Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 661
Filtrar
1.
Sci Rep ; 14(1): 19059, 2024 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154086

RESUMEN

A modified carbon paste sensor based on N,N'-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methanylylidene))bis(pyridine-2-amine; BPA Schiff base as Cr(III) selective carrier was fabricated and studied in this work. The proposed sensor homogenization and mechanism of action was studied by infra-red (IR) and scanning electron microscope (SEM) with energy dispersive X-ray (EDX) tools. The sensor covered 1.0 × 10-7-1.0 × 10-1 mol L-1 linear range and a detection limit of 7.22 × 10-8 mol L-1 for Cr(III) with 20.17 ± 0.13 mV decade-1 Nernstian slope. 5 s was the response time of the prepared sensor and it was reproducible and stable for 3 months. The working pH range was 3.3-6.0 and it also works well to determine Cr(III) ion in presence of water miscible solvents up to 12.5% content of the methanol and 17.5% of ethanol. The electrode's selectivity was studied using separate and mixed solution methods for selectivity coefficients determination and the sensor showed good selectivity relative to a variety of metal ions (selectivity coefficients = 1.01 × 10-5-8.57 × 10-3). In addition, the practical analysis value of the sensor was demonstrated by measurement of Cr(III) quantitatively in mineral water, supplement and also as an indicator electrode in Cr(III) against EDTA potentiometric titration with good reproducibility (RSDs of 0.91-2.15%).


Asunto(s)
Carbono , Cromo , Cromo/análisis , Cromo/química , Carbono/química , Agua/química , Suplementos Dietéticos/análisis , Bases de Schiff/química , Límite de Detección , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis , Electrodos , Reproducibilidad de los Resultados , Iones/análisis , Técnicas Electroquímicas/métodos
2.
Heliyon ; 10(15): e35597, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170301

RESUMEN

In 2020, 500th anniversary of Raffaello Sanzio death, his Deposition (1507), -the altarpiece known also as the Pala Baglioni, today located at the Borghese Gallery in Rome-has been subjected to conservative revision and preventive conservation project. This included in-depth diagnostic campaigns through most modern non-invasive techniques, together with the analysis of old cross sections from the same Pala. These latters, prepared between 1966 and 1972, preserved in ICR laboratory of chemistry and testing materials archive, have been used to deepen the knowledge of Raffaello painting techniques. The use of such cross sections was fundamental to verify the original pictorial film and restoration re-paintings before the conservation intervention in the same years. In this paper, the results of analytical insights on Raffaello pictorial palette are presented. The information is obtained by the analysis of the old ICR stratigraphic sections, through the use of Scanning Electron Microscope with Energy Dispersive X-Ray analysis (SEM-EDX) and micro-Raman (632.8 nm), while Surface Enhanced Raman Scattering (SERS) analysis through colloidal paste has been tested for the identification of organic lake-pigments present in low concentration and for the successful recognition of copper resinate, whose SERS spectrum is here reported for the first time, according to our knowledge. This combined diagnostic approach has made it possible to recognize the pigments employed in the different pictorial layers, such species in traces and those from organic materials, responding to open questions arising previous non-invasive analyses and highlighting further aspects of the illustrious master refined painting technique.

3.
Sci Total Environ ; 951: 175427, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128512

RESUMEN

Particulate Matter (PM) dramatically affects the well-being of a growing global population, particularly in urban areas. While air quality control is an important and pressing issue, particulate matter analysis typically focuses on size distribution and concentration, offering limited insights into chemical composition and pollutant sources. This study analyzes PM10 samples collected from five air quality monitoring stations across the Piedmont region. Specifically, the two of the stations are located in the urban environment of Turin, a city known as one of Europe's most polluted cities. The analysis has been carried out using primarily Raman Spectroscopy (RS) to identify the main PM components, investigate the different PM compositions, and evaluate the chemical and seasonal variations. Scanning Electron Microscopy (SEM) equipped with an Energy Dispersion X-ray spectrophotometer (EDX) has also been used to obtain further information about the elemental composition and the size distribution. Amorphous carbon, nitrate salt, sulfate salt, iron oxides, and quartz are the main compounds found. The results of our study highlight significant differences in the chemical composition of PM10, indicating variations in the sources and characteristics of PM. Notably, higher levels of nitrate and sulfate particles are linked respectively to cold and warm seasons. Whereas, amorphous carbon and iron oxides are associated with distinct geographic features at the sampling sites, such as traffic conditions. These findings emphasize the importance of understanding the different sources and characteristics of PM10 to develop effective air pollution mitigation strategies in the Piedmont region.

4.
Plants (Basel) ; 13(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204774

RESUMEN

The flowering and fruit set of grapevines are determined by many morphological, physiological, and environmental factors. Although the elemental composition of pollen grains plays a crucial role in the fruit set, there is still a considerable gap in our knowledge. To date, no study has been conducted on the elemental composition of Vitis vinifera subsp. sylvestris (hereafter V. sylvestris) pollen grains. The aim of this work was to investigate the elemental composition of pollen grains of V. sylvestris using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). The pollen grains of ten V. sylvestris individuals (eight male and two female) and one hermaphrodite cultivar 'Plavac mali crni' were analyzed. SEM-EDX analysis revealed the presence of eight elements (carbon-C, oxygen-O, magnesium-Mg, phosphorus-P, potassium-K, calcium-Ca, molybdenum-Mo, and aluminum-Al) in the pollen grains. Interestingly, aluminum was detected exclusively in the pollen of the cultivated grape cultivar 'Plavac mali crni', while it was not present in the genotypes of V. sylvestris. No significant differences between genotypes were found for oxygen and phosphorus, while significant differences were found for other elements. Pollen dimorphism was not associated with differences in element composition, although principal component analysis separated the genotypes into two distinct groups, with two female individuals (Pak10 and Pak12) and one male (Im19) tending to form separate clusters. This study is the first report on the elemental composition of pollen grains of V. sylvestris genotypes and provides valuable insights for further studies on pollen functionality.

5.
Nano Lett ; 24(33): 10177-10185, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106344

RESUMEN

Energy dispersive X-ray (EDX) spectroscopy in the transmission electron microscope is a key tool for nanomaterials analysis, providing a direct link between spatial and chemical information. However, using it for precisely determining chemical compositions presents challenges of noisy data from low X-ray yields and mixed signals from phases that overlap along the electron beam trajectory. Here, we introduce a novel method, non-negative matrix factorization based pan-sharpening (PSNMF), to address these limitations. Leveraging the Poisson nature of EDX spectral noise and binning operations, PSNMF retrieves high-quality phase spectral and spatial signatures via consecutive factorizations. After validating PSNMF with synthetic data sets of different noise levels, we illustrate its effectiveness on two distinct experimental cases: a nanomineralogical lamella, and supported catalytic nanoparticles. Not only does PSNMF obtain accurate phase signatures, but data sets reconstructed from the outputs have demonstrably lower noise and better fidelity than from the benchmark denoising method of principle component analysis.

6.
J Prosthodont ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185809

RESUMEN

PURPOSE: To investigate the effects of the elemental composition and the manufacturing process of cobalt chromium-molybdenum (CoCr-Mo), cobalt chromium-tungsten (CoCr-W), and CoCr-Mo-W alloys on metal-ceramic bond strength. MATERIALS AND METHODS: Six CoCr-based alloys were included in this study, a were classified into three different groups depending on their elemental composition (Ν = 10, for each group). The first group had molybdenum (Mo) as the third alloying element, the second group contained tungsten (W) (without Mo), and the third group included both alloying elements. The groups were further divided by the manufacturing process (casting or selective laser melting, SLM). Interfacial analysis was carried out using backscattered electron imaging (BEI) and energy-dispersive X-ray microanalysis (EDX) operating in line scan mode. The metal-ceramic bond strength was tested by a 3-point bending test according to the ISO 9693 requirements. The fracture mode of all specimens was examined under a stereomicroscope. The bond strength results were statistically analyzed by 2-way ANOVA and Tukey's multiple comparison post hoc test (a = 0.05). RESULTS: A continuous interface with the porcelain was found without pores, debonding areas, or other defects. Of the major elements found at the interface, Co showed the highest diffusion rate, while titanium (Ti) had the lowest diffusion rate. No statistically significant differences were identified in metal-ceramic bond strength either among materials or between manufacturing processes. The fracture mode was found to be cohesive for all specimens. CONCLUSIONS: The metal-ceramic bond strength is independent of the current CoCr alloy type and manufacturing process when comparing conventional casting and SLM. Interfacial analysis revealed no differences between the tested groups.

7.
Cureus ; 16(7): e63925, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39105038

RESUMEN

Background In recent years, significant advancements have been made in various scientific sectors, particularly in healthcare and pharmaceutical research. This progress has been driven by the development of enhanced sensing materials and methodologies. Electrochemical sensing has become an important tool in detecting and analyzing drug molecules due to its high sensitivity, specificity, and rapid response times. Among various drugs, paracetamol, also known as acetaminophen, is widely used for its analgesic and antipyretic properties. Accurate detection of paracetamol is crucial due to its widespread use and potential for overdose, which can lead to severe liver damage. Copper molybdate (CuMoO4) is a transition metal oxide that has garnered attention for its excellent electrical conductivity and electrochemical stability. These properties make it a promising candidate for use in electrochemical sensors. The ability of CuMoO4 to act as a sensor material is enhanced by its unique structural and morphological characteristics, which can be tailored during synthesis. Aim This study aimed to synthesize CuMoO4 and investigate its electrochemical sensing capability for the detection of drug molecules, specifically paracetamol. Materials and method CuMoO4 was synthesized using a precipitation method that did not involve any surfactants. This approach was chosen to simplify the synthesis process and avoid potential contamination from surfactants. The morphology of the synthesized CuMoO4 nanoparticles was investigated using a field emission scanning electron microscope (FE-SEM). Energy-dispersive X-ray spectroscopy (EDX) confirmed the purity of the CuMoO4 nanomaterial. Structural analysis was performed using X-ray diffraction (XRD). To evaluate the electrochemical sensing capability of CuMoO4 for paracetamol, Differential pulse voltammetry (DPV) was employed. DPV is a sensitive electrochemical technique that can detect changes in current response corresponding to the presence of analytes. Results The synthesized CuMoO4 exhibited a rock-like structure, as revealed by FE-SEM imaging. This morphology is advantageous for electrochemical applications due to the increased surface area available for interaction with analytes. EDX confirmed the purity of the CuMoO4 nanomaterial, showing no significant impurities. XRD analysis indicated that the CuMoO4 nanoparticles were crystalline in nature, which is beneficial for consistent and reproducible electrochemical behavior. The DPV analysis demonstrated that the CuMoO4 sensor exhibited a linear increase in current response with increasing concentrations of paracetamol. This linear relationship indicates that CuMoO4 is capable of detecting paracetamol effectively, with a strong and quantifiable signal response. Conclusion The CuMoO4 nanomaterial was successfully synthesized using a simple precipitation method and was characterized by its rock-like morphology and crystalline structure. Electrochemical testing using DPV showed that CuMoO4 has excellent sensing capabilities for detecting paracetamol, with a clear and linear current response. These findings suggest that CuMoO4 is a promising electrochemical sensing material for drug detection, potentially offering a reliable and efficient method for monitoring paracetamol and possibly other pharmaceuticals in various settings.

8.
Arch Oral Biol ; 167: 106053, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39029289

RESUMEN

OBJECTIVE: To investigate the accumulation of cerium-nitrate and samarium-nitrate on dentin without or with smear-layer and to test their antibacterial activity. DESIGN: 24 dentin-enamel slices were cut from 24 extracted molars. 12 slices underwent smear-layer creation (320 grit, 200 g, 5 s), the other 12 smear-layer removal (20 % EDTA, 300 s). Slices were halved to 48 semilunar-shaped specimens. One specimen per tooth was treated with either Ce(NO3)3 (50 wt% aqueous solution; pH = 1.29; n = 6) or Sm(NO3)3 (50 wt% aqueous solution; pH = 1.88; n = 6). The other specimen served as control (A. demin). After water rinsing, elemental composition (Ce, Sm, Ca, P, O, N, Na, Mg, C) was measured (EDX; EDAX Octane-Elect, APEX v2.5, low-vacuum) in dentin. Atomic percent (At%), Ca/P- and Ca/N-ratios were calculated and analyzed non-parametrically (α = 0.05, error rates method). Additionally, antibacterial activity (2 min exposure) of Ce(NO3)3 and Sm(NO3)3 against Streptococcus mutans, Actinomyces naeslundii, Schaalia odontolytica, and Enterococcus faecalis was determined (colony forming units) after anaerobic incubation at 37 °C for 24 h (control: 0.2 % CHX). RESULTS: At% (median) of Ce and Sm were as follows: Ce(NO3)3 3.4 and 0.9 At%Ce with and without smear-layer, respectively; Sm(NO3)3 2.4 and 1.3 At%Sm with and without smear-layer, respectively. Ce(NO3)3 and Sm(NO3)3-application significantly decreased Ca/P-ratios (1.22 - 1.45; p ≤ 0.02) compared to controls (1.47 - 1.63). With smear-layer, significantly higher Ca/N-ratios (5.1 - 29.3) could be detected across all groups (p ≤ 0.004) compared to specimens without smear-layer (0.37 - 0.48). Ce(NO3)3 and Sm(NO3)3 showed reduction rates of up to ≥ 5 log10 steps for S. mutans, A. naeslundii, and S. odontolytica. CONCLUSIONS: Cerium and samarium nitrate showed accumulation on dentin and certain antibacterial activity and could therefore be identified as potential compounds to treat and prevent dentin and root caries and dentin hypersensitivity.


Asunto(s)
Cerio , Dentina , Nitratos , Samario , Cerio/farmacología , Dentina/efectos de los fármacos , Humanos , Nitratos/farmacología , Samario/farmacología , Capa de Barro Dentinario , Streptococcus mutans/efectos de los fármacos , Antibacterianos/farmacología , Técnicas In Vitro , Diente Molar
9.
Small Methods ; : e2400200, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992994

RESUMEN

A carbon paper-based gas diffusion electrode (GDE) is used with a bismuth(III) subcarbonate active catalyst phase for the electrochemical reduction of CO2 in a gas/electrolyte flow-by configuration electrolyser at high current density. It is demonstrated that in this configuration, the gas and catholyte phases recombine to form K2CO3/KHCO3 precipitates to an extent that after electrolyses, vast amount of K+ ions is found by EDX mapping in the entire GDE structure. The fact that the entirety of the GDE gets wetted during electrolysis should, however, not be interpreted as a sign of flooding of the catalyst layer, since electrolyte perspiring through the GDE can largely be removed with the outflow gas, and the efficiency of electrolysis (toward the selective production of formate) can thus be maintained high for several hours. For a full spatial scale quantitative monitoring of electrolyte penetration into the GDE, (relying on K+ ions as tracer) the method of inductively coupled plasma-mass spectrometry (ICP-MS) assisted energy dispersive X-ray (EDX) tomography is introduced. This new, cheap and robust tomography of non-uniform aspect ratio has a large planar span that comprises the entire GDE surface area and a submicrometer depth resolution, hence it can provide quantitative information about the amount and distribution of K+ remnants inside the GDE structure, in three dimensions.

10.
Microsc Res Tech ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988203

RESUMEN

The aim of this study was to compare of four different nickel-titanium (Ni-Ti) endodontic files and evaluate in terms of cyclic fatigue resistance and metallurgical properties. Four different type Ni-Ti root canal files Protaper Next X2 (PTN) (Dentsply Maillefer, Ballaigues, Switzerland), One Curve (OC) #25.06 (Micro Mega, Besancon, France), EndoPlus Flex Plus Gold X2 (EPG) (Turkuaz Dental, Denizli, Turkey), and EndoPlus Flex Plus Blue #25.06 (EPB) (Turkuaz Dental, Denizli, Turkey) files were tested for cyclic fatigue resistance (n = 20). During experiments artificial zirconia block canal was used. The artificial canal designed with curvature 60° and 5-mm radius. The number of cyclic to fracture (NCF) was noted. Fractured length (FL) parts of Ni-Ti files were recorded to assessment of fracture volumetric point. All fractured surfaces of Ni-Ti files were assessed by scanning electron microscope (SEM) to confirm the type of fractures. Descriptive evaluation become accomplished for the fundamental composition of units with the aid of using energy-dispersive x-ray spectroscopy (EDX). NCF data were evaluated via Bonferroni test with post hoc multiple comparison method. OC showed the highest NCF values (p < .05). The standardization of the study was confirmed as the FL of files was statistically similar in length (p > .05). SEM analysis confirmed that all scanned samples were fractured due to cyclic fatigue. EDX analysis confirmed that EPB established the poorest Ni content file. RESEARCH HIGHLIGHTS: The cyclic fatigue-related failure of One Curve was significantly more resistant than Protaper Next and EndoPlus files. Scanning electron microscopy images showed that One Curve and Protaper Next have round tips Energy dispersive x-ray spectroscopy showed that all four endodontic instruments mainly have Nickel and Titanium elements.

11.
Sci Rep ; 14(1): 16857, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039087

RESUMEN

The study was designed to explore the corrosion prevention capabilities of Citrullus colocynthis seeds alkaloid-rich extract (CSEA) on MS in a 1 M HCl environment by use of electrochemical and theoretical methods. Notably, Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization were used to probe the impact of immersion time and temperature. Energy-dispersive X-ray spectroscopy (EDX) and spanning electron microscopy (SEM) were used to confirm the presence of a protective layer on the substrate surface. Density functional theory (DFT) method was used to optimize the investigated species by use of B3LYP/6-31 + G(d, p) level of theory. The global and local quantum chemical reactivity descriptors were calculated to explore the inhibition corrosion efficiency and to identify the most favorable sites for electrophilic and nucleophilic attacks. Monte Carlo (MC) and molecular dynamics simulation (MDS) methods were used to study the interactions between corrosion inhibitor and metal surface. Noteworthy, results showed that CSEA exhibited an impressive inhibition efficiency, which reached 94.3% with a concentration of 2 g/L at 298 K. Potentiodynamic polarization revealed that the extract acted as a mixed-type inhibitor. Nyquist graphs showed that charge-transfer resistance and dæouble-layer capacitance both rised with increasing CSEA concentration, suggesting better inhibition efficiency. Notably, the Langmuir adsorption isotherm is well-aligned with the adsorption of inhibitor compounds. Importantly, all aforementioned theoretical methods were in agreement with the experimental findings. The outcome of the present work supported using Citrullus colocynthis seeds alkaloid-rich extract as ecofriendly agents to prevent corrosion.

12.
BMC Oral Health ; 24(1): 868, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080605

RESUMEN

AIM: This study aimed to evaluate the effect of the use of remineralization agents before the application of resin infiltration on the treatment of initial enamel lesions. MATERIALS AND METHODS: Eighty buccal enamel samples were prepared from human molars, and artificial initial lesions were formed after 96 h of incubation with a demineralizing solution. The samples were randomly divided into 8 groups (n = 10) including a remineralizing agent (Tooth Mousse, Medical Mineral Gel, Remin Pro), resin infiltration (ICON), and a combined treatment of both. Remineralizing agents were applied in pH cycle for 7 days. Baseline, demineralization, and after-treatment fluorescence (FluoreCam and DIAGNOdent Pen), surface microhardness (HMV-2T), surface roughness (M300C), OCT (Maestro-2) and ultrasonic system (Novascope 4500) data were obtained for all groups. The sample surfaces were examined under SEM/EDX (SU3500) at x1000. Data were statistically analyzed using the Two-Way Robust ANOVA and Bonferroni tests (p < 0.05). RESULTS: There was no statistically significant difference between the groups for microhardness, roughness, OCT, DIAGNOdent Pen, ultrasound, and FluoreCam size/intensity values (p = 0.582; p = 0.963; p = 0.884; p = 0.923; p = 0.051; p = 0.268; p = 0.793 respectively). The effect of the treatment procedure showed a significant difference (p < 0.001), except for the roughness values (p = 0.984). The lowest Calcium (Ca) ratio (%atomic) was observed in the RI group in the EDX analysis. CONCLUSION: Remineralizing agents and resin infiltration methods may be used in combination or alone in the treatment of initial enamel lesions. Combining remineralizing agents with resin infiltration does not alter the efficacy of the treatment.


Asunto(s)
Esmalte Dental , Dureza , Resinas Sintéticas , Remineralización Dental , Humanos , Remineralización Dental/métodos , Esmalte Dental/efectos de los fármacos , Técnicas In Vitro , Resinas Sintéticas/uso terapéutico , Desmineralización Dental/tratamiento farmacológico , Propiedades de Superficie , Cariostáticos/uso terapéutico , Cariostáticos/farmacología , Microscopía Electrónica de Rastreo , Concentración de Iones de Hidrógeno , Espectrometría por Rayos X
13.
Forensic Sci Int ; 361: 112135, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972145

RESUMEN

Understanding the presence, transfer dynamics and depletion of gunshot residues (GSR) on various surfaces is crucial for preserving evidence, reconstructing shooting incidents, and linking suspects to crime scenes. This study aims to explore the transfer and loss of GSR on commonly encountered surfaces such as ceramic, glass, metal, paper, and plastic, as well as the influence of different common hand cleaning methods on secondary transfer. Using scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) and automated detection software, we quantified highly indicative three-component characteristic particles (lead, barium, and antimony) on cups made from ceramic, glass, metal, paper, and plastic. Furthermore, we evaluated the amount of secondary transferred particles on these surfaces following various post-discharge hand cleaning methods: washing with water and soap, washing with only water, wiping with wet wipes, or using paper towels. The results demonstrate that counts of secondarily transferred GSR particles vary significantly among surfaces. Specifically, the transferred GSR count was highest on paper, followed by plastic, ceramic, metal, and glass respectively. Post-discharge hand cleaning methods, including washing with water and soap, washing with only water, cleaning with wet wipes, or with paper towel, resulted in substantial loss of GSR count on transferred surfaces. Among these methods, washing with water and soap showed the highest depletion. The empirical evidence provided by our results underscores the importance of considering surface properties, post-shooting activities, and the methods of sample collection and analysis when interpreting transferred GSR analysis. Despite challenges, these insights enhance our ability to link suspects to shooting crimes through careful consideration of the entire context.

14.
BMC Zool ; 9(1): 17, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010185

RESUMEN

BACKGROUND: Hair characterization is critical for determining animal individuality throughout life. This study aimed to assess the morphological features of dromedary camel hair in relation to age. MATERIALS AND METHODS: Hair samples were obtained from the camel humps of 30 dromedary camels separated into three groups: G1 (n:10) aged one-year, G2 (n:10) aged 3-5 years, and G3 (n:10) at the age of 8-10 years. The hair was examined using light microscopy, SEM, and SEM-EDX. RESULTS: The Maghrebi camel had varied medulla patterns and structures across the ages. In the G1 group 75% had continuous medulla patterns and amorphous medulla structures, compared to 70% in G2, and 90% in G3. The medulla index increased with age, rising from 0.3 to 0.77%. The shaft width grew in size from G1 to G2, then fell to approximately one-third of the G2 size at G3. The cortex and cuticle widths were also determined by age, and they increased in the G1 compared to G3 camels. The shape of the cuticle scales in G1 camels was wavy, like mountain tops with irregular edges, within G2 camels the scales were particularly long, oval-shaped scales with smooth, wavy borders. The scales of the older G3 camels were quite long and rectangular. SEM-EDX spectra recognized carbon, oxygen, nitrogen, sulfur, calcium, aluminum, silicon, and potassium at the medulla and cortex. Sulfur levels were highest in the G2 samples but lowest in the G1 samples. CONCLUSION: The dromedary camel's hair structure and mineral content, particularly carbon and nitrogen, differed as camels aged.

15.
Cureus ; 16(5): e60040, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38854283

RESUMEN

INTRODUCTION: Dental caries in primary teeth remains a critical public health challenge globally. Although fluoride toothpaste is the standard care for remineralization, its efficacy is limited by the requirement for bioavailable calcium and phosphate ions and its diminished performance on irregular dental surfaces. This study evaluates natural alternatives for dental care, focusing on their mineralizing potential compared to fluoride. AIM: This study aims to assess and compare the efficacy of remineralization by flaxseed paste and chicken eggshell paste to that of standard fluoride toothpaste on artificially demineralized primary teeth. MATERIALS AND METHODS: We utilized an in vitro model, creating standardized white spot lesions on extracted primary teeth to simulate early carious lesions. The teeth were treated with preparations of flaxseed paste, chicken eggshell paste, and fluoride toothpaste. Remineralization was quantitatively analyzed using scanning electron microscopy-energy dispersive x-ray analysis (SEM-EDX) conducted with a high-resolution scanning electron microscope (HRSEM) from Thermoscientific Apreo S at Sir C V Raman Research Park, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu. RESULTS: Quantitative analysis revealed that both flaxseed and chicken eggshell pastes not only met but, in some cases, exceeded the remineralization performance of fluoride toothpaste. Significant differences were observed in the deposition of calcium and phosphate ions on the lesion surfaces. CONCLUSION: The study conducted at the Department of Pediatric and Preventive Dentistry at SRM Dental College, Kattankulathur, confirms the potential of flaxseed and chicken eggshell pastes as viable, cost-effective, and accessible alternatives to fluoride toothpaste for the remineralization of enamel in primary teeth. These findings support the inclusion of these natural agents in oral hygiene regimens and underscore the importance of further research into holistic approaches for the prevention and treatment of dental caries in children.

16.
J Funct Biomater ; 15(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38921542

RESUMEN

Nanoparticle (NP)-based solutions for oncotherapy promise an improved efficiency of the anticancer response, as well as higher comfort for the patient. The current advancements in cancer treatment based on nanotechnology exploit the ability of these systems to pass biological barriers to target the tumor cell, as well as tumor cell organelles. In particular, iron oxide NPs are being clinically employed in oncological management due to this ability. When designing an efficient anti-cancer therapy based on NPs, it is important to know and to modulate the phenomena which take place during the interaction of the NPs with the tumor cells, as well as the normal tissues. In this regard, our review is focused on highlighting different approaches to studying the internalization patterns of iron oxide NPs in simple and complex 2D and 3D in vitro cell models, as well as in living tissues, in order to investigate the functionality of an NP-based treatment.

17.
Diagnostics (Basel) ; 14(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928673

RESUMEN

(1) Background: The diagnosis of lumbosacral radiculopathy involves anamnesis, an assessment of sensitivity and strength, diagnostic imaging-usually magnetic resonance imaging (MRI)-and electrodiagnostic testing (EDX), typically electromyography (EMG), and electroneurography (ENG). MRI evaluates the structures supporting the spinal cord, while EDX evaluates root functionality. The present study aimed to analyze the concordance of MRI and EDX findings in patients with clinically suspected radiculopathy. Additionally, we investigated the comparison between these two reference tests and various clinical variables and questionnaires. (2) Methods: We designed a prospective epidemiological study of consecutive cases with an observational, descriptive, cross-sectional, and double-blind nature following the STROBE guidelines, encompassing 142 patients with clinical suspicion of lumbosacral radiculopathy. (3) Results: Of the sample, 58.5% tested positive for radiculopathy using EDX as the reference test, while 45.8% tested positive using MRI. The comparison between MRI and EDX in the diagnosis of radiculopathy in patients with clinical suspicion was not significant; the overall agreement was 40.8%. Only the years with symptoms were comparatively significant between the positive and negative radiculopathy groups as determined by EDX. (4) Conclusion: The comparison between lumbar radiculopathy diagnoses in patients with clinically suspected pathology using MRI and EDX as diagnostic modalities did not yield statistically significant findings. MRI and EDX are complementary tests assessing different aspects in patients with suspected radiculopathy; degeneration of the structures supporting the spinal cord does not necessarily imply root dysfunction.

18.
Micromachines (Basel) ; 15(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38930677

RESUMEN

Tungsten carbide (WC) and its composites are typically associated with high hardness and high wear resistance, posing challenges in conventional machining processes like turning. To address the machining difficulties of WC-Co, electrical discharge turning (EDT) was proposed. The rotational speed in EDT is a key factor influencing the machining results; however, conflicting reports exist about its impact on the EDT process. Therefore, the effect of rotational speed on three different machining regimes, including roughing, semi-finishing, and finishing, was investigated using energy-dispersive X-ray spectroscopy (EDX), SEM, and roughness tests. Additionally, elemental mapping was applied to illustrate the element distribution on the machined surface. The results indicated that increasing the rotational speed led to a 10% to 17% decrease in the recast layer thickness and a 14% to 54% reduction in the surface roughness (Ra).

19.
Mar Pollut Bull ; 205: 116625, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925025

RESUMEN

Quantifying microplastics (MPs) in marine environments is challenging due to the complexities of differentiation from other materials. This study aims to distinguish petro-sourced plastic microfilaments from organic ones in environmental samples using scanning electron microscope coupled with energy dispersive X-ray (SEM-EDX) analysis. Therefore, 38 particles resembling MPs (PRMPs) from sediments and organisms in Madagascar were analyzed. MPs identification thresholds were determined from SEM-EDX analysis of macroplastics and seaweed, the primary sources of microfilaments. SEM-EDX results of the 38 PRMPs were compared with identification/misidentification made by five MPs observation experts. Results indicated that a carbon/oxygen (C/O) ratio >1 distinguished macroplastics and MPs from other sources (seaweed and organic microfilaments). SEM-EDX analysis identified 81.58% of PRMPs as MPs. The average error made by one observer was 36.32%. These findings highlight the need for a method to assess identification error in MPs quantification and recommend SEM-EDX analysis of microfilaments to gauge observer error.


Asunto(s)
Monitoreo del Ambiente , Microscopía Electrónica de Rastreo , Plásticos , Monitoreo del Ambiente/métodos , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Madagascar , Espectrometría por Rayos X , Sedimentos Geológicos/química , Algas Marinas
20.
Insects ; 15(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38921118

RESUMEN

The mandibles are among the most important appendages of insects' mouthparts. Their morpho-functional organization is correlated with the variation in dietary preferences. In this study, we investigated the ultrastructural organization and metal composition of the mandibles of two ladybird species with different dietary habits: Harmonia axyridis (an entomophagous species) and Subcoccinella vigintiquatuorpunctata (a phytophagous species). The ultrastructural organization was studied using Scanning and Transmission Electron Microscopy, whereas the metal composition was investigated using Energy-Dispersive X-ray spectroscopy (EDX). Significant differences were observed in the general organization and metal enrichment pattern between the two species. The mandibles of H. axyridis are large and present a molar part with two teeth, with the apical one showing a bifid apex. In contrast, S. vigintiquatuorpunctata exhibited a molar region with several teeth on its apical part. The study revealed significant differences in metal content between the teeth and the prostheca of H. axyridis. Mn was the most abundant element in teeth, whereas Cl was more abundant in the prostheca. In the case of S. vigintiquatuorpunctata, Si was the most abundant element in the prostheca, while Mn was more present in the teeth. A comparison between the two species revealed that both teeth and prostheca showed significant variation in the elemental composition. These findings underscore the role of dietary preferences in shaping the structural and metal composition variations in the mandibles of these two ladybird species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...