Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.089
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124728, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38955070

RESUMEN

A spectrophotometric method for the quantitative determination of nitrite was developed, based on the radical nitration of indopolycarbocyanine dyes in the presence of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO). The rate of the reaction of the studied dyes with nitrite increases with the lengthening of the polymethine chain and the presence of hydrophilic sulfo groups in the side chain of the dye. TEMPO acts as a co-reagent, significantly accelerating the reaction rate and increasing the sensitivity of nitrite determination. The proposed reaction mechanism is supported by spectrophotometric and HPLC/MS studies. For Ind2 (tetramethine indocarbocyanine cationic dye), the limit of detection for nitrite is 0.50 µM within a linearity range of 1-13 µM. The developed method is sensitive, with a LOD 130 times lower than the maximum contaminant level (MCL) of nitrite in drinking water (65 µM), as specified by the WHO. The method is of low-toxicity and good selectivity, as the determination of nitrite is not significantly affected by the main components of water. The method was successfully applied for the analysis of nitrite in natural and bottled water.

2.
Sci Rep ; 14(1): 15236, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956097

RESUMEN

This work deals with promoting the efficiency of removing the cationic and ionic dyes by new aerogel-carbon nanostructures. For cleaner production the rice straw-pulping black liquors, which regards serious environmental risk during routine disposing, is used in preparing the aerogel precursors. These aerogels (AGBs) depend on using pulping black liquor in hybrid with resorcinol and the less carcinogenic formaldehyde butyraldehyde. Black liquors from five pulping processes are used, Elemental, thermogravimetric (TGA and DTG), and FTIR-ATR analyses are used to characterize the carbon precursors. While their adsorption behavior toward cationic and anionic dyes are accessed via iodine-value, adsorption capacity and kinetic models, textural characterization, and SEM. The TGA measurements reveal that AGBs from BLs of neutral sulfite and soda-borohydride pulping reagents have higher activation and degradation energies than other aerogels. In terms of cationic and anionic dyes adsorption as well as textural characterization, the AGB-CNSs surpass that made from BLs. The discarded KOH/NH4OH black liquor is used to synthesize the best aerogel precursor for producing cationic methylene blue dye (MB) adsorbent, where it provides an adsorption capacity 242.1 mg/g. The maximum anionic brilliant blue dye (BB) adsorption capacity, 162.6 mg/g, is noticed by Kraft BL-aerogel-CNSs. These finding data overcome the literature carbon adsorbents based on lignin precursors. All examined CNSs toward MB dye follow the Langmuir adsorption equilibrium; while primarily the Freundlich model for BB dye. The pseudo-second-order kinetic model well fits the adsorption kinetics of investigated AGB-CNSs. The textural characterization and SEM revealed a mixture of mesoporous and micro porous features in the CNSs.

3.
Adv Sci (Weinh) ; : e2400979, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994880

RESUMEN

Reconstructing the visible spectra of real objects is critical to the spectral camouflage from emerging spectral imaging. Electrochromic materials exhibit unique superiority for this goal due to their subtractive color-mixing model and structural diversity. Herein, a simulation model is proposed and a method is developed to fabricate electrochromic devices for dynamically reproducing the visible spectrum of the natural leaf. Over 20 kinds of pH-dependent leuco dyes have been synthesized/prepared through molecular engineering and offered available spectra/bands to reconstruct the spectrum of the natural leaf. More importantly, the spectral variance between the device and leaf is optimized from an initial 98.9 to an ideal 10.3 through the simulation model, which means, the similarity increased nearly nine-fold. As a promising spectrum reconstruction approach, it will promote the development of smart photoelectric materials in adaptive camouflage, spectral display, high-end encryption, and anti-counterfeiting.

4.
Heliyon ; 10(12): e32447, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994068

RESUMEN

This paper deals with the preparation of a novel nanocomposite consisted of magnesium-aluminum layered double hydroxide (Mg-Al LDH) and ethylenediaminetetraacetic acid (EDTA) as well as melamine (MA) as an adsorbent. This nanocomposite was utilized to adsorb different dyes such as rhodamine B (RhB) and methylene blue (MB) from water. The prepared adsorbent was characterized using FT-IR, EDS, XRD, TGA, and FE-SEM analyses. The effects of various parameters such as concentration, time, adsorbent dosage, temperature, and pH were tested to investigate their influence on adsorption conditions. Both methylene blue and rhodamine B dyes showed pseudo-second-order adsorption kinetics, and their adsorption followed the Langmuir isotherm. Moreover, the maximum adsorption capacities for methylene blue and rhodamine B were found to be 1111.103 mg/g at 45 °C and 232.558 mg/g at 60 °C, respectively. Additionally, the adsorption processes were found to be spontaneous (ΔG°< 0, for both dyes) and exothermic (ΔH° = -12.42 kJ/mol for methylene blue and ΔH° = -25.84 kJ/mol for rhodamine B) for both dyes. Hydrogen bonding and electrostatic forces are responsible for the interactions occur between the nanocomposite and the functional groups in the dyes. The experimental findings demonstrated a greater adsorption rate of MB than RhB, suggesting the adsorbent's stronger affinity for MB. This preference is likely due to MB's size, specific functional groups, and smaller molecule size, enabling stronger interactions and more efficient access to adsorption sites compared to RhB. Even after recycling 4 times, the dye adsorption percentages of the adsorbent for MB and RhB dyes were 90 % and 87 %, but the desorption percentages of the adsorbate dyes were 85 % and 80 %, respectively. The prepared adsorbent boasts several unique properties, such as the swift and effortless adsorption of MB and RhB dyes, straightforward synthesis, mild adsorption conditions, remarkable efficiency, and the ability to be recycled up to 4 times without a significant decrease in activity.

5.
Int J Biol Macromol ; 276(Pt 1): 133763, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002913

RESUMEN

The importance of environmental issues and the existence of humans have led to the recognition of environmental concerns as the main risk to modern life. Notably, one major concern for protecting and managing the environment and human health is the presence of dyes in wastewater. Therefore, before discharging wastewater into mainstream water, it is crucial to remove dyes. Among all lignocellulosic materials, lignin is a highly fragrant biopolymer. Its abundant availability, complex structure, and numerous functional moieties, including hydroxyl, carboxyl, and phenolic, are used in different chemicals and applications. Based on this, lignin is a very useful green material for adsorption, specifically in removing both heavy metals and organic pollutants from wastewater. This article describes the use of lignin-based adsorbents as a recent breakthrough in the removal of dye from aqueous solutions. On the other hand, the review intends to encourage readers to study both established and novel avenues in lignin-based dye removal materials.

6.
Chemosphere ; 363: 142842, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009089

RESUMEN

In today's world, major pollutants, such as cationic dyes and heavy metals, pose a serious threat to human health and the environment. In this study, a novel adsorbent was created through the electrospinning of polyvinyl alcohol/polyacrylic acid (PVA/PAA), incorporated with hexagonal boron nitride (hBN) coated with polydopamine (PDA). The integration of hBN and PDA substantially enhanced the adsorption capacity of the PVA/PAA fibers, making them highly effective in adsorbing cationic dyes such as methylene blue and crystal violet, as well as cobalt (II) ions, from contaminated water. The adsorbents were assessed to understand how their adsorption behavior varies with pH, as well as to examine their adsorption kinetics and isotherms. The results indicate that the PVA/PAA-hBN@PDA adsorbent has maximum adsorption capacities of 1029.57 mg/g, 793.65 mg/g, and 62.46 mg/g for methylene blue, crystal violet, and cobalt (II) ions, respectively. This underscores the superior performance of the PVA/PAA-hBN@PDA adsorbent when compared to both the PVA/PAA and PVA/PAA-hBN adsorbents. The adsorption kinetics adhered to a pseudo-second-order model, indicating chemisorption, whereas the Langmuir model implied a monolayer adsorption. Overall, the findings of this study highlight the efficacy of harnessing the synergistic capabilities of hBN and PDA within the PVA/PAA-hBN@PDA adsorbents, providing an efficient and eco-friendly approach to removing cationic dyes and heavy metals from contaminated water, and thereby contributing to a cleaner and safer environment for all.

7.
Angew Chem Int Ed Engl ; : e202410666, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007416

RESUMEN

Near-infrared region (NIR; 650-1700 nm) dyes offer many advantages over traditional dyes with absorption and emission in the visible region. However, developing new NIR dyes, especially organic dyes with long wavelengths, small molecular weight, and excellent stability and biocompatibility, is still quite challenging. Herein, we present a general method to enhance the absorption and emission wavelengths of traditional fluorophores by simply appending a charge separation structure, dihydropyridopyrazine. These novel NIR dyes not only exhibited greatly redshifted wavelengths compared to their parent dyes, but also displayed a small molecular weight increase together with retained stability and biocompatibility. Specifically, dye NIR-OX, a dihydropyridopyra-zine derivative of oxazine with a molecular mass of 386.2 Da, exhibited an absorption at 822 nm and an emission extending to 1200 nm, making it one of the smallest molecular-weight NIR-II emitting dyes. Thanks to its rapid metabolism and long wave-length, NIR-OX enabled high-contrast bioimaging and assessment of cholestatic liver injury in vivo and also facilitated the evalua-tion of the efficacy of liver protection medicines against cholestatic liver injury.

8.
J Fluoresc ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002052

RESUMEN

This research explores the synthesis, characterization, and application of Vanadium Pentoxide nanoparticles (V2O5 NPs), focusing on their efficacy in the photocatalytic degradation of organic dyes under visible light. Utilizing a co-precipitation method, we synthesized V2O5 NPs characterized by an orthorhombic crystal structure with a consistent average particle size of 28 nm. The optical properties of V2O5 NPs, including their band gap, were thoroughly investigated to understand their light absorption capabilities, which are crucial for photocatalytic activity. In our study, Methyl Violet (MV) dye was employed as a model organic pollutant to assess the photocatalytic performance of the nanoparticles. Under visible light irradiation, the V2O5 nanoparticles demonstrated an exceptional photocatalytic degradation efficiency, achieving up to 85% degradation of the MV dye within 100 min. This high level of efficiency is attributed to the nanoparticles' ability to effectively absorb visible light and generate electron-hole pairs, thereby facilitating a robust degradation process. Further analysis revealed that the photocatalytic activity led to the generation of reactive oxygen species (ROS) such as superoxide and hydroxyl radicals, which are integral to the dye degradation mechanism. These ROS play a critical role in breaking down the dye molecules, significantly contributing to the overall effectiveness of the photocatalytic process. The results of this study highlight the potential of V2O5 nanoparticles as a sustainable and effective photocatalytic material for environmental remediation applications, particularly in the treatment of wastewater containing organic dyes. This research not only advances our understanding of the photocatalytic properties of V2O5 nanoparticles but also demonstrates their practical application in addressing environmental pollution through innovative and efficient degradation of hazardous substances.

9.
Environ Res ; : 119544, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969312

RESUMEN

The main aim of this review is to provide an extensive summary of the latest advances within the emerging research area focused on detecting heavy metal ion pollution, particularly sensing strategies. The review explores various heavy metal ion detection approaches, encompassing spectrometry, electrochemical methods, and optical techniques. Numerous initiatives have been undertaken in recent times in response to the increasing demand for fast, sensitive, and selective sensors. Notably, fluorescent sensors have acquired prominence owing to the numerous advantages such as outstanding specificity, reversibility, and sensitivity. Further, it also explores the discussion of various nanomaterials employed in sensing heavy metal ions. In this regard, the exclusive emphasis is placed on fluorescent nanomaterials based on organic dyes, quantum dots, and fluorescent aptasensors for metal ion removal from aqueous systems to identify the destiny of dangerous heavy metal ions in clean circumstances.

10.
Food Chem ; 459: 140378, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38991446

RESUMEN

In this study, a hydrothermal process was utilized to grow mixed-valence CuFe2O4/Cu0 nanosheets on carbon fiber paper, forming a three-dimensional hierarchical electrode (CuFe2O4/Cu0@CFP). The ordered array structure, coupled with the porous bowl-like structure, enhances the exposure of more electrode active sites and facilitates analyte penetration, thus enhancing the electrode sensing performance. As a binder-free sensor, the CuFe2O4/Cu0@CFP sensor exhibited remarkable sensitivity in detecting Malachite Green (MG), Sunset Yellow (SY) and Tartrazine (TA) over wide concentration ranges: 0.1-300 µM for MG (R2 = 0.994), 0.005-200 µM for SY (R2 = 0.996), and 0.005-300 µM for TA (R2 = 0.995) with low detection limits of 0.033 µM for MG, 0.0016 µM for SY, and 0.0016 µM for TA (S/N = 3), respectively. Additionally, the 3D CuFe2O4/Cu0@CFP sensor detected MG, SY, and TA in a mixed solution with satisfactory results. It also performs well in beverage, fruit juice powder, and jelly samples, with results matching those from HPLC.

11.
Environ Res ; : 119548, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977156

RESUMEN

The term "biomass" encompasses all substances found in the natural world that were once alive or derived from living organisms or their byproducts. These substances consist of organic molecules containing hydrogen, typically oxygen, frequently nitrogen, and small amounts of heavy, alkaline earth and alkali metals. Magnetic biochar refers to a type of material derived from biomass that has been magnetized typically by adding magnetic components such as magnetic iron oxides to display magnetic properties. These materials are extensively applicable in widespread areas like environmental remediation and catalysis. The magnetic properties of these compounds made them ideal for practical applications through their easy separation from a reaction mixture or environmental sample by applying a magnetic field. With the evolving global strategy focused on protecting the planet and moving towards a circular, cost-effective economy, natural compounds, and biomass have become particularly important in the field of biochemistry. The current research explores a comparative analysis of the versatility and potential of biomass for eliminating dyes as a sustainable, economical, easy, compatible, and biodegradable method. The elimination study focused on the removal of various dyes as pollutants. Various operational parameters which influenced the dye removal process were also discussed. Furthermore, the research explained, in detail, adsorption kinetic models, types of isotherms, and desorption properties of magnetic biochar adsorbents. This comprehensive review offers an advanced framework for the effective use of magnetic biochar, removing dyes from textile wastewater.

12.
ACS Appl Bio Mater ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995885

RESUMEN

Fluorescent probes play a crucial role in elucidating cellular processes, with NAD(P)H sensing being pivotal in understanding cellular metabolism and redox biology. Here, the development and characterization of three fluorescent probes, A, B, and C, based on the coumarin platform for monitoring of NAD(P)H levels in living cells are described. Probes A and B incorporate a coumarin-cyanine hybrid structure with vinyl and thiophene connection bridges to 3-quinolinium acceptors, respectively, while probe C introduces a dicyano moiety for replacement of the lactone carbonyl group of probe A which increases the reaction rate of the probe with NAD(P)H. Initially, all probes exhibit subdued fluorescence due to intramolecular charge transfer (ICT) quenching. However, upon hydride transfer by NAD(P)H, fluorescence activation is triggered through enhanced ICT. Theoretical calculations confirm that the electronic absorption changes upon the addition of hydride to originate from the quinoline moiety instead of the coumarin section and end up in the middle section, illustrating how the addition of hydride affects the nature of this absorption. Control and dose-response experiments provide conclusive evidence of probe C's specificity and reliability in identifying intracellular NAD(P)H levels within HeLa cells. Furthermore, colocalization studies indicate probe C's selective targeting of mitochondria. Investigation into metabolic substrates reveals the influence of glucose, maltose, pyruvate, lactate, acesulfame potassium, and aspartame on NAD(P)H levels, shedding light on cellular responses to nutrient availability and artificial sweeteners. Additionally, we explore the consequence of oxaliplatin on cellular NAD(P)H levels, revealing complex interplays between DNA damage repair, metabolic reprogramming, and enzyme activities. In vivo studies utilizing starved fruit fly larvae underscore probe C's efficacy in monitoring NAD(P)H dynamics in response to external compounds. These findings highlight probe C's utility as a versatile tool for investigating NAD(P)H signaling pathways in biomedical research contexts, offering insights into cellular metabolism, stress responses, and disease mechanisms.

13.
J Environ Manage ; 366: 121800, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996600

RESUMEN

The continuous rise of emerging contaminants (ECs) in the environment has been a growing concern due to their potentially harmful effects on humans, animals, plants, and aquatic life, even at low concentrations. ECs include human and veterinary pharmaceuticals, hormones, personal care products, pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organic dyes, heavy metals (HMs), and others. The world's growing population contributes to the release of many kinds of chemicals into the environment, which is estimated to be more than 200 billion metric tons annually and results in over 9 million deaths. The removal of these contaminants using conventional physical, chemical, and biological treatments has proven to be ineffective, highlighting the need for simple, effective, inexpesive, practical, and eco-friendly alternatives. Thus, this article discusses the utilization of subcritical water oxidation (SBWO) and subcritical water extraction (SBWE) techniques to remove ECS from the environment. Subcritical water (water below the critical temperature of 374.15 °C and critical pressure of 22.1 Mpa) has emerged as one of the most promising methods for remediation of ECs from the environment due to its non-toxic properties, simplicity and efficiency of application. Furthermore, the impact of temperature, pressure, treatment time, and utilization of chelating agents, organic modifiers, and oxidizing agents in the static and dynamic modes was investigated to establish the best conditions for high ECs removal efficiencies.

14.
Chemistry ; : e202402476, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997235

RESUMEN

Many organic dyes are fluorescent in solution. In the solid state, however, quenching processes often dominate, hampering material science applications such as light filters, light-emitting devices, or coding tags. We show that the dimethylene-cyclopropanide scaffold can be used to form two structurally different types of chromophores, which feature fluorescence quantum yields up to 0.65 in dimethyl sulfoxide and 0.53 in solids. The increased fluorescence in the solid state for compounds bearing malonate substituents instead of dicyanomethid ones is rationalized by the induced twist between the planes of the cyclopropanide core and a pyridine ligand.

15.
Environ Res ; 259: 119569, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972343

RESUMEN

Textile industries contribute to water pollution through synthetic dye discharge. This study explores the use of natural bio-coagulants to remove acid dyes from wastewater, investigating factors like pH, coagulant dose, dye concentration, contact time, and temperature for optimal results. The optimum pH and coagulants capabilities of (CAAPP, CAAPH, CBAGL, CBAPP and CBAPH) were 3 (49.6 mg/g), 3 (42.5 mg/g), 3 (38.9 mg/g), 4 (35.7 mg/g), 4 (34.1 mg/g), and 4 (29.4 mg/g) respectively, while treating of selected BRF-221 dyes from water solution. The acidic range (3-4) was found to have the best pH for the maximal coagulation, and the optimal dose were found to be 0.05 g/50 mL. The equilibrium was attained within 45-60 min for all coagulants. After 60 min of shaking, the maximum coagulation capacities (21.9, 21.02, 16.5, 27.9, 25.3, and 23.4 mg/g) of several coagulant composites (CAAGL, CAAPP, CAAPH, CBAGL, CBAPP, CBAPH) were determined. The initial BRF-221 dye concentration in the range of 10-200 mg/L was considered as optimum for gaiting maximum elimination of dye using different coagulants. At a dye value of 100 mg/L of BRF-221, maximal coagulation capacities CAAGL (179.19 mg/g), CAAPP (166.06 mg/g), CAAPH (141.60 mg/g), and CBAGL (126.49 mg/g), CBAPP (113.9 mg/g), CBAPH (93.08 mg/g) were attained. The study found 35 °C to be the optimal temperature for maximum acid dye removal using bio-coagulants. Increasing temperature reduced coagulation capacity, indicating an exothermic process. Freundlich and Langmuir isotherms showed suitability for pseudo-first-order and pseudo-second-order kinetics in biosorption. Thermodynamic parameters were assessed for process feasibility. Effective coagulants demonstrated sensitivity to electrolyte variations. In column studies, adjusting parameters achieved maximum coagulation efficiency for removing BRF-221 dyes. The study successfully applied optimal parameters to remove real textile effluents at a practical scale. SEM, FT-IR, BET and XRD characterized coagulants, providing insights into stability and morphology.

16.
Bioeng Transl Med ; 9(4): e10652, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036081

RESUMEN

Dyes have conventionally been used in medicine for staining cells, tissues, and organelles. Since these compounds are also known as photosensitizers (PSs) which exhibit photoresponsivity upon photon illumination, there is a high desire towards formulating these molecules into nanoparticles (NPs) to achieve improved delivery efficiency and enhanced stability for novel imaging and therapeutic applications. Furthermore, it has been shown that some of the photophysical properties of these molecules can be altered upon NP formation thereby playing a major role in the outcome of their application. In this review, we primarily focus on introducing dye categories, their formulation strategies and how these strategies affect their photophysical properties in the context of photothermal and non-photothermal applications. More specifically, the most recent progress showing the potential of dye supramolecular assemblies in modalities such as photoacoustic and fluorescence imaging, photothermal and photodynamic therapies as well as their employment in photoablation as a novel modality will be outlined. Aside from their photophysical activity, we delve shortly into the emerging application of dyes as drug stabilizing agents where these molecules are used together with aggregator molecules to form stable nanoparticles.

17.
Environ Pollut ; : 124577, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032546

RESUMEN

This study examines the impact of textile dye contamination on the structure of soil fungal communities near a Shaoxing textile dye factory. We quantified the concentrations of various textile dyes, including anthraquinone azodye and phthalocyanine, which ranged from 20.20 to 140.62 mg kgˆ-1, 102.01 to 698.12 mg kgˆ-1, and 7.78 to 42.65 mg kgˆ-1, respectively, within a 1000 m radius of the factory. Our findings indicate that as dye concentration increases, the biodiversity of soil fungi, as measured by the Chao1 index, decreases significantly, highlighting the profound influence of dye contamination on fungal community structure. Additionally, microbial correlation network analysis revealed a reduction in fungal interactions correlating with increased dye concentrations. We also observed that textile dyes suppressed carbon and nitrogen metabolism in fungi while elevating the transcription levels of antioxidant-related genes. Enzymes such as lignin peroxidase (LiP), manganese peroxidase (MnP), laccase (Lac), dye-decolorizing peroxidases (DyPs), and versatile peroxidase (VP) were upregulated in contaminated soils, underscoring the critical role of fungi in dye degradation. These insights contribute to the foundational knowledge required for developing in situ bioremediation technologies for contaminated farmlands.

18.
Int J Biol Macromol ; : 133931, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032896

RESUMEN

Motivated by sustainability and environmental protection, great efforts have been paid towards water purification and attaining complete decolorization and detoxification of polluted water effluent. Textile effluent, the main participant in water pollution, is a complicated mixture of toxic pollutants that which seriously impact human health and the entire ecosystem. Developing effective material for potential removal of these contaminants is urgent. Recently, cryogels have been applied in wastewater sectors due to their unique physiochemical attributes(e.g. high surface area, lightweight, porosity, swelling-deswelling, and high permeability). These features robustly affected the cryogel's performance, as adsorbent material, particularly in wastewater sectors. This review serves as a detailed reference to the cryogels derived from biopolymers that are applied as adsorbents for the purification of textile drainage. We displayed an overview of; the existing contaminants in textile effluents (dyes and heavy metals) their sources, and toxicity; advantages and disadvantages of the most common treatment techniques (biodegradation, advanced chemical oxidation, membrane filtration, coagulation/flocculation, adsorption). A simple background about cryogels (definition, cryogelation technique, significant features as adsorbents, and the adsorption mechanisms) is discussed. The bio-based cryogels dependent on biopolymers such as chitosan, xanthan, cellulose, PVA, and PVP, are fully discussed with evaluating their maximum adsorption capacity.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39034377

RESUMEN

In recent years, consumer preferences have begun to turn back to natural dyes, whereas synthetic dyes have been pushed into the background over the previous 60 years. This is a result of increased knowledge of the potential hazards associated with the creation of synthetic dyes, which use raw materials derived from petrochemicals and involve intense chemical interactions. Such dyes need a lot of energy to produce, and their negative effects on the environment increase pollution. It has been discovered that several of these dyes, particularly the azo-based ones are carcinogenic. On the contrary, natural dyes are getting more attention from scientists and researchers as a result of their several advantages like being eco-friendly, biodegradable and renewable, sustainable, available in nature, having no disposal problems, minimizing the consumption of fossil fuel, anti-bacterial, insect repellent, and anti-allergic, anti-ultraviolet, intensify dyeing and finishing process efficiency, less expensive, and no adverse effects on human health and environment. However, there are also some drawbacks, like poor fastness properties, natural dye printing for bulk production, difficulties in reproducibility of shades, and so forth. Despite all these limitations, the demand for natural dyes is increasing significantly in textile industries because they offer far more safety than synthetic dyes. This study provides an overall concept of the natural dyes in textile printing. It illustrates parameters of printing performance, methods, and techniques of extraction of natural dyes, printing methods, and printing of natural and synthetic fibers. Finally, this study describes the challenges and future prospects of natural dyes in textile printing.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39034639

RESUMEN

Advanced photosensitizers for high-performance fluorescence imaging-guided photothermal therapy demand excellent near-infrared (NIR) brightness [molar absorption coefficient (ε) × quantum yield (QY)] and exceptional photothermal performance [ε × photothermal conversion efficiency (PCE)]. However, integrating high brightness and potent photothermal performance within a single molecule faces a formidable challenge. This article proposes a method to address this issue by preparing J-aggregate nanoparticles (NPs) using molecules with high ε. J-aggregates effectively improve QY and induce molecular emission redshift, while high ε molecules play a crucial role in improving the brightness and photothermal performance. By optimizing the molecular structure based on the pyrrolopyrrole cyanine (PPCy), precise control over the QY and PCE of PPCy J-aggregates is achieved. Ultimately, PDDO NPs exhibiting superior brightness (ε × QY = 3.32 × 104 M-1 cm-1) and photothermal performance (ε × PCE = 1.21 × 105 M-1 cm-1) are identified as high-performance photosensitizers. Notably, each parameter represents one of the highest levels among the reported fluorescence or photothermal probes to date. The in vivo studies demonstrate that PDDO NPs possess exceptional NIR imaging capabilities and remarkable photothermal tumor inhibition rates. This study provides innovative insights into the development of high-performance multifunctional photosensitizers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...