Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Cureus ; 16(6): e61645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975443

RESUMEN

Xeroderma pigmentosum is a rare autosomal recessive disorder resulting in heightened cutaneous photosensitivity due to aberrant DNA repair mechanisms. Early-life developmental delay and cognitive impairment have been described in xeroderma pigmentosum cases. However, psychiatric symptoms in adulthood as the presenting feature of xeroderma pigmentosum have not been reported. We report a young adult with xeroderma pigmentosum group G presenting with prominent neuropsychiatric manifestations and evidence of neurodegeneration. The clinical, laboratory, and radiological findings, skin biopsy, and the results of the genetic testing of the patient have been described after obtaining written and informed consent. A young adult male with skin photosensitivity since infancy developed hyper-religiosity, delusions, suicidal ideations, speech hypernasality, lower limb spasticity, and cognitive impairment over the past four years. The MRI of the brain showed diffuse cerebral atrophy. The skin biopsy from bilateral cheeks showed evidence of flattening and thinning of rete ridges, pigment incontinence, and perivascular and periappendageal inflammatory infiltrate. The whole exome sequencing in ethylenediaminetetraacetic acid (EDTA) blood revealed a compound heterozygous likely pathogenic mutation in intron 13 (c.2880-2A>G (3' splice site)) and a mutation in exon 15 (c.3146del (p.Asp1049ValfsTer12)) in the ERCC5 gene suggestive of xeroderma pigmentosum group G. This case highlights that prominent neuropsychiatric features in adulthood can occur due to xeroderma pigmentosum. Thus, xeroderma pigmentosum group G should be considered as a possibility among young adults presenting with neuropsychiatric features, evidence of neurodegeneration, and early-life skin photosensitivity.

2.
Front Immunol ; 15: 1423141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055713

RESUMEN

Background: Trichothiodystrophy-1 (TTD1) is an autosomal-recessive disease and caused by mutations in ERCC2, a gene coding for a subunit of the TFIIH transcription and nucleotide-excision repair (NER) factor. In almost half of these patients infectious susceptibility has been reported but the underlying molecular mechanism leading to immunodeficiency is largely unknown. Objective: The aim of this study was to perform extended molecular and immunological phenotyping in patients suffering from TTD1. Methods: Cellular immune phenotype was investigated using multicolor flow cytometry. DNA repair efficiency was evaluated in UV-irradiation assays. Furthermore, early BCR activation events and proliferation of TTD1 lymphocytes following DNA damage induction was tested. In addition, we performed differential gene expression analysis in peripheral lymphocytes of TTD1 patients. Results: We investigated three unrelated TTD1 patients who presented with recurrent infections early in life of whom two harbored novel ERCC2 mutations and the third patient is a carrier of previously described pathogenic ERCC2 mutations. Hypogammaglobulinemia and decreased antibody responses following vaccination were found. TTD1 B-cells showed accumulation of γ-H2AX levels, decreased proliferation activity and reduced cell viability following UV-irradiation. mRNA sequencing analysis revealed significantly downregulated genes needed for B-cell development and activation. Analysis of B-cell subpopulations showed low numbers of naïve and transitional B-cells in TTD1 patients, indicating abnormal B-cell differentiation in vivo. Conclusion: In summary, our analyses confirmed the pathogenicity of novel ERCC2 mutations and show that ERCC2 deficiency is associated with antibody deficiency most likely due to altered B-cell differentiation resulting from impaired BCR-mediated B-cell activation and activation-induced gene transcription.


Asunto(s)
Linfocitos B , Mutación , Proteína de la Xerodermia Pigmentosa del Grupo D , Humanos , Linfocitos B/inmunología , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/deficiencia , Masculino , Femenino , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/inmunología , Reparación del ADN , Niño , Activación de Linfocitos/genética , Preescolar , Adolescente
3.
Chin Clin Oncol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39043469
4.
Artículo en Inglés | MEDLINE | ID: mdl-38859773

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) has high morbidity and mortality worldwide. Excision repair cross-complement 3 (ERCC3), a key functional gene in the nucleotide excision repair (NER) pathway, is commonly mutated or overexpressed in cancers and is thought to be a key gene contributing to the development of HCC. The characteristics of immune cell infiltration in the global tumor microenvironment (TME) mediated by ERCC3 and its related key genes in HCC are still unclear. The aim of this study was to integrate the role of ERCC3-related key genes in assessing the TME cell infiltration characteristics, immunotherapy efficacy, and prognosis of HCC patients. This study provides a theoretical basis for the study of immunological mechanisms and prognosis prediction in HCC. METHODS: The HCC cohort from the TCGA database included 50 normal samples and 374 tumor samples to compare the differences in ERCC3-related gene expression and prognosis between liver tumor tissues and normal liver tissues and to analyze the extent to which different genes infiltrated TME cells by quantifying the relative abundance of 24 cells through single-sample genome enrichment analysis (ssGSEA). A risk score associated with the ERCC3 gene was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression model. RESULTS: The expression of 11 ERCC3-related genes was significantly upregulated in HCC tumor tissues compared to normal liver tissues, and high expression of these genes was significantly associated with poor prognosis in HCC patients. The key genes (11 ERCC3-related genes) were closely associated with the nucleic acid reduction signaling pathway in nucleic acid metabolism and the viral oncogenic pathway, suggesting that these key genes may play a role in tumor cell proliferation, migration, and invasion, as well as in the pathogenesis of virus-associated HCC. In addition, the infiltration characteristics of TME immune cells in normal and tumor tissues were different. Immune and mesenchymal activity was significantly lower in tumor tissues than in healthy liver tissues. This study revealed that key genes were significantly positively correlated with CTLA4 and enriched in central memory CD4 T cells, effector memory CD4 T cells, activated CD4 T cells, and type 2 T helper cells. The prognostic model constructed by regression analysis could better distinguish patients into high-risk and low-risk groups, and the survival analysis showed that the survival time of patients with high-risk score subtypes was significantly lower than that of patients with low-risk scores and that the high-risk group contained higher levels of immune-suppressive cells, which may be a mediator of immune escape. Moreover, multivariate analyses showed that the risk score profile is a reliable and unbiased biomarker for assessing the prognosis of HCC patients, and its value in predicting the outcome of immunotherapy was also confirmed. CONCLUSION: This study revealed a novel genetic signature that is significantly associated with TME cell infiltration and prognosis in HCC patients. It demonstrated that the combined action of multiple key genes associated with ERCC3 plays a crucial role in shaping the diversity and complexity of TME cell infiltrates. Evaluating the combined characteristics of multiple key genes associated with ERCC3 can help predict the outcome of immunotherapy in patients and provide new potential targets for immuno-individualized therapeutic studies on HCC.

5.
Mol Med Rep ; 30(1)2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38757346

RESUMEN

Ovarian cancer is a multifactorial and deadly disease. Despite significant advancements in ovarian cancer therapy, its incidence is on the rise and the molecular mechanisms underlying ovarian cancer invasiveness, metastasis and drug resistance remain largely elusive, resulting in poor prognosis. Oncolytic viruses armed with therapeutic transgenes of interest offer an attractive alternative to chemical drugs, which often face innate and acquired drug resistance. The present study constructed a novel oncolytic adenovirus carrying ERCC1 short interfering (si)RNA, regulated by hTERT and HIF promoters, termed Ad­siERCC1. The findings demonstrated that this oncolytic adenovirus effectively inhibits the proliferation, migration and invasion of ovarian cancer cells. Furthermore, the downregulation of ERCC1 expression by siRNA ameliorates drug resistance to cisplatin (DDP) chemotherapy. It was found that Ad­siERCC1 blocks the cell cycle in the G1 phase and enhances apoptosis through the PI3K/AKT­caspase­3 signaling pathways in SKOV3 cells. The results of the present study highlighted the critical effect of oncolytic virus Ad­siERCC1 in inhibiting the survival of ovarian cancer cells and increasing chemotherapy sensitivity to DDP. These findings underscore the potent antitumor effect of Ad­siERCC1 on ovarian cancers in vivo.


Asunto(s)
Adenoviridae , Proteínas de Unión al ADN , Endonucleasas , Virus Oncolíticos , Neoplasias Ováricas , ARN Interferente Pequeño , Femenino , Humanos , Adenoviridae/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Vectores Genéticos/genética , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Neoplasias Ováricas/terapia , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
6.
Biomed Pharmacother ; 174: 116470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565061

RESUMEN

ERCC2 plays a pivotal role in DNA damage repair, however, its specific function in cancer remains elusive. In this study, we made a significant breakthrough by discovering a substantial upregulation of ERCC2 expression in glioblastoma (GBM) tumor tissue. Moreover, elevated levels of ERCC2 expression were closely associated with poor prognosis. Further investigation into the effects of ERCC2 on GBM revealed that suppressing its expression significantly inhibited malignant growth and migration of GBM cells, while overexpression of ERCC2 promoted tumor cell growth. Through mechanistic studies, we elucidated that inhibiting ERCC2 led to cell cycle arrest in the G0/G1 phase by blocking the CDK2/CDK4/CDK6/Cyclin D1/Cyclin D3 pathway. Notably, we also discovered a direct link between ERCC2 and CDK4, a critical protein in cell cycle regulation. Additionally, we explored the potential of TRAIL, a low-toxicity death ligand cytokine with anticancer properties. Despite the typical resistance of GBM cells to TRAIL, tumor cells undergoing cell cycle arrest exhibited significantly enhanced sensitivity to TRAIL. Therefore, we devised a combination strategy, employing TRAIL with the nanoparticle DMC-siERCC2, which effectively suppressed the GBM cell proliferation and induced apoptosis. In summary, our study suggests that targeting ERCC2 holds promise as a therapeutic approach to GBM treatment.


Asunto(s)
Puntos de Control del Ciclo Celular , Proliferación Celular , Glioblastoma , Nanopartículas , Ligando Inductor de Apoptosis Relacionado con TNF , Proteína de la Xerodermia Pigmentosa del Grupo D , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Humanos , Línea Celular Tumoral , Puntos de Control del Ciclo Celular/efectos de los fármacos , Nanopartículas/química , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proliferación Celular/efectos de los fármacos , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Animales , Apoptosis/efectos de los fármacos , Ratones Desnudos , Masculino
7.
Int J Cancer ; 155(6): 1128-1138, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38676430

RESUMEN

Disease progression is a major problem in ovarian cancer. There are very few treatment options for patients with platinum-resistant ovarian cancer (PROC), and therefore, these patients have a particularly poor prognosis. The aim of the present study was to identify markers for monitoring the response of 123 PROC patients enrolled in the Phase I/II GANNET53 clinical trial, which evaluated the efficacy of Ganetespib in combination with standard chemotherapy versus standard chemotherapy alone. In total, 474 blood samples were collected, comprising baseline samples taken before the first administration of the study drugs and serial samples taken during treatment until further disease progression (PD). After microfluidic enrichment, 27 gene transcripts were analyzed using quantitative polymerase chain reaction and their utility for disease monitoring was evaluated. At baseline, ERCC1 was associated with an increased risk of PD (hazard ratio [HR] 1.75, 95% confidence interval [CI]: 1.20-2.55; p = 0.005), while baseline CDH1 and ESR1 may have a risk-reducing effect (CDH1 HR 0.66, 95% CI: 0.46-0.96; p = 0.024; ESR1 HR 0.58, 95% CI: 0.39-0.86; p = 0.002). ERCC1 was observed significantly more often (72.7% vs. 53.9%; p = 0.032) and ESR1 significantly less frequently (59.1% vs. 78.3%; p = 0.018) in blood samples taken at radiologically confirmed PD than at controlled disease. At any time during treatment, ERCC1-presence and ESR1-absence were associated with short PFS and with higher odds of PD within 6 months (odds ratio 12.77, 95% CI: 4.08-39.97; p < 0.001). Our study demonstrates the clinical relevance of ESR1 and ERCC1 and may encourage the analysis of liquid biopsy samples for the management of PROC patients.


Asunto(s)
Biomarcadores de Tumor , Resistencia a Antineoplásicos , Endonucleasas , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/sangre , Neoplasias Ováricas/patología , Resistencia a Antineoplásicos/genética , Endonucleasas/genética , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Anciano , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/sangre , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Receptor alfa de Estrógeno/genética , Adulto , Pronóstico , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Platino (Metal)/uso terapéutico
8.
Front Pharmacol ; 15: 1376638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659583

RESUMEN

Introduction: One of the primary obstacles faced by individuals with advanced colorectal cancer (CRC) is the potential development of acquired chemoresistance as the disease advances. Studies have indicated a direct association between elevated levels of miR-92a-3p and the progression, metastasis, and chemoresistance observed in CRC. We proposed that miR-92a-3p impairs FOLFOX (fluorouracil/oxaliplatin) chemotherapy response by upregulating the expression of chemoresistance biomarker genes through the activation of ß-catenin and epithelial-mesenchymal transition (EMT). These FOLFOX biomarker genes include the pyrimidine biosynthesis pathway genes dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), and the genes encoding the DNA repair complexes subunits ERCC1 and ERCC2, and XRCC1. Methods: To assess this, we transfected SW480 and SW620 colon cancer cell lines with miR-92a-3p mimics and then quantified the expression of DPYD, TYMS, MTHFR, ERCC1, ERCC2, and XRCC1, the expression of EMT markers and transcription factors, and activation of ß-catenin. Results and discussion: Our results reveal that miR-92a-3p does not affect the expression of DPYD, TYMS, MTHFR, and ERCC1. Furthermore, even though miR-92a-3p affects ERCC2, XRCC1, E-cadherin, and ß-catenin mRNA levels, it has no influence on their protein expression. Conclusion: We found that miR-92a-3p does not upregulate the expression of proteins of DNA-repair pathways and other genes involved in FOLFOX chemotherapy resistance.

9.
Aging Cell ; 23(5): e14126, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38451018

RESUMEN

Cardiovascular diseases are the number one cause of death globally. The most important determinant of cardiovascular health is a person's age. Aging results in structural changes and functional decline of the cardiovascular system. DNA damage is an important contributor to the aging process, and mice with a DNA repair defect caused by Ercc1 deficiency display hypertension, vascular stiffening, and loss of vasomotor control. To determine the underlying cause, we compared important hallmarks of vascular aging in aortas of both Ercc1Δ/- and age-matched wildtype mice. Additionally, we investigated vascular aging in 104 week old wildtype mice. Ercc1Δ/- aortas displayed arterial thickening, a loss of cells, and a discontinuous endothelial layer. Aortas of 24 week old Ercc1Δ/- mice showed phenotypical switching of vascular smooth muscle cells (VSMCs), characterized by a decrease in contractile markers and a decrease in synthetic markers at the RNA level. As well as an increase in osteogenic markers, microcalcification, and an increase in markers for damage induced stress response. This suggests that Ercc1Δ/- VSMCs undergo a stress-induced contractile-to-osteogenic phenotype switch. Ercc1Δ/- aortas showed increased MMP activity, elastin fragmentation, and proteoglycan deposition, characteristic of vascular aging and indicative of age-related extracellular matrix remodeling. The 104 week old WT mice showed loss of cells, VSMC dedifferentiation, and senescence. In conclusion, Ercc1Δ/- aortas rapidly display many characteristics of vascular aging, and thus the Ercc1Δ/- mouse is an excellent model to evaluate drugs that prevent vascular aging in a short time span at the functional, histological, and cellular level.


Asunto(s)
Envejecimiento , Reparación del ADN , Proteínas de Unión al ADN , Endonucleasas , Matriz Extracelular , Músculo Liso Vascular , Fenotipo , Animales , Endonucleasas/metabolismo , Endonucleasas/deficiencia , Endonucleasas/genética , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/deficiencia , Envejecimiento/metabolismo , Matriz Extracelular/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Mol Imaging Biol ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498063

RESUMEN

PURPOSE: In this study, we explored the role of apoptosis as a potential biomarker for cardiac failure using functional micro-CT and fluorescence molecular tomography (FMT) imaging techniques in Ercc1 mutant mice. Ercc1 is involved in multiple DNA repair pathways, and its mutations contribute to accelerated aging phenotypes in both humans and mice, due to the accumulation of DNA lesions that impair vital DNA functions. We previously found that systemic mutations and cardiomyocyte-restricted deletion of Ercc1 in mice results in left ventricular (LV) dysfunction at older age. PROCEDURES AND RESULTS: Here we report that combined functional micro-CT and FMT imaging allowed us to detect apoptosis in systemic Ercc1 mutant mice prior to the development of overt LV dysfunction, suggesting its potential as an early indicator and contributing factor of cardiac impairment. The detection of apoptosis in vivo was feasible as early as 12 weeks of age, even when global LV function appeared normal, underscoring the potential of apoptosis as an early predictor of LV dysfunction, which subsequently manifested at 24 weeks. CONCLUSIONS: This study highlights the utility of combined functional micro-CT and FMT imaging in assessing cardiac function and detecting apoptosis, providing valuable insights into the potential of apoptosis as an early biomarker for cardiac failure.

11.
Biochem Biophys Res Commun ; 704: 149713, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38428304

RESUMEN

As life expectancy continues to increase, age-related kidney diseases are becoming more prevalent. Chronic kidney disease (CKD) is not only a consequence of aging but also a potential accelerator of aging process. Here we report the pivotal role of podocyte ERCC1, a DNA repair factor, in maintaining glomerular integrity and a potential effect on multiple organs. Podocyte-specific ERCC1-knockout mice developed severe proteinuria, glomerulosclerosis, and renal failure, accompanied by a significant increase in glomerular DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). ERCC1 gene transfer experiment in the knockout mice attenuated proteinuria and glomerulosclerosis with reduced DNA damage. Notably, CD44+CD8+ memory T cells, indicative of T-cell senescence, were already elevated in the peripheral blood of knockout mice at 10 weeks old. Additionally, levels of senescence-associated secretory phenotype (SASP) factors were significantly increased in both the circulation and multiple organs of the knockout mice. In older mice and human patients, we observed an accumulation of DSBs and an even greater buildup of SSBs in glomeruli, despite no significant reduction in ERCC1 expression with age in mice. Collectively, our findings highlight the crucial role of ERCC1 in repairing podocyte DNA damage, with potential implications for inflammation in various organs.


Asunto(s)
Enfermedades Renales , Podocitos , Humanos , Ratones , Animales , Podocitos/metabolismo , Glomérulos Renales/metabolismo , Enfermedades Renales/metabolismo , Ratones Noqueados , Proteinuria/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo
12.
Arch Oral Biol ; 162: 105955, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479279

RESUMEN

OBJECTIVE: This meta-analysis was conducted to investigate the relationship between ERCC1 and XPC polymorphisms and the risk of head and neck cancer (HNC), incorporating more studies and additional analyses. DESIGN: An exhaustive search of various databases, including PubMed/Medline, Web of Science, Scopus, and Cochrane Library was carried out, up until November 18, 2023, to identify pertinent studies. The Review Manager 5.3 software was employed to calculate the effect sizes, which were presented as the odds ratio (OR) along with a 95% confidence interval (CI). RESULTS: The study found that the T allele (OR = 1.11; p-value = 0.02; 95%CI: 1.02, 1.22) and the TT genotype rs2228000 polymorphism in both the homozygous model (OR = 1.61, p-value = 0.02; 95%CI: 1.07, 2.42) and the recessive model (OR = 1.53; p-value = 0.02; 95%CI: 1.06, 2.22) had statistically significant associations. However, no significant associations were found for rs11615, rs3212986, rs735482, rs2228001, and PAT polymorphisms in any genetic models. CONCLUSIONS: The meta-analysis revealed significant associations for the T allele and TT genotype rs2228000 polymorphism, but not for rs11615, rs3212986, rs735482, rs2228001, and PAT polymorphisms. The results highlight the impact of factors such as ethnicity, cancer subtype, and control source on these associations, emphasizing the intricate nature of genetic interactions in disease risk.


Asunto(s)
Carcinoma , Proteínas de Unión al ADN , Endonucleasas , Predisposición Genética a la Enfermedad , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Neoplasias de Cabeza y Cuello/genética , Polimorfismo Genético , Polimorfismo de Nucleótido Simple
13.
Stem Cell Reports ; 19(3): 343-350, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38402620

RESUMEN

Quality control of human induced pluripotent stem cells (iPSCs) is critical to ensure reproducibility of research. Recently, KOLF2.1J was characterized and published as a male iPSC reference line to study neurological disorders. Emerging evidence suggests potential negative effects of mtDNA mutations, but its integrity was not analyzed in the original publication. To assess mtDNA integrity, we conducted a targeted mtDNA analysis followed by untargeted metabolomics analysis. We found that KOLF2.1J mtDNA integrity was intact at the time of publication and is still preserved in the commercially distributed cell line. In addition, the basal KOLF2.1J metabolome profile was similar to that of the two commercially available iPSC lines IMR90 and iPSC12, but clearly distinct from an in-house-generated ERCC6R683X/R683X iPSC line modeling Cockayne syndrome. Conclusively, we validate KOLF2.1J as a reference iPSC line, and encourage scientists to conduct mtDNA analysis and unbiased metabolomics whenever feasible.


Asunto(s)
ADN Mitocondrial , Células Madre Pluripotentes Inducidas , Humanos , Masculino , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Reproducibilidad de los Resultados , Mitocondrias/metabolismo , Metaboloma
14.
Mol Biol Rep ; 51(1): 371, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411728

RESUMEN

BACKGROUND: Cockayne syndrome is an inherited heterogeneous defect in transcription-coupled DNA repair (TCR) cause severe clinical syndromes, which may affect the nervous system development of infants and even lead to premature death in some cases. ERCC8 diverse critical roles in the nucleotide excision repair (NER) complex, which is one of the disease-causing genes of Cockayne syndrome. METHODS AND RESULTS: The mutation of ERCC8 in the patient was identified and validated using WES and Sanger sequencing. Specifically, a compound heterozygous mutation (c.454_460dupGTCTCCA p. T154Sfs*13 and c.755_759delGTTTT p.C252Yfs*3) of ERCC8 (CSA) was found, which could potentially be the genetic cause of Cockayne syndrome in the proband. CONCLUSION: In this study, we identified a novel heterozygous mutation of ERCC8 in a Chinese family with Cockayne syndrome, which enlarging the genetic spectrum of the disease.


Asunto(s)
Síndrome de Cockayne , Humanos , Pueblo Asiatico , Núcleo Celular , Síndrome de Cockayne/genética , Enzimas Reparadoras del ADN/genética , Reparación por Escisión , Mutación/genética , Factores de Transcripción
15.
ChemMedChem ; 19(8): e202300648, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38300970

RESUMEN

The DNA excision repair protein ERCC1 and the DNA damage sensor protein, XPA are highly overexpressed in patient samples of cisplatin-resistant solid tumors including lung, bladder, ovarian, and testicular cancer. The repair of cisplatin-DNA crosslinks is dependent upon nucleotide excision repair (NER) that is modulated by protein-protein binding interactions of ERCC1, the endonuclease, XPF, and XPA. Thus, inhibition of their function is a potential therapeutic strategy for the selective sensitization of tumors to DNA-damaging platinum-based cancer therapy. Here, we report on new small-molecule antagonists of the ERCC1/XPA protein-protein interaction (PPI) discovered using a high-throughput competitive fluorescence polarization binding assay. We discovered a unique structural class of thiopyridine-3-carbonitrile PPI antagonists that block a truncated XPA polypeptide from binding to ERCC1. Preliminary hit-to-lead studies from compound 1 reveal structure-activity relationships (SAR) and identify lead compound 27 o with an EC50 of 4.7 µM. Furthermore, chemical shift perturbation mapping by NMR confirms that 1 binds within the same site as the truncated XPA67-80 peptide. These novel ERCC1 antagonists are useful chemical biology tools for investigating DNA damage repair pathways and provide a good starting point for medicinal chemistry optimization as therapeutics for sensitizing tumors to DNA damaging agents and overcoming resistance to platinum-based chemotherapy.


Asunto(s)
Cisplatino , Neoplasias Testiculares , Humanos , Masculino , Cisplatino/farmacología , ADN/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , Endonucleasas/metabolismo , Péptidos/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/química , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Femenino
16.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279246

RESUMEN

Modifications in DNA repair pathways are recognized as prognostic markers and potential therapeutic targets in various cancers, including non-small cell lung cancer (NSCLC). Overexpression of ERCC1 correlates with poorer prognosis and response to platinum-based chemotherapy. As a result, there is a pressing need to discover new inhibitors of the ERCC1-XPF complex that can potentiate the efficacy of cisplatin in NSCLC. In this study, we developed a structure-based virtual screening strategy targeting the inhibition of ERCC1 and XPF interaction. Analysis of crystal structures and a library of small molecules known to act against the complex highlighted the pivotal role of Phe293 (ERCC1) in maintaining complex stability. This residue was chosen as the primary binding site for virtual screening. Using an optimized docking protocol, we screened compounds from various databases, ultimately identifying more than one hundred potential inhibitors. Their capability to amplify cisplatin-induced cytotoxicity was assessed in NSCLC H1299 cells, which exhibited the highest ERCC1 expression of all the cell lines tested. Of these, 22 compounds emerged as promising enhancers of cisplatin efficacy. Our results underscore the value of pinpointing crucial molecular characteristics in the pursuit of novel modulators of the ERCC1-XPF interaction, which could be combined with cisplatin to treat NSCLC more effectively.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Cisplatino/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Reparación del ADN , Proyectos de Investigación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo
17.
Curr Eye Res ; 49(5): 487-495, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38152055

RESUMEN

BACKGROUND: Dysregulated circular RNAs (circRNAs) is involved in the pathogenesis of age-related cataract (ARC). Here, this study aimed to explore the function and mechanism of circMAP3K4 in ARC. METHODS: Human lens epithelial cells were exposed to hydrogen peroxide (H2O2) for functional experiments. qRT-PCR and western blotting analyses were used for the expression detection of genes and proteins. Cell proliferation was tested using cell counting kit-8 and EdU. Flow cytometry was applied to analyze cell apoptosis and cell cycle. The oxidative stress was evaluated by detecting the production of malondialdehyde (MDA), reactive oxygen species (ROS), and superoxide dismutase (SOD). The target relationship between miR-630 and circMAP3K4 or Excision repair cross-complementing group 6 (ERCC6) was analyzed by dual-luciferase reporter assay and RIP assay. RESULTS: CircMAP3K4 was lowly expressed in ARC patients and H2O2-induced HLECs. Functionally, forced expression of circMAP3K4 protected HLECs against H2O2-evoked proliferation inhibition, cell cycle arrest and the promotion of cell apoptosis and oxidative stress. Mechanistically, circMAP3K4 acted as a sponge for miR-630 to regulate the expression of its target ERCC6. MiR-630 was highly expressed while ERCC6 was lowly expressed in ARC patients and H2O2-induced HLECs. Up-regulation of miR-630 could reverse the protective effects of circMAP3K4 on HLECs under H2O2 treatment. In addition, inhibition of miR-630 suppressed H2O2-induced HLEC injury, which was abolished by ERCC6 silencing. CONCLUSION: Forced expression of circMAP3K4 protected HLECs against H2O2-evoked apoptotic and oxidative injury via miR-630/ERCC6 axis, suggesting that circMAP3K4 may function as a potential therapeutic target for ARC.


Asunto(s)
Catarata , Cristalino , MicroARNs , ARN Circular , Humanos , Apoptosis , Catarata/patología , ADN Helicasas , Enzimas Reparadoras del ADN , Células Epiteliales/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Cristalino/metabolismo , MicroARNs/metabolismo , Estrés Oxidativo , ARN Circular/genética , ARN Circular/metabolismo
19.
Biomedicines ; 11(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38137354

RESUMEN

BACKGROUND: Lung cancer is still the most lethal malignancy in the world, according to the report of Cancer Statistics in 2021. Platinum-based chemotherapy combined with immunotherapy is the first-line treatment in lung cancer patients. However, the 5-year survival rate is always affected by the adverse reactions and drug resistance caused by platinum-based chemotherapy. DNA damage and repair system is one of the important mechanisms that can affect the response to chemotherapy and clinical outcomes in lung cancer patients. OBJECTIVE: The objective of this study is to find the relationship between the polymorphisms of DNA repair genes with the prognosis of platinum-based chemotherapy in lung cancer patients. PATIENTS AND METHODS: We performed genotyping in 17 single nucleotide polymorphisms (SNPs) of Excision Repair Cross-Complementation group (ERCC) genes and X-ray Repair Cross-Complementing (XRCC) genes of 345 lung cancer patients via Sequenom MassARRAY. We used Cox proportional hazard models, state, and plink to analyze the associations between SNPs and the prognosis of lung cancer patients. RESULTS: We found that the ERCC5 rs873601 was associated with the overall survival time in lung cancer patients treated with platinum-based chemotherapy (p = 0.031). There were some polymorphisms that were related to the prognosis in specific subgroups of lung cancer. Rs873601 showed a great influence on the prognosis of patients more than 55 years, Small Cell Lung Cancer (SCLC), and smoking patients. Rs2444933 was associated with prognosis in age less than 55 years, SCLC, metastasis, and stage III/IV/ED patients. Rs3740051 played an important role in the prognosis of SCLC and metastasis patients. Rs1869641 was involved in the prognosis of SCLC patients. Rs1051685 was related to the prognosis in non-metastasis patients. CONCLUSION: The ERCC5 rs873601 (G>A) was a valuable biomarker for predicting the prognosis in lung cancer patients treated with platinum-based chemotherapy.

20.
Front Genet ; 14: 1230241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028607

RESUMEN

Familial predisposition is a strong risk factor for different types of cancer and accounts for around 10% of the cases. In this study, we investigated cancer predisposition in a Palestinian family using whole-exome sequencing (WES) technologies. In this study, we focused more on cutaneous melanoma (CM). Our analysis identified three heterozygous rare missense variants, WRN (p.L383F and p.A995T) and TYRP1 (p.T262M) and a pathogenic homozygous missense mutation in ERCC2 (p.R683Q). Although WRN and TYRP1 genes and their variations were correlated with different types of cancer, including melanoma, the currently identified WRN and TYRP1 variants were not reported previously in melanoma cases. The pathogenic mutation was segregated with the clinical phenotypes and found in the two affected brothers, one with CM and the other with brain tumor, and was confirmed by Sanger sequencing analysis. Segregation analysis of this mutation revealed that family members are either heterozygous or wild type. Our findings confirm that the homozygous ERCC2 (p.R683Q) mutation was responsible for causing melanoma and other cancer types in the family. Our work highlights the value to decipher the mutational background of familial cancers, especially CM, in the Palestinian population to guide diagnosis, prevention, and treatment of affected patients and their families.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...