina/farmacología , Línea Celular Tumoral
18.
Mol Med Rep ; 27(1)2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36453238

RESUMEN

Doxorubicin (DOX) is an extensively used chemotherapeutic drug to treat leukemia. However, there remains a pivotal clinical problem of resistance to DOX in patients with leukemia. Erythroid 2­related factor 2 (Nrf2) is a master regulator of antioxidation response which serves a critical role in maintaining cellular oxidative homeostasis. However, whether Nrf2 is involved in DOX resistance is not totally clear. It is well­documented that triptolide, a widely used drug to treat autoimmune disorders, possesses anti­cancer activities, yet whether triptolide affects leukemia cell sensitivity to DOX remains to be elucidated. The present study aimed to determine the role of triptolide­mediated downregulation of Nrf2 in regulating leukemia cell ferroptosis and resistance to DOX. For this purpose, low­dose DOX was used to establish DOX­resistant K562 cells and HL­60 cells. Nrf2 mRNA and protein expression were examined by quantitative PCR and western blotting assays. The effects of triptolide on leukemia cell viability, reactive oxygen species (ROS) levels, or lipid oxidation were determined by CCK8 assay, DCFH­DA assay, or BODIPY 581/591 C11 assay, respectively. The results show that Nrf2 expression was significantly upregulated in DOX­resistant leukemia cells and clinical leukemia samples. Silencing of Nrf2 significantly sensitized leukemia cells to DOX. Furthermore, it was demonstrated that triptolide inhibited Nrf2 expression and induced leukemia cell ferroptosis, as evidenced by increased ROS levels and lipid oxidation as well as decreased glutathione peroxidase 4 expression. Ectopic expression of Nrf2 significantly rescued triptolide­induced leukemia cell ferroptosis. Notably, the present study showed that triptolide re­sensitized DOX­resistant leukemia cells to DOX. In conclusion, the present study indicated that Nrf2 served a critical role in leukemia cell resistance to DOX and triptolide­induced ferroptosis and suggested a potential strategy of combination therapy using triptolide and DOX in leukemia treatment.


Asunto(s)
Ferroptosis , Leucemia , Humanos , Doxorrubicina/farmacología , Lípidos , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno
19.
J Chemother ; 35(3): 250-258, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35972306

RESUMEN

Thyroid cancer is a prevalent human endocrine tumour. Surgical resection is a primary approach for well-differentiated thyroid cancers. Currently, the combination of chemotherapy with subsequent irradiation is a therapeutic strategy for the late stage or metastatic thyroid cancer. Yet, drug resistance and side-effects greatly limit widely clinical applications of chemotherapeutic drugs. The long non-coding RNA IQCH antisense RNA 1 (IQCH-AS1) is correlated with survival and diagnosis of cancer patients. Currently, the precise roles of IQCH-AS1 in thyroid cancer and the chemosensitivity of doxorubicin remain unclear. Here, we report IQCH-AS1 was significantly down-regulated in thyroid cancer tissues and cell lines. Overexpression of IQCH-AS1 effectively sensitized thyroid cancer cells to doxorubicin. From the established doxorubicin-resistant thyroid cancer cell line, 8505 C Doxo R, we detected that IQCH-AS1 was remarkedly suppressed in doxorubicin-resistant cells. Bioinformatics analysis, RNA pull-down and luciferase assays illustrated that IQCH-AS1 functioned as a ceRNA of miR-196a-5p which showed an oncogenic role in thyroid cancer. Overexpression of miR-196a-5p, which was upregulated in 8505 C Doxo R cells, significantly de-sensitized thyroid cancer cells to doxorubicin. Furthermore, PPP2R1B, which encode the protein phosphatase 2 A regulatory subunit A, was directly targeted by miR-196a-5p in thyroid cancer cells. Rescue experiments validated that recovery of miR-196a-5p in IQCH-AS1-overexpressing 8508 C doxorubicin resistant cells successfully reversed the IQCH-AS1-promoted doxorubicin sensitization via targeting PPP2R1B. Summarily, our study revealed new functions and molecular targets of the lncRNA-IQCH-AS1-mediated chemosensitivity of thyroid cancer, contributing to the development of anti-chemoresistant strategies against thyroid cancer.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Tiroides , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Doxorrubicina/farmacología , Línea Celular Tumoral
20.
Cancer Chemother Pharmacol ; 91(1): 43-52, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436062

RESUMEN

Doxorubicin-based chemotherapy remains as a major therapeutic approach for patients with triple-negative breast cancer (TNBC). However, insensitivity or resistance to doxorubicin treatment limits the therapeutic efficacy. Mitochondrial respiration plays a critical role in regulating the sensitivity of cancer cells to chemotherapy drugs. Here, we found that small trans-membrane and glycosylated protein (SMAGP) is upregulated in TNBC cells in comparison to normal breast and other subtypes of breast cancer cells. High SMAGP expression is associated with poorer overall survival of TNBC patients. Importantly, loss of SMAGP enhanced the sensitivity of TNBC cells to doxorubicin treatment. Mechanistically, we detected a functional pool of SMAGP in the mitochondria of TNBC cells controlling doxorubicin sensitivity via regulating mitochondrial respiration. Thus, our data suggest that SMAGP acts as a novel regulator of doxorubicin sensitivity in TNBC, identifying SMAGP as a promising therapeutic target for improving the efficacy of doxorubicin-based chemotherapy in TNBC patients.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Mitocondrias/metabolismo , Respiración , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...