Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791397

RESUMEN

Oromucosal drug delivery, both local and transmucosal (buccal), is an effective alternative to traditional oral and parenteral dosage forms because it increases drug bioavailability and reduces systemic drug toxicity. The oral mucosa has a good blood supply, which ensures that drug molecules enter the systemic circulation directly, avoiding drug metabolism during the first passage through the liver. At the same time, the mucosa has a number of barriers, including mucus, epithelium, enzymes, and immunocompetent cells, that are designed to prevent the entry of foreign substances into the body, which also complicates the absorption of drugs. The development of oromucosal drug delivery systems based on mucoadhesive biopolymers and their derivatives (especially thiolated and catecholated derivatives) is a promising strategy for the pharmaceutical development of safe and effective dosage forms. Solid, semi-solid and liquid pharmaceutical formulations based on biopolymers have several advantageous properties, such as prolonged residence time on the mucosa due to high mucoadhesion, unidirectional and modified drug release capabilities, and enhanced drug permeability. Biopolymers are non-toxic, biocompatible, biodegradable and may possess intrinsic bioactivity. A rational approach to the design of oromucosal delivery systems requires an understanding of both the anatomy/physiology of the oral mucosa and the physicochemical and biopharmaceutical properties of the drug molecule/biopolymer, as presented in this review. This review summarizes the advances in the pharmaceutical development of mucoadhesive oromucosal dosage forms (e.g., patches, buccal tablets, and hydrogel systems), including nanotechnology-based biopolymer nanoparticle delivery systems (e.g., solid lipid particles, liposomes, biopolymer polyelectrolyte particles, hybrid nanoparticles, etc.).


Asunto(s)
Sistemas de Liberación de Medicamentos , Mucosa Bucal , Humanos , Biopolímeros/química , Sistemas de Liberación de Medicamentos/métodos , Mucosa Bucal/metabolismo , Animales
2.
Drug Dev Ind Pharm ; 50(5): 387-400, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38634708

RESUMEN

OBJECTIVE: TheDES are formed by mixing a Hydrogen Bond Donor (HBD) and a Hydrogen Bond Acceptor (HBA) in appropriate molar ratios. These solvents have been shown to enhance drug solubility, permeability, and delivery. The main objective of the present article is to review these advantages of TheDES. SIGNIFICANCE: TheDES show unique properties, such as low toxicity, biodegradability, improved bioavailability and enhanced drug delivery of poorly soluble active pharmaceutical ingredients. They are also biocompatible in nature which makes them a promising candidate for various therapeutic applications, including drug formulations, drug delivery and other biomedical uses. The development and utilization of TheDES shows significant advancement in pharmaceutical research, providing new opportunities for improving drug delivery. METHODS: The current study was carried out by conducting a systematic literature review that identified relevant papers from indexed databases. Numerous studies and research are cited and quoted in this article to demonstrate the effectiveness of TheDES in enhancing drug solubility, permeability, and delivery. All chosen articles were selected considering their significance, quality, and approach to addressing issues. RESULT: As a result, various TheDES were identified that can be formulated in different ways: one component can act as a vehicle for an API, either HBD or HBA can be an API, both HBD and HBA can be APIs, or the individual components of DES are not therapeutically active but the resulting DES possesses therapeutic activity. Additionally, TheDES were also recognized to enhance drug delivery and solubility for different APIs, including NSAIDs, anesthetic drugs, antifungals, and others.


Asunto(s)
Disolventes Eutécticos Profundos , Solubilidad , Disolventes Eutécticos Profundos/química , Sistemas de Liberación de Medicamentos/métodos , Permeabilidad , Humanos , Composición de Medicamentos/métodos , Enlace de Hidrógeno , Química Farmacéutica/métodos , Disponibilidad Biológica , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación , Solventes/química
3.
Pharmaceutics ; 16(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38675141

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to deformities and disabilities in patients. Conventional treatment focuses on delaying progression; therefore, new treatments are necessary. The present study reported a novel ionic liquid transdermal platform for efficient RA treatment, and the underlying mechanism was elucidated using FTIR, 1H-NMR, Raman, XPS, and molecular simulations. The results showed that the reversibility of the semi-ionic hydrogen bonding facilitated high drug loading and enhanced drug permeability. Actarit's drug loading had an approximately 11.34-times increase. The in vitro permeability of actarit and ketoprofen was improved by 5.46 and 2.39 times, respectively. And they had the same significant effect in vivo. Furthermore, through the integration of network pharmacology, Western blotting (WB), and radiology analyses, the significant osteoprotective effects of SIHDD-PSA (semi-ionic H-bond double-drug pressure-sensitive adhesive transdermal patch) were revealed through the modulation of the JAK-STAT pathway. The SIHDD-PSA significantly reduced paw swelling and inflammation in the rat model, and stimulatory properties evaluation confirmed the safety of SIHDD-PSA. In conclusion, these findings provide a novel approach for the effective treatment of RA, and the semi-ionic hydrogen bonding strategy contributes a new theoretical basis for developing TDDS.

4.
ACS Appl Mater Interfaces ; 16(15): 18434-18448, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579182

RESUMEN

The poor solubility of clotrimazole in the aqueous medium and the uncontrolled removal of the drug-loaded suppository content limit its effectiveness in the treatment of vulvovaginal candidiasis. We present here the aqueous formulations of clotrimazole in the form of non-Newtonian structured fluids, i.e., Bingham plastic or pseudoplastic fluids constructed of hyperbranched polyglycidol, HbPGL, with a hydrophobized core with aryl groups such as phenyl or biphenyl. The amphiphilic constructs were obtained by the modification of linear units containing monohydroxyl groups with benzoyl chloride, phenyl isocyanate, and biphenyl isocyanate, while the terminal 1,2-diol groups in the shell were protected during the modification step, followed by their deprotection. The encapsulation of clotrimazole within internally hydrophobized HbPGLs using a solvent evaporation method followed by water addition resulted in structured fluids formation. Detailed Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses performed for aryl-HbPGLs with clotrimazole revealed the difference in drug compatibility among polymers. Clotrimazole in biphenyl-enriched HbPGL, unlike phenyl derivatives, was molecularly distributed in both the dry and the hydrated states, resulting in transparent formulations. The shear-thinning properties of the obtained fluid formulations make them injectable and thus suitable for the intravaginal application. Permeability tests performed with the usage of the Franz diffusion cell showed a 5-fold increase in the permeability constant of clotrimazole compared to drugs loaded in a commercially available disposable tablet and a 50-fold increase of permeability in comparison to the aqueous suspension of clotrimazole. Furthermore, the biphenyl-modified HbPGL-based drug liquid showed enhanced antifungal activity against both Candida albicans and Candida glabrata that was retained for up to 7 days, in contrast to the phenyl-HbPGL derivatives and the tablet. With their simple formulation, convenient clotrimazole/biphenyl-HbPGL formulation strategy, rheological properties, and enhanced antifungal properties, these systems are potential antifungal therapeutics for gynecological applications. This study points in the synthetic direction of improving the solubility of poorly water-soluble aryl-enriched pharmaceuticals.


Asunto(s)
Antifúngicos , Compuestos de Bifenilo , Clotrimazol , Glicoles de Propileno , Clotrimazol/química , Antifúngicos/química , Disponibilidad Biológica , Solubilidad , Agua , Comprimidos
5.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256079

RESUMEN

The emergence of multi-drug-resistant tuberculosis strains poses a significant challenge to modern medicine. The development of new antituberculosis drugs is hindered by the low permeability of many active compounds through the extremely strong bacterial cell wall of mycobacteria. In order to estimate the ability of potential antimycobacterial agents to diffuse through the outer mycolate membrane, the free energy profiles, the corresponding activation barriers, and possible permeability modes of passive transport for a series of known antibiotics, modern antituberculosis drugs, and prospective active drug-like molecules were determined using molecular dynamics simulations with the all-atom force field and potential of mean-force calculations. The membranes of different chemical and conformational compositions, density, thickness, and ionization states were examined. The typical activation barriers for the low-mass molecules penetrating through the most realistic membrane model were 6-13 kcal/mol for isoniazid, pyrazinamide, and etambutol, and 19 and 25 kcal/mol for bedaquilin and rifampicin. The barriers for the ionized molecules are usually in the range of 37-63 kcal/mol. The linear regression models were derived from the obtained data, allowing one to estimate the permeability barriers from simple physicochemical parameters of the diffusing molecules, notably lipophilicity and molecular polarizability.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Simulación de Dinámica Molecular , Estudios Prospectivos , Pared Celular , Antituberculosos/farmacología
6.
Pharmaceutics ; 15(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38004503

RESUMEN

The Caco-2 cell line derived from human colon carcinoma is commonly used to assess the permeability of compounds in in vitro conditions. Due to the significant increase in permeability studies using the Caco-2 cell line in recent years, the need to standardize this biological model seems necessary. The pharmaceutical requirements define only the acceptance criteria for the validation of the Caco-2 cell line and do not specify the protocol for its implementation. Therefore, the aim of this study is to review the conditions for permeability studies across the Caco-2 monolayer reported in the available literature concerning validation guidelines. We summarized the main aspects affecting the validation process of the Caco-2 cell line, including the culture conditions, cytotoxicity, cell differentiation process, and monolayer transport conditions, and the main conclusions may be useful in developing individual methods for preparing the cell line for validation purposes and further permeability research.

7.
Pharmaceutics ; 15(6)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37376094

RESUMEN

The purpose of this study was to determine corneal permeability and uptake in rabbit, porcine, and bovine corneas for twenty-five drugs using an N-in-1 (cassette) approach and relate these parameters to drug physicochemical properties and tissue thickness through quantitative structure permeability relationships (QSPRs). A twenty-five-drug cassette containing ß-blockers, NSAIDs, and corticosteroids in solution at a micro-dose was exposed to the epithelial side of rabbit, porcine, or bovine corneas mounted in a diffusion chamber, and the corneal drug permeability and tissue uptake were monitored using an LC-MS/MS method. Data obtained were used to construct and evaluate over 46,000 quantitative structure-permeability (QSPR) models using multiple linear regression, and the best-fit models were cross-validated by Y-randomization. Drug permeability was generally higher in rabbit cornea and comparable between bovine and porcine corneas. Permeability differences between species could be explained in part by differences in corneal thickness. Corneal uptake between species correlated with a slope close to 1, indicating generally similar drug uptake per unit weight of tissue. A high correlation was observed between bovine, porcine, and rabbit corneas for permeability and between bovine and porcine corneas for uptake (R2 ≥ 0.94). MLR models indicated that drug characteristics such as lipophilicity (LogD), heteroatom ratio (HR), nitrogen ratio (NR), hydrogen bond acceptors (HBA), rotatable bonds (RB), index of refraction (IR), and tissue thickness (TT) are of great influence on drug permeability and uptake. When data for all species along with thickness as a parameter was used in MLR, the best fit equation for permeability was Log (% transport/cm2·s) = 0.441 LogD - 8.29 IR + 8.357 NR - 0.279 HBA - 3.833 TT + 10.432 (R2 = 0.826), and the best-fit equation for uptake was Log (%/g) = 0.387 LogD + 4.442 HR + 0.105 RB - 0.303 HBA - 2.235 TT + 1.422 (R2 = 0.750). Thus, it is feasible to explain corneal drug delivery in three species using a single equation.

8.
Gels ; 9(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37232983

RESUMEN

The aim of this study was to evaluate the effect of vehicle and chemical modifications of the structure of active compounds on the skin permeation and accumulation of ibuprofen (IBU). As a result, semi-solid formulations in the form of an emulsion-based gel loaded with ibuprofen and its derivatives, such as sodium ibuprofenate (IBUNa) and L-phenylalanine ethyl ester ibuprofenate ([PheOEt][IBU]), were developed. The properties of the obtained formulations were examined, including density, refractive index, viscosity, and particle size distribution. The parameters of release and permeability through the pig skin of the active substances contained in the obtained semi-solid formulations were determined. The results indicate that an emulsion-based gel enhanced the skin penetration of IBU and its derivatives compared to two commercial preparations in the form of a gel and a cream. The average cumulative mass of IBU after a 24 h permeation test from an emulsion-based gel formulation through human skin was 1.6-4.0 times higher than for the commercial products. Ibuprofen derivatives were evaluated as chemical penetration enhancers. After 24 h of penetration, the cumulative mass was 1086.6 ± 245.8 for IBUNa and 948.6 ± 87.5 µg IBU/cm2 for [PheOEt][IBU], respectively. This study demonstrates the perspective of the transdermal emulsion-based gel vehicle in conjunction with the modification of the drug as a potentially faster drug delivery system.

9.
World J Gastroenterol ; 29(4): 670-681, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36742173

RESUMEN

Colon cancer has attracted much attention due to its annually increasing incidence. Conventional chemotherapeutic drugs are unsatisfactory in clinical application because of their lack of targeting and severe toxic side effects. In the past decade, nanomedicines with multimodal therapeutic strategies have shown potential for colon cancer because of their enhanced permeability and retention, high accumulation at tumor sites, co-loading with different drugs, and comb-ination of various therapies. This review summarizes the advances in research on various nanomedicine-based therapeutic strategies including chemotherapy, radiotherapy, phototherapy (photothermal therapy and photodynamic therapy), chemodynamic therapy, gas therapy, and immunotherapy. Additionally, the therapeutic mechanisms, limitations, improvements, and future of the above therapies are discussed.


Asunto(s)
Neoplasias del Colon , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/terapia , Nanomedicina , Fototerapia , Sistemas de Liberación de Medicamentos , Neoplasias del Colon/tratamiento farmacológico
10.
Methods Mol Biol ; 2616: 403-418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715949

RESUMEN

Drug permeability across the blood-brain barrier (BBB) is an important concept in the development of therapeutic strategies to treat neurological diseases such as ischemic stroke. These mechanisms can be evaluated in detail using cultured brain microvascular endothelial cells or intact animals subjected to experimental stroke. Here, we describe state-of-the-art approaches to study BBB transport of therapeutics using our in vitro and in vivo approaches. These methodologies allow for precise determination of transporter kinetic properties for currently marketed therapeutics or for new chemical entities that are under development as stroke drugs.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica , Células Endoteliales , Encéfalo , Accidente Cerebrovascular/tratamiento farmacológico
11.
Pharmaceutics ; 14(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36145684

RESUMEN

Modulation of drug transporter activity at mucosal sites of HIV-1 transmission may be exploited to optimize retention of therapeutic antiretroviral drug concentrations at target submucosal CD4+ T cells. Previously, we showed that darunavir was a substrate for the P-glycoprotein efflux drug transporter in colorectal mucosa. Equivalent studies in the cervicovaginal epithelium have not been reported. Here, we describe the development of a physiologically relevant model to investigate the permeability of antiretroviral drugs across the vaginal epithelium. Barrier properties of the HEC-1A human endometrial epithelial cell line were determined, in a dual chamber model, by measurement of transepithelial electrical resistance, immunofluorescent staining of tight junctions and bi-directional paracellular permeability of mannitol. We then applied this model to investigate the permeability of tenofovir, darunavir and dapivirine. Efflux ratios indicated that the permeability of each drug was transporter-independent in this model. Reduction of pH to physiological levels in the apical compartment increased absorptive transfer of darunavir, an effect that was reversed by inhibition of MRP efflux transport via MK571. Thus, low pH may increase the transfer of darunavir across the epithelial barrier via increased MRP transporter activity. In a previous in vivo study in the macaque model, we demonstrated increased MRP2 expression following intravaginal stimulation with darunavir which may further increase drug uptake. Stimulation with inflammatory modulators had no effect on drug permeability across HEC-1A barrier epithelium but, in the VK2/E6E7 vaginal cell line, increased expression of both efflux and uptake drug transporters which may influence darunavir disposition.

12.
Pharmaceutics ; 14(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36015358

RESUMEN

The pharmaceutical research sector has been facing the challenge of neurotherapeutics development and its inherited high-risk and high-failure-rate nature for decades. This hurdle is partly attributable to the presence of brain barriers, considered both as obstacles and opportunities for the entry of drug substances. The blood-cerebrospinal fluid (CSF) barrier (BCSFB), an under-studied brain barrier site compared to the blood-brain barrier (BBB), can be considered a potential therapeutic target to improve the delivery of CNS therapeutics and provide brain protection measures. Therefore, leveraging robust and authentic in vitro models of the BCSFB can diminish the time and effort spent on unproductive or redundant development activities by a preliminary assessment of the desired physiochemical behavior of an agent toward this barrier. To this end, the current review summarizes the efforts and progresses made to this research area with a notable focus on the attribution of these models and applied techniques to the pharmaceutical sector and the development of neuropharmacological therapeutics and diagnostics. A survey of available in vitro models, with their advantages and limitations and cell lines in hand will be provided, followed by highlighting the potential applications of such models in the (neuro)therapeutics discovery and development pipelines.

13.
Pharmaceutics ; 14(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35890257

RESUMEN

The purpose of this study was to evaluate mechanisms behind the intestinal permeability of minoxidil, with special emphasis on paracellular transport, and elucidate the suitability of minoxidil to be a reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil (vs. metoprolol) was evaluated in-silico, in-vitro using both the PAMPA assay and across Caco-2 cell monolayers, as well as in-vivo in rats throughout the entire intestine. The permeability was studied in conditions that represent the different segments of the small intestine: upper jejunum (pH 6.5), mid small intestine (pH 7.0), distal ileum (pH 7.5), and colon (pH 6.5). Since we aimed to investigate the paracellular transport of minoxidil, we have also examined its permeability in the presence of quercetin (250 µM), which closes the tight junctions, and sodium decanoate (10 mM), which opens the tight junctions. While metoprolol demonstrated segmental-dependent rat and PAMPA permeability, with higher permeability in higher pH regions, the permeability of minoxidil was pH-independent. Minoxidil PAMPA permeability was significantly lower than its rat permeability, indicating a potential significant role of the paracellular route. In rat intestinal perfusion studies, and across Caco-2 monolayers, tight junction modifiers significantly affected minoxidil permeability; while the presence of quercetin caused decreased permeability, the presence of sodium decanoate caused an increase in minoxidil permeability. In accordance with these in-vitro and in-vivo results, in-silico simulations indicated that approximatelly 15% of minoxidil dose is absorbed paracellularly, mainly in the proximal parts of the intestine. The results of this study indicate that paracellular transport plays a significant role in the intestinal permeability of minoxidil following oral administration. Since this permeation route may lead to higher variability in comparison to transcellular, these findings diminish the suitability of minoxidil to serve as the low/high BSC permeability class benchmark.

14.
Methods Mol Biol ; 2492: 267-276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733050

RESUMEN

The blood-brain barrier (BBB) is the most selective protecting layer of the central nervous system (CNS) with unique neurovascular features. The BBB is known to undergo a process of molecular alterations during disease state, such as in the case of glioma. This results in a non-uniform permeability along the BBB layer, which retains intact regions but develops focal sites of higher leakiness, especially in the surrounds of the tumor core. Although essential to guarantee brain homeostasis, the BBB has been the Achilles heel of drug delivery to the brain since the early times of the first classification as "barrier," more than a century ago. Due to the presence of the BBB, the transport of drug molecules from the bloodstream to the brain parenchyma is highly restricted, and, therefore, clinically relevant therapeutic concentrations cannot be achieved. Research efforts have focused on the development of novel tools to ameliorate drug permeability across the BBB, including drug formulation into non-invasive delivery systems with brain targeting properties and techniques that allow a temporary disruption of the BBB. To strengthen the advancement of potential drug candidates, in vitro models that recapitulate the main in vivo features of BBB are required to perform a preliminary screening of permeability, both in health and disease conditions. Herein, a protocol to assemble a BBB in vitro model to screen drug permeability in a glioma disease state is detailed. The model consists of a BBB and glioma cell co-culture and aims at exploiting the effect of the interplay between the cell constituents on the permeability of drug molecules. Although simple and straightforward, the herein in vitro model presents a high reproducibility, cost-effectiveness, and a favorable time-benefit balance.


Asunto(s)
Barrera Hematoencefálica , Glioma , Transporte Biológico/fisiología , Humanos , Permeabilidad , Preparaciones Farmacéuticas , Reproducibilidad de los Resultados
15.
Pharmaceutics ; 14(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35631480

RESUMEN

In recent years, sequence-specific clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems have been widely used in genome editing of various cell types and organisms. The most developed and broadly used CRISPR-Cas system, CRISPR-Cas9, has benefited from the proof-of-principle studies for a better understanding of the function of genes associated with drug absorption and disposition. Genome-scale CRISPR-Cas9 knockout (KO) screen study also facilitates the identification of novel genes in which loss alters drug permeability across biological membranes and thus modulates the efficacy and safety of drugs. Compared with conventional heterogeneous expression models or other genome editing technologies, CRISPR-Cas9 gene manipulation techniques possess significant advantages, including ease of design, cost-effectiveness, greater on-target DNA cleavage activity and multiplexing capabilities, which makes it possible to study the interactions between membrane proteins and drugs more accurately and efficiently. However, many mechanistic questions and challenges regarding CRISPR-Cas9 gene editing are yet to be addressed, ranging from off-target effects to large-scale genetic alterations. In this review, an overview of the mechanisms of CRISPR-Cas9 in mammalian genome editing will be introduced, as well as the application of CRISPR-Cas9 in studying the barriers to drug delivery.

16.
Biomaterials ; 286: 121525, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35599022

RESUMEN

Optimizing drug candidates for blood-brain barrier (BBB) penetration remains one of the key challenges in drug discovery to finally target brain disorders including neurodegenerative diseases which do not have adequate treatments so far. It has been difficult to establish state-of-the-art stem cell derived in vitro models that mimic physiological barrier properties including a 3D microvasculature in a format that is scalable to screen drugs for BBB penetration. To address this challenge, we established human induced pluripotent stem cell (iPSC)-derived brain endothelial microvessels in a standardized and scalable multi-well plate format. iPSC-derived brain microvascular endothelial cells (BMECs) were supplemented with primary cell conditioned media and grew to microvessels in 10 days. Produced microvessels show typical BBB endothelial protein expression, tight-junctions and polarized localization of efflux transporter. Microvessels exhibited physiological relevant trans-endothelial electrical resistance (TEER), were leak-tight for 10 kDa dextran-Alexa 647 and strongly limited the permeability of sodium fluorescein (NaF). Permeability tests with reference compounds confirmed the suitability of our model as platform to identify potential BBB penetrating anti-inflammatory drugs. The here presented platform recapitulates physiological properties and allows rapid screening of BBB permeable anti-inflammatory compounds that has been suggested as promising substances to cure so far untreatable neurodegenerative diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Barrera Hematoencefálica/metabolismo , Encéfalo/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microvasos/metabolismo , Permeabilidad
17.
Pharmaceutics ; 14(2)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35214101

RESUMEN

The RPMI 2650 and Calu-3 cell lines have been previously evaluated as models of the nasal and airway epithelial barrier, and they have demonstrated the potential to be used in drug permeation studies. However, limited data exist on the utilization of these two cell models for the assessment of nasal formulations. In our study, we tested these cell lines for the evaluation of in vitro permeation of intranasally administered drugs having a local and systemic effect from different solution- and suspension-based formulations to observe how the effects of formulations reflect on the measured in vitro drug permeability. Both models were shown to be sufficiently discriminative and able to reveal the effect of formulation compositions on drug permeability, as they demonstrated differences in the in vitro drug permeation comparable to the in vivo bioavailability. Good correlation with the available bioavailability data was also established for a limited number of drugs formulated as intranasal solutions. The investigated cell lines can be applied to the evaluation of in vitro permeation of intranasally administered drugs with a local and systemic effect from solution- and suspension-based formulations.

18.
Materials (Basel) ; 14(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34832210

RESUMEN

The effect of transdermal vehicle (Pentravan®) on skin permeability was examined for unmodified ibuprofen (IBU) and ion pairs of ibuprofen with new L-valine alkyl esters [ValOR][IBU]. The percutaneous permeation across the human skin and transdermal diffusion test model (Strat-M® membranes) of ibuprofen and its structural modification were measured and compared using Franz diffusion cells. For comparison, the penetration of ibuprofen from a commercial product was also investigated. The cumulative amount of drug permeated through human skin at the end of the 24 h study was highest for ibuprofen derivatives containing propyl (C3), isopropyl (C3), ethyl (C2), and butyl (C4) esters. For Strat-M®, the best results were obtained with the alkyl chain length of the ester from C2 to C5. The permeation profiles and parameters were appointed, such as steady-state flux, lag time, and permeability coefficient. It has been shown that L-valine alkyl ester ibuprofenates, with the propyl, butyl, and amyl chain, exhibit a higher permeation rate than ibuprofen. The diffusion parameters of analyzed drugs through human skin and Strat-M® were similar and with good correlation. The resulting Pentravan-based creams with ibuprofen in the form of an ionic pair represent a potential alternative to other forms of the drug-containing analgesics administered transdermally. Furthermore, the Strat-M® membranes can be used to assess the permeation of transdermal preparations containing anti-inflammatory drugs.

19.
Pharmaceutics ; 13(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34575559

RESUMEN

Culture models of the blood-brain barrier (BBB) are important research tools. Their role in the preclinical phase of drug development to estimate the permeability for potential neuropharmaceuticals is especially relevant. Since species differences in BBB transport systems exist, primate models are considered as predictive for drug transport to brain in humans. Based on our previous expertise we have developed and characterized a non-human primate co-culture BBB model using primary cultures of monkey brain endothelial cells, rat brain pericytes, and rat astrocytes. Monkey brain endothelial cells in the presence of both pericytes and astrocytes (EPA model) expressed enhanced barrier properties and increased levels of tight junction proteins occludin, claudin-5, and ZO-1. Co-culture conditions also elevated the expression of key BBB influx and efflux transporters, including glucose transporter-1, MFSD2A, ABCB1, and ABCG2. The correlation between the endothelial permeability coefficients of 10 well known drugs was higher (R2 = 0.8788) when the monkey and rat BBB culture models were compared than when the monkey culture model was compared to mouse in vivo data (R2 = 0.6619), hinting at transporter differences. The applicability of the new non-human primate model in drug discovery has been proven in several studies.

20.
Pharmaceutics ; 13(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064834

RESUMEN

The permeability through the cornea determines the ability of a drug or any topically applied compound to cross the tissue and reach the intraocular area. Most of the permeability values found in the literature are obtained considering topical drug formulations, and therefore, refer to the drug permeability inward the eye. However, due to the asymmetry of the corneal tissue, outward drug permeability constitutes a more meaningful parameter when dealing with intraocular drug-delivery systems (i.e., drug-loaded intraocular lenses, intraocular implants or injections). Herein, the permeability coefficients of two commonly administered anti-inflammatory drugs (i.e., bromfenac sodium and dexamethasone sodium) were determined ex vivo using Franz diffusion cells and porcine corneas in both inward and outward configurations. A significantly higher drug accumulation in the cornea was detected in the outward direction, which is consistent with the different characteristics of the corneal layers. Coherently, a higher permeability coefficient was obtained for bromfenac sodium in the outward direction, but no differences were detected for dexamethasone sodium in the two directions. Drug accumulation in the cornea can prolong the therapeutic effect of intraocular drug-release systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...