RESUMEN
Cryptogams, often neglected in vegetation dynamics studies, compose a large part of biomass and contribute to the biodiversity of sandy grasslands. Since the work of Verseghy (1970s), their productivity has not been analyzed in Hungary. We studied the lichen and bryophyte dynamics (hereinafter called cryptogams) at two Eastern Hungarian dry sandy grassland sites. The sites of Corynephorus canescens and of Festuca vaginata dominance, respectively, belonging to the community Festuco vaginatae-Corynephoretum have been monitored. We aimed at (1) quantifying the diversity and biomass of the cryptogamic communities; (2) exploring the cryptogamic response to management changes; and (3) studying the effect of experimental management (fencing) on the cryptogamic assemblages. The sites have been compared in 2013 and 2018, respectively. Forty microplots per site per management have been analyzed in both years. Samples of lichens and bryophytes were hand-sorted, dried and then measured. Fencing has led to increased biomass of cryptogams within a few years. Lichens in general benefited comparatively more from exclosure than bryophytes. The increase in lichen biomass (especially that of Cladonia rangiformis) is clearly due to the over 10-year absence of grazing. The only lichen favored by moderate grazing is the legally protected C. magyarica. Short spells of low-intensity grazing can promote the species richness of cryptogams in the community.
RESUMEN
Core subcommunity represents the less diversity but high abundance, while indicative subcommunity is highly diverse but low abundance in soils. The core subcommunity fundamentally maintains ecosystem stability, while the indicative plays important roles in vital ecosystem functions and is more sensitive to environmental change. However, their environmental driving factors and responses to human disturbances remain less defined. Herein, we explored the patterns of core and indicative soil microbes and their responses to animal grazing in dry grasslands across the Tibetan Plateau, using the Illumina sequencing of 16S rRNA gene. The results revealed that the core subcommunity diversity and richness were lower than the indicative in soils. The indicative subcommunity diversity exhibited substantially stronger correlations with nutrient-associated factors than the core diversity, including soil organic carbon, nitrogen, and plant biomass. The core and indicative microbial subcommunities both strongly varied with grassland ecosystems, while the latter was also significantly influenced by grazing. The variation partitioning analysis revealed that indicative microbial subcommunity was explained less by environmental factors than core subcommunity (34.5% vs 73.0%), but more influenced by grazing (2.6% vs 0.1%). Our findings demonstrated that the indicative microbes were particularly sensitive to soil nutrient-associated factors and human disturbances in alpine dry grasslands.
Asunto(s)
Ecosistema , Pradera , Humanos , Tibet , Suelo , ARN Ribosómico 16S/genética , Carbono , Microbiología del SueloRESUMEN
The present study is an update on the situation of potential vectors of Xylella fastidiosa in Tunisia. Investigations in nine Tunisian regions (Nabeul, Bizerte, Béja, Jendouba, Zaghouan, Kairouan, Ben Arous, Tunis and Manouba) from 2018 to 2021 allowed for the observation of 3758 Aphrophoridae among a total of 9702 Auchenorrhyncha individuals collected by sweep net. Four Aphrophoridae species were identified with Philaenus tesselatus as most abundant (62%), followed by Neophilaenus campestris (28%), Neophilaenus lineatus (5%) and Philaenus maghresignus (5%). Aphrophoridae individuals were found to be particularly abundant in both forests of Nabeul and Jendouba, secondarily in olive groves and dry grassland. Furthermore, their distribution on weed hosts was followed in these two regions where nymphs and adults are widely distributed. P. tesselatus appears to be the most abundant species as determined either by conventional sweep netting for adults or by plant sampling on Sonchus, Smyrnium, Cirsium, Rumex, Polygonum and Picris for nymphs. Limited numbers of adults of P. maghresignus were detected by sweep netting, while nymphs of this species were found on Asphodelus microcarpus only. N. campestris was found in high numbers on plants belonging to the Poaceae family in forests, dry grassland and olive groves whereas N. lineatus occurred on herbs under or near olive trees and in dry grasslands.
RESUMEN
Conservation grazing uses semi-feral or domesticated herbivores to limit encroachment in open areas and to promote biodiversity. However, we are still unaware of its effects on wild herbivores. This study investigates the influence of herded sheep and goats on red deer (Cervus elaphus) spatial behavior by testing three a-priori hypotheses: (i) red deer are expected to avoid areas used by livestock, as well as adjacent areas, when livestock are present, albeit (ii) red deer increase the use of these areas when sheep and goats are temporarily absent and (iii) there is a time-lagged disruption in red deer spatial behavior when conservation grazing practice ends. Using GPS-telemetry data on red deer from a German heathland area, we modelled their use of areas grazed by sheep and goats, using mixed-effect logistic regression. Additionally, we developed seasonal resource selection functions (use-availability design) to depict habitat selection by red deer before, during, and after conservation grazing. Red deer used areas less during conservation grazing throughout all times of the day and there was no compensatory use during nighttime. This effect mostly persisted within 21 days after conservation grazing. Effects on habitat selection of red deer were detectable up to 3000 meters away from the conservation grazing sites, with no signs of either habituation or adaption. For the first time, we demonstrate that conservation grazing can affect the spatio-temporal behavior of wild herbivores. Our findings are relevant for optimizing landscape and wildlife management when conservation grazing is used in areas where wild herbivores are present.
Asunto(s)
Ciervos , Animales , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Cabras , Herbivoria , Ovinos , Conducta EspacialRESUMEN
Assessment of the global terrestrial carbon (C) sink remains uncertain, and the uncertainty is largely derived from dryland ecosystems. Here we investigated the uncertainty and dynamics of gross primary productivity (GPP) by distinguishing the contributions of soil microbial primary producers and plants to CO2 fixation during four sequential growing seasons in a fragile dry grassland on the Tibetan Plateau. The results demonstrated that soil microbial GPP consistently accounted for a high proportion of plant GPP (18.2%), and both exhibited similar seasonal patterns during the four-year observation. Soil microbial GPP demonstrated a much greater interannual variation (76.1%) than plant GPP (15.1%), indicating that the interannual GPP uncertainty could be largely from microbial primary producers. Regression analysis indicated that plant GPP had higher sensitivity (demonstrated by slope) than soil microbial GPP to both soil water content and temperature. The GPP ratio of soil microbes to plants also demonstrated a clear seasonal change, and peaked in July in the four-year observation, with a minimum interannual variation (6.8%). The GPP ratio enhanced with increasing soil water content (P < 0.001), but did not correlate with soil temperature. Our findings suggest the great potential of soil microbial GPP, and challenge the plant-oriented models of terrestrial C estimation, which account for plant GPP but ignore soil microbial GPP. Thus, a more robust framework needs to incorporate both soil microbial and plant GPPs for accurately assessing C balance.
Asunto(s)
Ecosistema , Suelo , Carbono , Ciclo del Carbono , Dióxido de Carbono/análisis , Secuestro de Carbono , Pradera , Estaciones del Año , Microbiología del Suelo , TibetRESUMEN
We assessed the relationships between site size, habitat quality, landscape factors (fragmentation, landscape diversity) and species richness in communities of Collembola in 50 small dry grassland habitat patches in an agricultural landscape of eastern Austria. Grasslands in that region were once widespread and extensive, but have become increasingly fragmented and isolated. We hypothesized that dry grassland springtails species richness is significantly correlated with site variables (soil properties, habitat quality) and that the size of grassland sites is positively correlated with species richness. We used pitfall traps in 50 dry grasslands in differently structured agricultural landscapes and tested total abundance and three species richness measures: (1) the number of dry grassland specialist species, (2) total number of dry grassland species and (3) overall species richness. In the multivariate correlation models, we found that all species richness measures were significantly related to the plant species richness, a shape parameter of the sites, soil properties such as humus, temperature, sand and gravel content and the landscape variable reflecting isolation (distance to the nearest large dry grassland area). This landscape variable indicates that neighbouring grasslands are influencing the species richness of the sites. This may be a result of passive wind dispersal across the landscape or historic connection of the small sites with much larger dry grasslands. The size of the site did not show any significant correlation with total, dry grassland specialist, dry grassland generalist or generalist species richness. The small size of Collembola might explain these findings, because they have high population densities even in small patches.
RESUMEN
QUESTIONS: What are the main floristic patterns in the Pannonian and western Pontic steppe grasslands? What are the diagnostic species of the major subdivisions of the class Festuco-Brometea (temperate Euro-Siberian dry and semi-dry grasslands)? LOCATION: Carpathian Basin (E Austria, SE Czech Republic, Slovakia, Hungary, Romania, Slovenia, N Croatia and N Serbia), Ukraine, S Poland and the Bryansk region of W Russia. METHODS: We applied a geographically stratified resampling to a large set of relevés containing at least one indicator species of steppe grasslands. The resulting data set of 17 993 relevés was classified using the TWINSPAN algorithm. We identified groups of clusters that corresponded to the class Festuco-Brometea. After excluding relevés not belonging to our target class, we applied a consensus of three fidelity measures, also taking into account external knowledge, to establish the diagnostic species of the orders of the class. The original TWINSPAN divisions were revised on the basis of these diagnostic species. RESULTS: The TWINSPAN classification revealed soil moisture as the most important environmental factor. Eight out of 16 TWINSPAN groups corresponded to Festuco-Brometea. A total of 80, 32 and 58 species were accepted as diagnostic for the orders Brometalia erecti, Festucetalia valesiacae and Stipo-Festucetalia pallentis, respectively. In the further subdivision of the orders, soil conditions, geographic distribution and altitude could be identified as factors driving the major floristic patterns. CONCLUSIONS: We propose the following classification of the Festuco-Brometea in our study area: (1) Brometalia erecti (semi-dry grasslands) with Scabioso ochroleucae-Poion angustifoliae (steppe meadows of the forest zone of E Europe) and Cirsio-Brachypodion pinnati (meadow steppes on deep soils in the forest-steppe zone of E Central and E Europe); (2) Festucetalia valesiacae (grass steppes) with Festucion valesiacae (grass steppes on less developed soils in the forest-steppe zone of E Central and E Europe) and Stipion lessingianae (grass steppes in the steppe zone); (3) Stipo-Festucetalia pallentis (rocky steppes) with Asplenio septentrionalis-Festucion pallentis (rocky steppes on siliceous and intermediate soils), Bromo-Festucion pallentis (thermophilous rocky steppes on calcareous soils), Diantho-Seslerion (dealpine Sesleria caerulea grasslands of the Western Carpathians) and Seslerion rigidae (dealpine Sesleria rigida grasslands of the Romanian Carpathians).
RESUMEN
Management strategies in rotational grazing systems differ in their level of complexity and adaptivity. Different components of such grazing strategies are expected to allow for adaptation to environmental heterogeneities in space and time. However, most models investigating general principles of rangeland management strategies neglect spatio-temporal system properties including seasonality and spatial heterogeneity of environmental variables. We developed an ecological-economic rangeland model that combines a spatially explicit farm structure with intra-annual time steps. This allows investigating different management components in rotational grazing systems (including stocking and rotation rules) and evaluating their effect on the ecological and economic states of semi-arid grazing systems. Our results show that adaptive stocking is less sensitive to overstocking compared to a constant stocking strategy. Furthermore, the rotation rule becomes important only at stocking numbers that maximize expected income. Altogether, the best of the tested strategies is adaptive stocking combined with a rotation that adapts to both spatial forage availability and seasonality. This management strategy maximises mean income and at the same time maintains the rangeland in a viable condition. However, we could also show that inappropriate adaptation that neglects seasonality even leads to deterioration. Rangelands characterised by higher inter-annual climate variability show a higher risk of income losses under a non-adaptive stocking rule, and non-adaptive rotation is least able to buffer increasing climate variability. Overall, all important system properties including seasonality and spatial heterogeneity of available resources need to be considered when designing an appropriate rangeland management system. Resulting adaptive rotational grazing strategies can be valuable for improving management and mitigating income risks.