Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Int Immunopharmacol ; 142(Pt B): 113170, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288626

RESUMEN

Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is involved in tumorigenesis and tumor progression. However, it remains unclear whether activin A can affect the migration of lung adenocarcinoma (LUAD) cells. In this study, the results of differentially expressed genes (DEGs) identification revealed that lung adenocarcinoma tissues exhibited lower expression of activin ßA mRNA, but higher expression of epidermal growth factor (EGF) and MMP9 mRNA compared to nontumor tissues. Moreover, we found that activin A inhibited human LUAD A549 cell proliferation promoted by EGF. Additionally, EGF induced A549 cell migration in microfluidic device, while activin A attenuated EGF actions. Simultaneously, EGF increased the levels of migration-related proteins, but activin A played the opposite role. Furthermore, the study revealed that EGF upregulated the ratio of p-ERK/ERK in A549 cells, which was weakened by activin A, and A549 cell migration regulated by activin A was not related to calcium signaling. In addition, the inhibitory effect of activin A on EGF-induced A549 cell migration was attenuated by the ERK inhibitor FR180204. These findings demonstrate that activin A effectively hinders the migration of A549 cells induced by EGF through ERK1/2 signaling, suggesting that targeting activin A may hold promise in the treatment of EGF-dependent LUAD growth and metastasis.

2.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39204199

RESUMEN

BACKGROUND: 5-fluorouracil (5-FU) is a widely used, highly effective chemotherapeutic agent. However, its therapeutic efficacy is often limited by associated adverse effects, with hepatotoxicity being frequently reported with 5-FU therapy. Thymol is a monoterpene found in thyme (Thymus vulgaris L., Lamiaceae) and is known for its antioxidant, anti-apoptotic, and anticancer activities. This study aimed to explore the hepatoprotective activity of thymol against 5-FU-induced liver injury. METHODS: Rats received two intraperitoneal doses of 5-FU (150 mg/kg) either alone or in combination with thymol at doses of 60 mg/kg or 120 mg/kg. Liver enzymes, oxidative stress, and apoptotic markers, in addition to histopathological changes, were assessed. RESULTS: 5-FU induced marked liver injuries as evidenced by elevated liver enzymes and histopathological changes, in addition to abnormalities of oxidative and apoptotic markers. The administration of thymol ameliorated the 5-FU-induced oxidative damage through increasing hepatic antioxidants and lowering lipid peroxidation. Apoptotic response markers such as Bax, Bcl-2, Bax/Bcl-2 ratio, and PARP were also improved. Furthermore, Western blotting analysis showed that thymol modulated the 5-FU-induced changes in the expression of Akt/GSK-3ß and p44/42 MAPK (ERK1/2) signaling pathways. CONCLUSIONS: Our research is the first to shed light on thymol's potential protective effect against 5-FU- induced hepatotoxicity by inhibiting oxidative and apoptotic pathways and modulating the Akt/ GSK-3ß as well as p44/42 MAPK (ERK1/2) signaling pathways.

3.
Tissue Cell ; 89: 102472, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39003914

RESUMEN

Cerebral ischemia-reperfusion injury involves a series of pathophysiological processes that occur when blood supply is restored after cerebral vascular obstruction, leading to neuronal damage. The AMPK/ERK1/2 signaling pathway has been identified as crucial in this process, although the exact mechanisms underlying the induction of ischemia-reperfusion injury remain unclear. In this study, we investigated the involvement of the AMPK/ERK1/2 signaling pathway in neuronal oxidative stress damage following cerebral ischemia-reperfusion by establishing animal and cell models. Our experimental results demonstrated that cerebral ischemia-reperfusion leads to oxidative stress damage, including cell apoptosis and mitochondrial dysfunction. Moreover, further experiments showed that inhibition of AMPK and ERK1/2 activity, using U0126 and Compound C respectively, could alleviate oxidative stress-induced cellular injury, improve mitochondrial morphology and function, reduce reactive oxygen species levels, increase superoxide dismutase levels, and suppress apoptosis. These findings clearly indicate the critical role of the AMPK/ERK1/2 signaling pathway in regulating oxidative stress damage and cerebral ischemia-reperfusion injury. The discoveries in this study provide a theoretical basis for further research and development of neuroprotective therapeutic strategies targeting the AMPK/ERK1/2 signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Isquemia Encefálica , Sistema de Señalización de MAP Quinasas , Neuronas , Estrés Oxidativo , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Neuronas/metabolismo , Neuronas/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Apoptosis , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína Quinasa 3 Activada por Mitógenos/metabolismo
4.
Atherosclerosis ; 396: 118531, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996716

RESUMEN

BACKGROUND AND AIMS: Diabetes is one of the major causes of cardiovascular disease (CVD). As high as 29 % of patients with diabetes develop atherosclerosis. Vascular Smooth Muscle Cells (VSMCs) are a key mediator in the pathogenesis of atherosclerosis, generating pro-inflammatory and proliferative characteristics in atherosclerotic lesions. METHODS: We used human atherosclerotic samples, developed diabetes-induced atherosclerotic mice, and generated loss of function and gain of function in Klotho human aortic smooth muscle cells to investigate the function of Klotho in atherosclerosis. RESULTS: We found that Klotho expression is decreased in smooth muscle actin-positive cells in patients with diabetes and atherosclerosis. Consistent with human data, we found that Apoe knockout mice with streptozotocin-induced diabetes fed on a high-fat diet showed decreased expression of Klotho in SMCs. Additionally, these mice showed increased expression of TGF-ß, MMP9, phosphorylation of ERK and Akt. Further, we utilized primary Human Aortic Smooth Muscle Cells (HASMCs) with d-glucose under dose-response and in time-dependent conditions to study the role of Klotho in these cells. Klotho gain of function and loss of function studies showed that Klotho inversely regulated the expression of atherosclerotic markers TGF-ß, MMP2, MMP9, and Fractalkine. Further, High Glucose (HG) induced Akt, and ERK1/2 phosphorylation were enhanced or mitigated by endogenous Klotho deficiency or its overexpression respectively. PI3K/Akt and MAPK/ERK inhibition partially abolished the HG-induced upregulation of TGF-ß, MMP2, MMP9, and Fractalkine. Additionally, Klotho knockdown increased the proliferation of HASMCs and enhanced α-SMA and TGF-ß expression. CONCLUSIONS: Taken together, these results indicate that local vascular Klotho is involved in diabetes-induced atherosclerosis, which is via PI3K/Akt and ERK1/2-dependent signaling pathways.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Experimental , Glucuronidasa , Proteínas Klotho , Ratones Noqueados para ApoE , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteínas Klotho/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Glucuronidasa/metabolismo , Glucuronidasa/genética , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Masculino , Transducción de Señal , Células Cultivadas , Aorta/patología , Aorta/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/enzimología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular
5.
Anticancer Res ; 44(7): 2847-2859, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38925815

RESUMEN

BACKGROUND/AIM: Human melanoma-associated antigen A2 (hMAGEA2) family members play several roles in many types of cancer and have been explored as potential prognostic markers. In this study, we investigated the molecular mechanism underlying hMAGEA2-mediated tumorigenesis of prostate cancer. MATERIALS AND METHODS: Immunohistochemistry and western blot were used to assess protein expression whereas microarray and quantitative reverse transcription-PCR determined mRNA expression. CCK-8 assay was used to determine cell proliferation. Colony formation assay was used to examine tumorigenesis. Migration and invasion were examined using a transwell assay. Propidium iodide (PI)/Annexin V double staining was performed to measure apoptosis. Transcriptional activity was measured using Dual-luciferase reporter assay. RESULTS: hMAGEA2 was highly over-expressed in human prostate cancer tissues compared to benign prostatic hyperplasia tissues. To elucidate its biological function in prostate cancer, we established two stable hMAGEA2-knockdown prostate cancer cell lines, PC3M and 22RV1, and found that they presented significantly decreased proliferation, anchorage-independent colony formation, migration, and invasion. As hMAGEA2 knockdown suppressed prostate cancer cell growth, we examined its potential influence on tumor apoptosis. hMAGEA2-knockdown cell lines displayed early apoptosis. Moreover, knockdown of hMAGEA2 resulted in the down-regulation of EFNA3 expression. Luciferase assay showed that hMAGEA2 bound to the EFNA promoter region and regulated its transcription. Down-regulation of EFNA3 expression led to decreased Ras/Braf/MEK/Erk1/2 phosphorylation and, consequently, inhibited prostate cancer progression. CONCLUSION: hMAGEA2 promotes prostate cancer growth, metastasis, and tumorigenesis by regulating the EFNA3-Erk1/2 signaling pathway, indicating its potential as a therapeutic marker for prostate cancer.


Asunto(s)
Apoptosis , Proliferación Celular , Progresión de la Enfermedad , Sistema de Señalización de MAP Quinasas , Neoplasias de la Próstata , Humanos , Masculino , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Factores de Transcripción
6.
J Ovarian Res ; 17(1): 97, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720330

RESUMEN

The epidermal growth factor (EGF)-like factors, comprising amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG), play a critical role in regulating the ovulatory process. Pentraxin 3 (PTX3), an essential ovulatory protein, is necessary for maintaining extracellular matrix (ECM) stability during cumulus expansion. The aim of this study was to investigate the impact of EGF-like factors, AREG, BTC, and EREG on the expression and production of PTX3 in human granulosa-lutein (hGL) cells and the molecular mechanisms involved. Our results demonstrated that AREG, BTC, and EREG could regulate follicular function by upregulating the expression and increasing the production of PTX3 in both primary (obtained from 20 consenting patients undergoing IVF treatment) and immortalized hGL cells. The upregulation of PTX3 expression was primarily facilitated by the activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway, induced by these EGF-like factors. In addition, we found that the upregulation of PTX3 expression triggered by the EGF-like factors was completely reversed by either pretreatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, or knockdown of EGFR, suggesting that EGFR is crucial for activating the ERK1/2 signaling pathway in hGL cells. Overall, our findings indicate that AREG, BTC, and EREG may modulate human cumulus expansion during the periovulatory stage through the upregulation of PTX3.


Asunto(s)
Anfirregulina , Betacelulina , Proteína C-Reactiva , Epirregulina , Células Lúteas , Componente Amiloide P Sérico , Regulación hacia Arriba , Femenino , Humanos , Anfirregulina/metabolismo , Anfirregulina/genética , Betacelulina/metabolismo , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/genética , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Epirregulina/metabolismo , Epirregulina/genética , Receptores ErbB/metabolismo , Células Lúteas/metabolismo , Sistema de Señalización de MAP Quinasas , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética
7.
J Biomed Res ; 38(4): 382-396, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38817007

RESUMEN

The current study aimed to assess the effect of timosaponin AⅢ (T-AⅢ) on drug-metabolizing enzymes during anticancer therapy. The in vivo experiments were conducted on nude and ICR mice. Following a 24-day administration of T-AⅢ, the nude mice exhibited an induction of CYP2B10, MDR1, and CYP3A11 expression in the liver tissues. In the ICR mice, the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration. The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6, MDR1, and CYP3A4, along with constitutive androstane receptor (CAR) activation. Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression. Furthermore, other CAR target genes also showed a significant increase in the expression. The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice. Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation, with this effect being partially reversed by the ERK activator t-BHQ. Inhibition of the ERK1/2 signaling pathway was also observed in vivo. Additionally, T-AⅢinhibited the phosphorylation of EGFR at Tyr1173 and Tyr845, and suppressed EGF-induced phosphorylation of EGFR, ERK, and CAR. In the nude mice, T-AⅢ also inhibited EGFR phosphorylation. These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.

8.
J Steroid Biochem Mol Biol ; 243: 106558, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815727

RESUMEN

The dynamic systems of mitochondria, including mitochondrial fusion and fission, are essential for ovarian endocrine and follicular development. Meanwhile, ERK1/2 signaling is an important mechanism mediating altered mitochondrial dynamics and steroidogenesis. The purpose of this study was to investigate the seasonal changes in ovarian steroidogenesis concerning EGFR-ERK1/2 signaling and mitochondrial dynamics of the muskrats (Ondatra zibethicus). The results showed that follicular development in the muskrats remained in the tertiary follicular stage during the non-breeding season, accompanied by a significant decrease in serum and ovarian concentrations of 17ß-estradiol and progesterone from the breeding season to the non-breeding season. EGF, EGFR, ERK1/2, p-ERK1/2, and mitochondrial dynamics regulators were mainly localized in granulosa cells and theca cells of muskrats during the breeding and non-breeding seasons. The mRNA levels of Egfr, Erk1/2, Mfn1/2, Opa1, Drp1, and steroidogenic enzymes in the ovaries were remarkably higher during the breeding season. The 17ß-estradiol concentrations in the serum and ovaries as well as the relative levels of Mfn1/2, Opa1, and Drp1 were positively associated with each other. Furthermore, transcriptomic analysis of the ovaries revealed that differentially expressed genes might be linked to steroid biosynthesis, estrogen signaling pathway, and mitochondrial membrane-related pathways. In conclusion, these results suggest that the up-regulation of mitochondrial dynamics regulators during the breeding season is closely associated with enhanced ovarian steroidogenesis in the muskrats, which may be regulated by upstream EGFR-ERK1/2 signaling.


Asunto(s)
Receptores ErbB , Estradiol , Sistema de Señalización de MAP Quinasas , Dinámicas Mitocondriales , Ovario , Estaciones del Año , Animales , Femenino , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ovario/metabolismo , Estradiol/sangre , Estradiol/metabolismo , Estradiol/biosíntesis , Arvicolinae/genética , Arvicolinae/metabolismo , Progesterona/sangre , Progesterona/metabolismo , Progesterona/biosíntesis , Mitocondrias/metabolismo
9.
Regen Ther ; 27: 268-278, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38617443

RESUMEN

Introduction: Orthodontic tooth movement (OTM) involves complex interactions between mechanical forces and periodontal tissue adaptation, mainly mediated by periodontal ligament cells, including periodontal ligament stem cells (PDLSCs), osteoblasts, and osteoclasts. Dopamine (DA), a neurotransmitter known for its critical role in bone metabolism, is investigated in this study for its potential to enhance osteogenic differentiation in PDLSCs, which are pivotal in OTM. This study examined the potential of DA to facilitate OTM by binding to DA receptors (D1R and D2R) and activating the ERK1/2 signaling pathway. We propose that DA's interaction with these receptors on PDLSCs could enhance osteogenic differentiation, thereby accelerating bone remodeling and reducing the duration of orthodontic treatments, which offering a novel approach to improve clinical outcomes in orthodontic care. Methods: This study utilized a rat OTM model, micro-CT, histological analyses, and in vitro assays to investigate dopamine's effect on osteogenesis. PDLSCs were cultured and treated with DA, and cytotoxicity, osteogenic differentiation, gene and protein expression assessed. Results: Dopamine administration significantly increased trabecular bone density and osteogenic marker expression in an OTM rat model. In vitro, DA at 10 nM optimally promoted human PDLSCs osteogenesis without affecting proliferation. Blocking DA receptors or inhibiting the ERK1/2 pathway attenuated these effects, underscoring the importance of dopaminergic signaling in tension-induced osteogenesis during OTM. Conclusion: Taken together, our study reveals that local dopamine administration at a concentration of 10 nM not only enhances tension-induced osteogenesis in vivo but also significantly promotes osteogenic differentiation of PDLSCs in vitro through D1 and D2 receptor-mediated ERK1/2 signaling pathway activation.

10.
Heliyon ; 10(7): e28785, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38617926

RESUMEN

Current investigations have illuminated the essential roles played by circular RNAs (circRNAs) in driving breast cancer (BC) tumorigenesis. However, the functional implications and molecular underpinnings of most circRNAs in BC are not well characterized. Here, Circular RNA (circRNA) expression profiles were analyzed in four surgically resected BC cases along with adjacent non-cancerous tissues applying RNA microarray analysis. The levels and prognostic implications of circRREB1 in BC were subjected to quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Experimental manipulation of circRREB1 levels in both in vivo and in vitro settings further delineated its role in BC cell growth, invasion, and metastasis. The mechanical verification of circRREB1's interaction with GNB4 was established through RNA pull-down, mass spectrometry, Western blot analysis, RNA immunoprecipitation assays (RIP), fluorescence ISH (FISH), and rescue experiments. We found that circRREB1 exhibited significant upregulation in BC tissues and cells, implicating its association with an unfavorable prognosis in BC patients. CircRREB1 knockdown elicited anti-proliferative, anti-migratory, anti-invasive, and pro-apoptotic effects in BC cells, whereas its upregulation exerted opposing influences. Follow-up mechanistic examinations suggested that circRREB1 might interact with GNB4 directly, inducing the activation of Erk1/2 signaling and driving BC progression. Our findings collectively indicate that the interplay of circRREB1 with GNB4 promotes Erk1/2 signaling, thereby fostering BC progression, and positioning circRREB1 as a candidate therapeutic target for intervention in BC.

11.
Biomedicines ; 12(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38672086

RESUMEN

Osteoporosis is a common degenerative bone disease. The treatment of osteoporosis remains a clinical challenge in light of the increasing aging population. Human dental pulp stem cells (DPSCs), a type of mesenchymal stem cells (MSCs), are easy to obtain and have a high proliferation ability, playing an important role in the treatment of osteoporosis. However, MSCs undergo apoptosis within a short time when used in vivo; therefore, apoptotic vesicles (apoVs) have attracted increasing attention. Currently, the osteogenic effect of DPSC-derived apoVs is unknown; therefore, this study aimed to determine the role of DPSC-derived apoVs and their potential mechanisms in bone regeneration. We found that MSCs could take up DPSC-derived apoVs, which then promoted MSC osteogenesis in vitro. Moreover, apoVs could increase the trabecular bone count and bone mineral density in the mouse osteoporosis model and could promote bone formation in rat cranial defects in vivo. Mechanistically, apoVs promoted MSC osteogenesis by activating the extracellular regulated kinase (ERK)1/2 signaling pathway. Consequently, we propose a novel therapy comprising DPSC-derived apoVs, representing a promising approach to treat bone loss and bone defects.

12.
Mol Biotechnol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456959

RESUMEN

Hepatic ischemia-reperfusion injury (HIRI) was widely accepted as a critical complication of liver resection and transplantation. A growing body of evidence suggested that O-sialoglycoprotein endopeptidase (OSGEP) was involved in cell proliferation and mitochondrial metabolism. However, whether OSGEP could mediate the pathogenesis of HIRI has still remained unclarified. This study investigated whether OSGEP could be protective against HIRI and elucidated the potential mechanisms. The OSGEP expression level was detected in cases undergoing ischemia-related hepatectomy and a stable oxygen-glucose deprivation/reoxygenation (OGD/R) condition in hepG2 cells. Additionally, it was attempted to establish a mouse model of HIRI, thus, the function and mechanism of OSGEP could be analyzed. At one day after hepatectomy, the negative association of OSGEP expression level with the elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was noted. Moreover, it was attempted to carry out gain- and loss-of-function analyses of OSGEP in hepG2 cells to reveal its influences on OGD/R-induced injury and relevant signaling pathways. The findings suggested that OSGEP overexpression significantly protected hepG2 cells against ferroptotic cell death, while OSGEP consumption had opposite effects. Consistent with in vitro studies, OSGEP deficiency exacerbated liver functions and ferroptotic cell death in a mouse model of HIRI. The results also revealed that OSGEP mediated the progression of HIRI by regulating the MEK/ERK signaling pathway. Rescue experiments indicated that ERK1/2 knockdown or overexpression reversed the effects of OSGEP overexpression or knockdown on hepG2 cells under OGD/R condition. Taken together, the findings demonstrated that OSGEP could contribute to alleviate HIRI by mediating the MEK-ERK signaling pathway, which may serve as a potential prognostic marker and a therapeutic target for HIRI.

13.
Brain Behav Immun ; 118: 149-166, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38423397

RESUMEN

Macrophages (MΦ) infected with human immunodeficiency virus (HIV)-1 or activated by its envelope protein gp120 exert neurotoxicity. We found previously that signaling via p38 mitogen-activated protein kinase (p38 MAPK) is essential to the neurotoxicity of HIVgp120-stimulated MΦ. However, the associated downstream pathways remained elusive. Here we show that cysteinyl-leukotrienes (CysLT) released by HIV-infected or HIVgp120 stimulated MΦ downstream of p38 MAPK critically contribute to neurotoxicity. SiRNA-mediated or pharmacological inhibition of p38 MAPK deprives MΦ of CysLT synthase (LTC4S) and, pharmacological inhibition of the cysteinyl-leukotriene receptor 1 (CYSLTR1) protects cerebrocortical neurons against toxicity of both gp120-stimulated and HIV-infected MΦ. Components of the CysLT pathway are differentially regulated in brains of HIV-infected individuals and a transgenic mouse model of NeuroHIV (HIVgp120tg). Moreover, genetic ablation of LTC4S or CysLTR1 prevents neuronal damage and impairment of spatial memory in HIVgp120tg mice. Altogether, our findings suggest a novel critical role for cysteinyl-leukotrienes in HIV-associated brain injury.


Asunto(s)
Cisteína , Infecciones por VIH , VIH-1 , Ratones , Humanos , Animales , VIH-1/metabolismo , Macrófagos/metabolismo , Leucotrienos/metabolismo , Neuronas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratones Transgénicos , Infecciones por VIH/metabolismo
14.
Brain Behav Immun ; 118: 1-21, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360376

RESUMEN

Human immunodeficiency virus-1 (HIV-1) infects the central nervous system (CNS) and causes HIV-associated neurocognitive disorders (HAND) in about half of the population living with the virus despite combination anti-retroviral therapy (cART). HIV-1 activates the innate immune system, including the production of type 1 interferons (IFNs) α and ß. Transgenic mice expressing HIV-1 envelope glycoprotein gp120 (HIVgp120tg) in the CNS develop memory impairment and share key neuropathological features and differential CNS gene expression with HIV patients, including the induction of IFN-stimulated genes (ISG). Here we show that knocking out IFNß (IFNßKO) in HIVgp120tg and non-tg control mice impairs recognition and spatial memory, but does not affect anxiety-like behavior, locomotion, or vision. The neuropathology of HIVgp120tg mice is only moderately affected by the KO of IFNß but in a sex-dependent fashion. Notably, in cerebral cortex of IFNßKO animals presynaptic terminals are reduced in males while neuronal dendrites are reduced in females. The IFNßKO results in the hippocampal CA1 region of both male and female HIVgp120tg mice in an ameliorated loss of neuronal presynaptic terminals but no protection of neuronal dendrites. Only female IFNß-deficient HIVgp120tg mice display diminished microglial activation in cortex and hippocampus and increased astrocytosis in hippocampus compared to their IFNß-expressing counterparts. RNA expression for some immune genes and ISGs is also affected in a sex-dependent way. The IFNßKO abrogates or diminishes the induction of MX1, DDX58, IRF7 and IRF9 in HIVgp120tg brains of both sexes. Expression analysis of neurotransmission related genes reveals an influence of IFNß on multiple components with more pronounced changes in IFNßKO females. In contrast, the effects of IFNßKO on MAPK activities are independent of sex with pronounced reduction of active ERK1/2 but also of active p38 in the HIVgp120tg brain. In summary, our findings show that the absence of IFNß impairs memory dependent behavior and modulates neuropathology in HIVgp120tg brains, indicating that its absence may facilitate development of HAND. Moreover, our data suggests that endogenous IFNß plays a vital role in maintaining neuronal homeostasis and memory function.


Asunto(s)
Infecciones por VIH , VIH-1 , Interferón beta , Animales , Femenino , Masculino , Ratones , Encéfalo/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Interferón beta/metabolismo , Ratones Transgénicos
15.
Environ Int ; 184: 108477, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38340406

RESUMEN

Nickel, a common environmental hazard, is a risk factor for craniosynostosis. However, the underlying biological mechanism remains unclear. Here, we found that early-life nickel exposure induced craniosynostosis in mice. In vitro, nickel promoted the osteogenic differentiation of human mesenchymal stem cells (hMSCs), and its osteogenic ability in vivo was confirmed by an ectopic osteogenesis model. Further mRNA sequencing showed that ERK1/2 signaling and FGFR2 were aberrantly activated. FGFR2 was identified as a key regulator of ERK1/2 signaling. By promoter methylation prediction and methylation-specific PCR (MSP) assays, we found that nickel induced hypomethylation in the promoter of FGFR2, which increased its binding affinity to the transcription factor Sp1. During pregnancy and postnatal stages, AZD4547 rescued nickel-induced craniosynostosis by inhibiting FGFR2 and ERK1/2. Compared with normal individuals, nickel levels were increased in the serum of individuals with craniosynostosis. Further logistic and RCS analyses showed that nickel was an independent risk factor for craniosynostosis with a nonlinear correlation. Mediated analysis showed that FGFR2 mediated 30.13% of the association between nickel and craniosynostosis risk. Collectively, we demonstrate that early-life nickel exposure triggers the hypomethylation of FGFR2 and its binding to Sp1, thereby promoting the osteogenic differentiation of hMSCs by ERK1/2 signaling, leading to craniosynostosis.


Asunto(s)
Craneosinostosis , Sistema de Señalización de MAP Quinasas , Femenino , Embarazo , Ratones , Humanos , Animales , Sistema de Señalización de MAP Quinasas/fisiología , Níquel/toxicidad , Osteogénesis , Craneosinostosis/genética , Transducción de Señal , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos
16.
Heliyon ; 10(3): e24865, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322942

RESUMEN

Ethnopharmacological relevance: Shizhifang Decoction, a traditional Chinese medicine prescription formulated by Professor Zheng Pingdong of Shuguang Hospital, has been widely utilized in clinical settings for the treatment of hyperuricemia due to its proven safety and efficacy. Objective: In this study, we used network pharmacology, molecular docking technology, and experimental validation to elucidate the therapeutic effects and underlying mechanisms of Shizhifang Decoction in managing hyperuricemia. Methods: Quality control and component identification of the freeze-dried powder of Shizhifang Decoction were conducted using ultra-high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Active ingredients and their corresponding targets were obtained from Traditional Chinese Medicine Systems Pharmacology, Traditional Chinese Medicine Information Database, The Encyclopedia of Traditional Chinese Medicine, and other databases. Disease-related targets for hyperuricemia were collected from GeneCards and DisGeNET databases. The Venny platform is used to screen common targets for drug active ingredients and diseases. Subsequently, we constructed an active component-target-disease interaction network using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, create a component disease common target network using Cytoscape 3.9.1 software, from which core targets were selected. Import common targets into the Database for Annotation, Visualization and Integrated Discovery (DAVID) for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Molecular docking was then conducted to validate the binding capacity of key active ingredients and their associated targets in Shizhifang Decoction. The theoretical predictions were further confirmed through in vitro and in vivo experiments. Result: A total of 35 active ingredients and 597 action targets were identified, resulting in 890 disease-related targets for hyperuricemia. After comprehensive analysis, 99 common targets were determined. Protein-protein interaction network analysis revealed crucial relationships between these targets and hyperuricemia. Among them, 12 core targets (CASP3, IL1B, IL6, TNF, TP53, GAPDH, PTGS2, MYC, INS, VEGFA, ESR1, PPARG) were identified. Gene Ontology enrichment analysis demonstrated significant associations with the regulation of inflammatory response, cell apoptosis, and the positive regulation of extracellular regulated protein kinases 1 and extracellular regulated protein kinases 2 cascades. Kyoto Encyclopedia of Genes and Genomes pathway analysis highlighted inflammation and apoptosis-related pathways as critical mediators of Shizhifang Decoction's effects on hyperuricemia. Molecular docking studies further supported the interactions between apoptosis-related proteins and active ingredients in the extracellular regulated protein kinases 1/2 signaling pathway. In vitro experiments confirmed the downregulation of apoptosis-related proteins (caspase-3, Bax, Bcl-2) and the inhibition of the extracellular regulated protein kinases 1/2 signaling pathway by Shizhifang Decoction. These findings were also validated in animal models, demonstrating the potential of Shizhifang Decoction to mitigate renal injury induced by hyperuricemia through extracellular regulated protein kinases 1/2-mediated inhibition of renal tubular epithelial cell apoptosis. Conclusion: Our study provides valuable insights into the main mechanism by which Shizhifang Decoction ameliorates hyperuricemia. By targeting the ERK1/2 signaling pathway and modulating cell apoptosis, Shizhifang Decoction exhibits promising therapeutic potential for the treatment of hyperuricemia. These findings support the continued exploration and development of Shizhifang Decoction as a potential herbal remedy for hyperuricemia management.

17.
Front Biosci (Landmark Ed) ; 29(1): 23, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38287801

RESUMEN

Male infertility, age-related changes, and tumors have been increasingly studied in the field of male reproductive health due to the emergence of environmental stressors, declining fertility rates, and aging populations. Numerous studies have demonstrated that the ERK1/2 signaling pathway plays a significant role in male reproduction. The ERK1/2 pathway is associated with several signaling pathways and has a complex interplay that influences the spermatogenic microenvironment, sperm viability, gonadal axis regulation, as well as resistance to testicular aging and tumors. Moreover, the ERK1/2 pathway directly or indirectly regulates testicular somatic cells, which are crucial for maintaining spermatogenesis and microenvironment regulation. Given the critical role of the ERK1/2 signaling pathway in male reproductive health, comprehensive exploration of its multifaceted effects on male reproduction and underlying mechanisms is necessary. This study aims to provide a solid foundation for in-depth research in the field of male reproduction and further enhance the reproductive health of males.


Asunto(s)
Infertilidad Masculina , Neoplasias , Masculino , Humanos , Fertilidad/fisiología , Sistema de Señalización de MAP Quinasas , Semen/metabolismo , Reproducción , Testículo/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Transducción de Señal , Neoplasias/metabolismo , Microambiente Tumoral
18.
J Ethnopharmacol ; 321: 117421, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979820

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Neutrophil extracellular trap (NET) formation plays a crucial role in wound healing disorders, including chronic skin ulcers and diabetic foot ulcers (DFUs). Over the years, traditional Chinese topical medications, such as Cinnabar (composed of HgS and soluble mercury salt) and hydrargyria oxydum rubrum (containing HgO and soluble mercury salt), have been utilized for treating these ailments. Nevertheless, the fundamental processes remain mostly ambiguous. AIM OF THE STUDY: This study sought to investigate the potential effects of topical mercury-containing preparations on the process of NET formation. MATERIALS AND METHODS: Neutrophils isolated from healthy individuals and mouse models of type 1 and type 2 diabetes were cultured with phorbol 12-myristate 13-acetate (PMA), both with and without the mercury-containing preparations (MCP). The formation of NETs was monitored using confocal and scanning electron microscopes. Immunofluorescence and fluorescent probes were employed to assess the levels of citrulline histone H3 (Cit-H3) and intracellular reactive oxygen species (ROS), respectively. The impact of MCP extracts on cytokine expression, peptidylarginine deiminase 4 (PAD4), and myeloperoxidase (MPO) was measured through Luminex and ELISA assays. Phagocytosis of human neutrophils was analyzed using Flow Cytometry. Finally, the phosphorylation levels of ERK were detected by western blotting. RESULTS: Treatment with MCP led to a reduction in PAD4, Cit-H3, and MPO expressions in neutrophils, consequently inhibiting PMA-induced NET formation. MCP treatment also dampened ERK1/2 activation in neutrophils. Furthermore, MCP exhibited inhibitory effects on the secretion of the cytokine IL-8 and ROS production while enhancing neutrophil phagocytosis. CONCLUSION: Our findings suggest that MCP can mitigate the release of NETs, likely by suppressing the ERK1/2 signaling pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trampas Extracelulares , Mercurio , Humanos , Animales , Ratones , Trampas Extracelulares/metabolismo , Sistema de Señalización de MAP Quinasas , Especies Reactivas de Oxígeno/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neutrófilos , Citocinas/metabolismo
19.
Oncol Rep ; 51(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38131250

RESUMEN

Activin A, a member of the transforming growth factor­ß (TGF­ß) superfamily, has been implicated in the tumorigenesis and progression of various cancers. However, it remains unclear whether activin A induces apoptosis in human lung adenocarcinoma cells through the endoplasmic reticulum (ER) stress pathway. In the present study, BrdU, flow cytometry and western blotting were used to examine cell proliferation, apoptosis and protein expression, respectively. The present study revealed that activin A inhibited human lung adenocarcinoma A549 cell proliferation, induced apoptosis, and upregulated the protein levels of C/EBP homologous protein (CHOP), growth arrest and DNA damage­inducible protein 34 (GADD34), cleaved­caspase­3 and caspase­12. Furthermore, the administration of activin A did not alter the levels of suppressor of mothers against decapentaplegic 3 (Smad3) or phosphorylated (p)­Smad3 proteins, whereas, it significantly elevated the levels of ActRIIA and p­extracellular signal regulated kinase proteins 1 and 2 (ERK1/2) proteins in A549 cells. The apoptotic effects of activin A on A549 cells were attenuated by the ERK inhibitor FR180204, which also downregulated CHOP and caspase­12 protein levels. Additionally, activin A increased intracellular calcium flux in A549 cells, and the calcium ion chelator BAPTA acetoxymethyl ester (BAPTA­AM) inhibited activin A­induced A549 cell apoptosis, whereas the calcium agonist ionomycin significantly increased apoptosis of A549 cells induced by activin A. These findings indicated that the activation of the ER stress pathway resulting in apoptosis of A549 cells triggered by activin A is facilitated by the ActRIIA­ERK1/2 signaling and calcium signaling. The present findings suggest that the agonists of ERK and calcium signaling exhibit promising clinical therapeutic potential for the induction of apoptosis in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Células A549 , Calcio/metabolismo , Caspasa 12 , Línea Celular Tumoral , Apoptosis , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Estrés del Retículo Endoplásmico
20.
Photochem Photobiol ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37815161

RESUMEN

Photobiomodulation therapy (PBMT) is the application of a low-level laser device to generate physiological changes and provide therapeutic effects. Till now, the effects of PBMT on the neural differentiation of mesenchymal stem cells have been rarely reported. Herein, the potential effect and mechanism of PBMT on the neural differentiation of dental pulp stem cells (DPSCs) were preliminarily investigated in our research. The optimal dose of 3.75 J/cm2 was first screened for use in the following neural-inducing studies. Then, DPSCs were cultured in neural induction medium and treated with laser irradiation for 7 days. From the results of morphology and immunofluorescence, we found that irradiation promoted the formation of neural stem cell-like spheroids derived from DPSCs and enhanced potential neural differentiation. Furthermore, neural differentiation gene expressions of Nestin, microtubule-associated protein-2, and neural cell adhesion molecule were increased after PBMT irradiation. The protein expressions of class III ß-tubulin and neurogenic differentiation factor 1 were also improved. Meanwhile, the involvement of extracellular signal-regulated kinase (ERK1/2) was investigated by western blot. Our study showed that the neural differentiation of DPSCs was promoted by PBMT, and the underlying mechanism in this process was associated with activating the ERK1/2 signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...