Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.317
Filtrar
1.
J Appl Microbiol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066495

RESUMEN

AIMS: This study aimed to evaluate the potential of endophytic plant growth-promoting bacteria (PGPB), Pseudomonas putida A32, to mitigate drought stress in two bell pepper genotypes, Amfora 19 and Amfora 26, and to assess the genotype-specific responses to bacterial treatment. METHODS AND RESULTS: The isolate P. putida A32 was selected for its remarkable beneficial properties, exhibiting 13 out of 14 traits tested. Under drought conditions, Amfora 26 showed increased relative water content (RWC) and decreased H2O2 and malondialdehyde following bacterial treatment, while Amfora 19 exhibited enhanced growth parameters but responded less to bacterial treatment regarding drought parameters. However, Amfora 19 displayed inherent drought tolerance mechanisms, as indicated by lower stress parameters compared to Amfora 26. CONCLUSIONS: The study emphasises the importance of genotype-specific responses to PGPB treatment and the mechanisms of drought tolerance in peppers. P. putida A32 effectively mitigated drought stress in both genotypes, with differential responses influenced by plant genotype. Our study confirmed our initial hypothesis that Amfora 19, as a genotype tolerant to biotic stress, is also more tolerant to abiotic stress. Understanding these interactions is crucial for the development of customised strategies to improve plant productivity and tolerance to drought.

2.
Pest Manag Sci ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046187

RESUMEN

Entomopathogenic fungi capable of establishing mutualistic endophytic relationships with plants have a tremendous potential as biocontrol agents of insect pests. While fungi have long played an important and highly effective role in pest suppression, the utility of endophytic entomopathogenic fungi in pest management is a relatively new and emerging topic of biocontrol. Here we discuss the relevance of endophytic fungi to plant health in general, synthesize the current knowledge of the effectiveness of endophytic entomopathogenic fungi against diverse insect pests, discuss the indirect plant-mediated effects of endophytic entomopathogenic fungi on arthropods, and describe the diverse benefits of endophytic fungi to plants that are likely to affect herbivores and plant pathogens as well. Lastly, we consider major challenges to incorporating endophytic entomopathogenic fungi in biocontrol, such as their non-target effects and field efficacy, which can be variable and influenced by environmental factors. Continued research on endophyte-insect-plant-environment interactions is critical to advancing our knowledge of these fungi as a sustainable pest management tactic. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Insects ; 15(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39057267

RESUMEN

Endophytes, prevalent in plants, mediate plant-insect interactions. Nevertheless, our understanding of the key members of endophyte communities involved in inhibiting or assisting EAB infestation remains limited. Employing ITS and 16S rRNA high-throughput sequencing, along with network analysis techniques, we conducted a comprehensive investigation into the reaction of endophytic fungi and bacteria within F. bungeana phloem by comparing EAB-infested and uninfected samples. Our findings reveal that EAB infestation significantly impacts the endophytic communities, altering both their diversity and overall structure. Interestingly, both endophytic fungi and bacteria exhibited distinct patterns in response to the infestation. For instance, in the EAB-infested phloem, the fungi abundance remained unchanged, but diversity decreased significantly. Conversely, bacterial abundance increased, without significant diversity changes. The fungi community structure altered significantly, which was not observed in bacteria. The bacterial composition in the infested phloem underwent significant changes, characterized by a substantial decrease in beneficial species abundance, whereas the fungal composition remained largely unaffected. In network analysis, the endophytes in infested phloem exhibited a modular topology, demonstrating greater complexity due to an augmented number of network nodes, elevated negative correlations, and a core genera shift compared to those observed in healthy phloem. Our findings increase understanding of plant-insect-microorganism relationships, crucial for pest control, considering endophytic roles in plant defense.

4.
J Fungi (Basel) ; 10(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057377

RESUMEN

Astragalus membranaceus is a famous traditional medicinal plant. However, drought and cadmium (Cd) pollution are the main abiotic stress factors that affect plant growth and yield and the ability to improve the host's stress resistance through the use of beneficial endophytic fungi. To evaluate the tolerance of dark septate endophytes (DSE) to various abiotic stresses, 10 DSE strains [Microsphaeropsis cytisi (Mc), Alternaria alstroemeriae (Aa), Stagonosporopsis lupini (Sl), Neocamarosporium phragmitis (Np), Paraphoma chlamydocopiosa (Pc), Macrophomina phaseolina (Mp'), Papulaspora equi (Pe), Alternaria tellustris (At), Macrophomina pseudophaseolina (Mp), and Paraphoma radicina (Pr)] were investigated under different drought and Cd stressors in vitro by using solid-plate cultures and liquid-shaker cultures in the current study. The experiments involved using varying concentrations of PEG (0, 9, 18, and 27%) and Cd2+ (0, 25, 50, and 100 mg/L) to simulate different stress conditions on DSE. Additionally, the effect of DSE (Np and At) on the growth of A. membranaceus at different field water capacities (70% and 40%) and at different CdCl2 concentrations (0, 5, 10, and 15 mg Cd/kg) in soil was studied. The results demonstrated that the colony growth rates of Aa, Np, Pc, Mp', and Mp were the first to reach the maximum diameter at a PEG concentration of 18%. Aa, Np, and At remained growth-active at 100 mg Cd/L. In addition, Aa, Np, and At were selected for drought and Cd stress tests. The results of the drought-combined-with-Cd-stress solid culture indicated that the growth rate of Np was significantly superior to that of the other strains. In the liquid culture condition, the biomasses of Np and Aa were the highest, with biomasses of 1.39 g and 1.23 g under the concentration of 18% + 25 mg Cd/L, and At had the highest biomass of 1.71 g at 18% + 50 mg Cd/L concentration, respectively. The CAT and POD activities of Np reached their peak levels at concentrations of 27% + 50 mg Cd/L and 27% + 25 mg Cd/L, respectively. Compared to the control, these levels indicated increases of 416.97% and 573.12%, respectively. Aa, Np, and At positively influenced SOD activity. The glutathione (GSH) contents of Aa, Np, and At were increased under different combined stressors of drought and Cd. The structural-equation-modeling (SEM) analysis revealed that Aa positively influenced biomass and negatively affected Cd content, while Np and At positively influenced Cd content. Under the stress of 40% field-water capacity and the synergistic stress of 40% field-water capacity and 5 mg Cd/kg soil, Np and At significantly increased root weight of A. membranaceus. This study provides guidance for the establishment of agricultural planting systems and has good development and utilization value.

5.
Data Brief ; 55: 110639, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39022698

RESUMEN

Pseudomonas nitroreducens L4 was isolated from the interior of cotton plants, which showed strong biocontrol activity against Verticillium dahlia and other fungal pathogens. To elucidate the biocontrol mechanism, the genome sequence of L4 was sequenced using the Illumina and Nanopore sequencing platform. The assembled genome of L4 consisted of a single circular chromosome was 6,229,472 bp, with an average GC content of 64.95 %, 5,629 protein-coding genes, 72 tRNA, 16 rRNA and 1 tm RNA. Six secondary metabolite biosynthetic gene clusters are identified in the genome. The genome sequence provided a theoretical basis for analyzing the biocontrol mechanism of this strain.

6.
J Basic Microbiol ; : e2400080, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031570

RESUMEN

Phellinus caribaeo-quercicola is a basidiomycetous fungus, isolated as an endophyte in this study from the healthy and symptomless leaves of Inula racemosa Hook. f., an important medicinal herb growing in Kashmir Himalaya. This study combines morphological, molecular and phylogenetic techniques to identify the fungal endophyte, using the ITS sequence of nrDNA. A detached leaf assay was conducted to assess the pathogenicity of the fungal endophyte suggesting its mutually symbiotic relationship with the host. The authors also investigated the antifungal potential of the isolated endophytic strain to ascertain its use as a biocontrol agent. The study shows that P. caribaeo-quercicola INL3-2 strain exhibits biocontrol activity against four key fungal phytopathogens that cause significant agronomic and economic losses: Aspergillus flavus, Aspergillus niger, Fusarium solani, and Fusarium oxysporum. Notably, P. caribaeo-quercicola INL3-2 strain is highly effective against A. flavus, with an inhibition percentage of 57.63%. In addition, this study investigates the antioxidant activity of P. caribaeo-quercicola INL3-2 strain crude extracts using ethyl acetate and methanol as solvents. The results showed that the methanolic fraction of P. caribaeo-quercicola exhibits potential as an antioxidant agent, with an IC50 value of 171.90 ± 1.15 µg/mL. This investigation is first of its kind and marks the initial report of this fungal basidiomycete, P. caribaeo-quercicola, as an endophyte associated with a medicinal plant. The findings of this study highlight the potential of P. caribaeo-quercicola INL3-2 strain as a dual-action agent with both biocontrol and antioxidant properties consistent with the medicinal properties of Inula racemosa. This endophytic fungus could be a promising source of natural compounds for use in agriculture, medicine, and beyond.

7.
New Phytol ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946157

RESUMEN

Fusarium diseases pose a severe global threat to major cereal crops, particularly wheat. Existing biocontrol strains against Fusarium diseases are believed to primarily rely on antagonistic mechanisms, but not widely used under field conditions. Here, we report an endophytic fungus, Purpureocillium lilacinum YZ1, that shows promise in combating wheat Fusarium diseases. Under glasshouse conditions, YZ1 inoculation increased the survival rate of Fusarium graminearum (Fg)-infected wheat seedlings from 0% to > 60% at the seedling stage, and reduced spikelet infections by 70.8% during anthesis. In field trials, the application of YZ1 resulted in an impressive 89.0% reduction in Fg-susceptible spikelets. While a slight antagonistic effect of YZ1 against Fg was observed on plates, the induction of wheat systemic resistance by YZ1, which is distantly effective, non-specific, and long-lasting, appeared to be a key contributor to YZ1's biocontrol capabilities. Utilizing three imaging methods, we confirmed YZ1 as a potent endophyte capable of rapid colonization of wheat roots, and systematically spreading to the stem and leaves. Integrating dual RNA-Seq, photosynthesis measurements and cell wall visualization supported the link between YZ1's growth-promoting abilities and the activation of wheat systemic resistance. In conclusion, endophytes such as YZ1, which exhibits non-antagonistic mechanisms, hold significant potential for industrial-scale biocontrol applications.

8.
Plants (Basel) ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999559

RESUMEN

Gluconacetobacter diazotrophicus is a diazotrophic endophytic bacterium that promotes the growth and development of several plant species. However, the molecular mechanisms activated during plant response to this bacterium remain unclear. Here, we used the RNA-seq approach to understand better the effect of G. diazotrophicus PAL5 on the transcriptome of shoot and root tissues of Arabidopsis thaliana. G. diazotrophicus colonized A. thaliana roots and promoted growth, increasing leaf area and biomass. The transcriptomic analysis revealed several differentially expressed genes (DEGs) between inoculated and non-inoculated plants in the shoot and root tissues. A higher number of DEGs were up-regulated in roots compared to shoots. Genes up-regulated in both shoot and root tissues were associated with nitrogen metabolism, production of glucosinolates and flavonoids, receptor kinases, and transcription factors. In contrast, the main groups of down-regulated genes were associated with pathogenesis-related proteins and heat-shock proteins in both shoot and root tissues. Genes encoding enzymes involved in cell wall biogenesis and modification were down-regulated in shoots and up-regulated in roots. In contrast, genes associated with ROS detoxification were up-regulated in shoots and down-regulated in roots. These results highlight the fine-tuning of the transcriptional regulation of A. thaliana in response to colonization by G. diazotrophicus PAL5.

9.
Microbiologyopen ; 13(4): e1425, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38987999

RESUMEN

Pigments provide a simple means to rapidly visually ascertain the quantities or presence of specific microbes in a complex community. The selection of pigment-producing colonies that are simple to differentiate from common colony phenotypes provides a high degree of certainty for the identity of pigment-tagged strains. Successful employment of pigment production is dependent on various intrinsic factors related to proper levels of gene expression and pigment production that are not always easy to predict and vary within each microbe. We have constructed a simple transposon system that incorporates the genes for the production of deoxyviolacein, a pigment produced from intracellular reserves of the amino acid tryptophan, to randomly insert these genes throughout the genome. This tool allows the user to select from many thousands of potential sites throughout a bacterial genome for an ideal location to generate the desired amount of pigment. We have applied this system to a small selection of endophytes and other model bacteria to differentiate these strains from complex communities and confirm their presence after several weeks in natural environments. We provide two examples of applications using the pigments to trace strains following introduction into plant tissues or to produce a reporter strain for extracellular nitrogen compound sensing. We recognize that this tool could have far broader utility in other applications and microbes, and describe the methodology for use by the greater scientific community.


Asunto(s)
Elementos Transponibles de ADN , Pigmentos Biológicos , Elementos Transponibles de ADN/genética , Pigmentos Biológicos/metabolismo , Mutagénesis Insercional/métodos , Vectores Genéticos/genética , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Triptófano/metabolismo , Endófitos/genética , Endófitos/metabolismo
10.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982358

RESUMEN

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Asunto(s)
Alternaria , Endófitos , Enfermedades de las Plantas , Hojas de la Planta , Solanum tuberosum , Talaromyces , Alternaria/crecimiento & desarrollo , Alternaria/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Solanum tuberosum/microbiología , Talaromyces/genética , Talaromyces/crecimiento & desarrollo , Endófitos/fisiología , Endófitos/aislamiento & purificación , Endófitos/genética , Hojas de la Planta/microbiología , Hifa/crecimiento & desarrollo , Antibiosis , Quitinasas/metabolismo , Agentes de Control Biológico , Control Biológico de Vectores/métodos
11.
Sci Rep ; 14(1): 15365, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965302

RESUMEN

Endophytic fungal-based biopesticides are sustainable and ecologically-friendly biocontrol agents of several pests and diseases. However, their potential in managing tomato fusarium wilt disease (FWD) remains unexploited. This study therefore evaluated effectiveness of nine fungal isolates against tomato fusarium wilt pathogen, Fusarium oxysporum f. sp. lycopersici (FOL) in vitro using dual culture and co-culture assays. The efficacy of three potent endophytes that inhibited the pathogen in vitro was assessed against FWD incidence, severity, and ability to enhance growth and yield of tomatoes in planta. The ability of endophytically-colonized tomato (Solanum lycopersicum L.) plants to systemically defend themselves upon exposure to FOL were also assessed through defence genes expression using qPCR. In vitro assays showed that endophytes inhibited and suppressed FOL mycelial growth better than entomopathogenic fungi (EPF). Endophytes Trichoderma asperellum M2RT4, Hypocrea lixii F3ST1, Trichoderma harzianum KF2R41, and Trichoderma atroviride ICIPE 710 had the highest (68.84-99.61%) suppression and FOL radial growth inhibition rates compared to EPF which exhibited lowest (27.05-40.63%) inhibition rates. Endophytes T. asperellum M2RT4, H. lixii F3ST1 and T. harzianum KF2R41 colonized all tomato plant parts. During the in planta experiment, endophytically-colonized and FOL-infected tomato plants showed significant reduction of FWD incidence and severity compared to non-inoculated plants. In addition, these endophytes contributed to improved growth promotion parameters and yield. Moreover, there was significantly higher expression of tomato defence genes in T. asperellum M2RT4 colonized than in un-inoculated tomato plants. These findings demonstrated that H. lixii F3ST1 and T. asperellum M2RT4 are effective biocontrol agents against FWD and could sustainably mitigate tomato yield losses associated with fusarium wilt.


Asunto(s)
Endófitos , Fusarium , Enfermedades de las Plantas , Solanum lycopersicum , Fusarium/patogenicidad , Fusarium/fisiología , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Endófitos/fisiología , Hypocreales/fisiología , Hypocreales/patogenicidad , Antibiosis , Control Biológico de Vectores/métodos , Agentes de Control Biológico
12.
J Food Prot ; 87(9): 100330, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39025261

RESUMEN

Listeria monocytogenes and Cronobacter sakazakii are two important foodborne bacterial pathogens. Bacterial endophytes, which reside in plant cells, can produce antimicrobial compounds to protect the host organism or inhibit pathogens. This study investigated the bacterial community of tropical fruits for their potential to inactivate L. monocytogenes or C. sakazakii in cantaloupe and liquid infant formula, respectively. Tropical fruits including papayas, dragon fruits, and sugar apples, were sourced from several countries. Candidate bacterial endophytes were recovered from these tropical fruits using blood agar and Reasoner's 2A (R2A) agar and tested for potential inhibition against L. monocytogenes and C. sakazakii. A total of 196 bacterial endophytes were recovered from papayas, dragon fruits, and sugar apples. Among these bacterial endophytes, 33 (16.8%) and 13 (6.6%) of them demonstrated an inhibition zone against L. monocytogenes and C. sakazakii, respectively. The inhibitory strains were identified using 16S rRNA sequencing as Bacillus spp., Enterobacter spp., Klebsiella spp., Microbacterium spp., Pantoea spp., and Pseudomonas spp. A cocktail of Pantoea spp. and Enterobacter spp. was used in challenge studies with cantaloupe and significantly reduced the number of L. monocytogenes by approximately 2.5 log10 CFU/g. In addition, P. stewartii demonstrated antagonistic activity against C. sakazakii in liquid infant formula, i.e., it significantly decreased the number of C. sakazakii by at least 1 log10 CFU/mL. Thus, the use of bacterial endophytes recovered from fruits and vegetables could be a promising area of research. Their use as potential biocontrol agents to control bacterial pathogens in ready-to-eat foods warrants further investigation.

13.
Nat Prod Res ; : 1-11, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049511

RESUMEN

The endophytic fungi, Epicoccum sorghinum AMFS4 was investigated for its metabolic components and composition of bioactive exopolysaccharides (EPS). Metabolic analysis of the ethyl acetate extract majorly detected sugars derivatives such as, 4-Cholesten-3-one semicarbazone (20.9%), d-Fructose (18.96%), and α-d-Galactopyranosiduronicacid (1.71%). The growth curve and EPS yield were determined as 12.22 ± 1.02 g/L and 7.41 ± 0.32 g/L (dry weight) respectively on day 8. The deproteined EPS has been characterised with pyranose ring linked by α-glycosidic bonds, composing fructose, galactose and glucose monosaccharides validated by HPLC. Total sugar content was found to be 93.18 ± 0.81% with detection of proteins and uronate. The viscous EPS appeared filamentous under SEM observation and behaves as emulsifier with notable antioxidant properties. Priming of EPS on tomato seeds showed early induction of secondary rooting than in the control seedlings. Thus, E. sorghinum AMFS4 synthesises bioactive EPS with simple carbohydrate structure, good water absorption and significant metabolic influence on seed germination.

14.
World J Microbiol Biotechnol ; 40(9): 278, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046545

RESUMEN

This study investigates the synthesis of vinblastine by endophytic fungi isolated from leaf of C. roseus. A total of 10 endophytic fungi were selected for secretion of vinca alkaloids based on the initial screening by biochemical tests and thin-layer chromatography (TLC). Out of these ten, only four fungal extracts showed positive results for presence of vinblastine at same retention time (10 min.) compared to reference compound on HPLC analysis. The detected concentration of vinblastine was maximum (17 µg/ml) in isolate no. CRL 22 followed by CRL 52, CRL 17 and CRL 28. To validate the presence of vinblastine, ultra-high-performance liquid chromatography coupled with high-resolution accurate mass spectrometry (HRMS) was employed. This analysis confirmed the presence of anhydrovinblastine, a precursor of vinblastine through the detection of molecular ions at m/z 793.4185 in extract of CRL 17. In addition to anhydrovinblastine, the intermediate compounds essential to the biosynthetic pathway of vinblastine were also detected in the extract of CRL 17. These host-origin compounds strongly suggest the presence of a biosynthetic pathway within the endophytic fungus. Based on morphological observation and sequence analysis of the ITS region of rDNA, endophytic fungi were identified as Alternaria alternata (CRL 17), Curvularia lunata (CRL 28), Aspergillus terrus (CRL 52), and Aspergillus clavatonanicus (CRL 22).


Asunto(s)
Catharanthus , Endófitos , Hongos , Hojas de la Planta , Vinblastina , Catharanthus/microbiología , Vinblastina/metabolismo , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Hongos/metabolismo , Hongos/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hojas de la Planta/microbiología , Cromatografía en Capa Delgada , Vías Biosintéticas , Espectrometría de Masas
15.
Fungal Biol ; 128(4): 1876-1884, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38876540

RESUMEN

The endophytic fungus Chaetomium nigricolor culture filtrate's hexane extract was used to identify a cytotoxic very long-chain fatty acid. Based on multiple spectroscopic investigations, the structure of the compound was predicted to be an unsaturated fatty acid, Nonacosenoic acid (NA). Using the MTT assay, the compound's cytotoxic potential was evaluated against MCF-7, A-431, U-251, and HEK-293 T cells. The compound was moderately cytotoxic to breast carcinoma cell line, MCF-7 cells and negligibly cytotoxic to non-cancerous cell line HEK-293 T cells. The compound exhibited mild cytotoxic activity against A-431 and U-251 cells. The compound also induced ROS generation and mitochondrial depolarization in MCF-7 cells when assessed via the NBT and JC-1 assays, respectively. This is the first report on the production of nonacosenoic acid from the endophytic fungus Chaetomium nigricolor and the assessment of its bioactivity.


Asunto(s)
Chaetomium , Endófitos , Ácidos Grasos Insaturados , Chaetomium/química , Humanos , Endófitos/química , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Ácidos Grasos Insaturados/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Tallos de la Planta/microbiología , Tallos de la Planta/química , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular
16.
Mol Biotechnol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886309

RESUMEN

As global agricultural challenges intensify, particularly drought stress, the exploration of innovative strategies for crop resilience has become crucial. This study focuses on the role of the microbial endophyte metabolite Albaflavenone in enhancing drought resistance in tomato (Solanum lycopersicum L.) through the activation of the SlMAPK1 protein in the MAPK pathway. To computationally analyze the interaction between Albaflavenone and SlMAPK1 and to elucidate the potential enhancement of drought tolerance in tomato plants through this interaction. We utilized molecular docking, homology modeling, and molecular dynamics simulations to investigate the binding affinities and interaction dynamics between SlMAPK1 and Albaflavenone. Functional network analysis was employed to examine protein-protein interactions within the MAPK pathway, while the MM-GBSA method was used to calculate binding free energies. Our computational analyses revealed that Albaflavenone exhibited a high binding affinity to SlMAPK1 with a binding energy of - 8.9 kcal/mol. Molecular dynamics simulations showed this interaction significantly stabilized SlMAPK1, suggesting enhanced activity. Specifically, the root mean square deviation (RMSD) of the Albaflavenone-SlMAPK1 complex stabilized at around 3.1 Å, while the root mean square fluctuations (RMSF) indicated consistent amino acid conformations. Additionally, the radius of gyration (Rg) analysis demonstrated minimal variance, suggesting a compact and stable protein-ligand complex. The significant binding affinity between Albaflavenone and SlMAPK1 highlights the potential of leveraging plant-microbe interactions in developing sustainable agricultural practices. These findings also demonstrate the effectiveness of computational methods in dissecting complex biological interactions, contributing to a deeper understanding of plant resilience strategies against environmental stresses.

17.
Front Microbiol ; 15: 1383923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846569

RESUMEN

The Epichloë genus represents a significant group of above-ground endophytes extensively researched for their potential applications in agriculture and ecology. Additionally, Epichloë species synthesize bioactive alkaloids, which generally cause health problems in livestock and have detrimental effects on the performance of insect herbivores. Psathyrostachys lanuginosa serves as a valuable forage grass for livestock owing to its high nutritional value and resilience in adverse environmental conditions. Nevertheless, to date, no reports have documented Epichloë as endophytes of P. lanuginosa. In this study, four strains (PF5, PF9, QG2, and QG4) were isolated and identified through morphological, molecular, and phylogenetic analyses as endophytes of P. lanuginosa. Morphological analysis indicated colony characteristics and conidia features consistent with symbiotic Epichloë, with no significant differences observed in growth rates or conidia dimensions among the four strains. Phylogenetic analysis confirmed all strains as E. bromicola. Additionally, alkaloid biosynthetic genes were detected, revealing differences in the potential synthesis of peramine and indole diterpenoid alkaloids among strains from different geographic origins. However, all four E. bromicola strains exhibited similar potential for synthesizing ergot alkaloids, but not loline alkaloids. Overall, this study identified P. lanuginosa as a novel host for E. bromicola and provided insights into the alkaloid profiles of these strains, laying a solid foundation for the scientific and rational utilization of Epichloë resources.

18.
Arch Pharm (Weinheim) ; : e2400249, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838334

RESUMEN

It is generally believed that the main influencing factors of plant metabolism are genetic and environmental factors. However, the transformation and catalysis of metabolic intermediates by endophytic fungi have become a new factor and resource attracting attention in recent years. There are over 2000 precious plant species in the Astragalus genus. In the past decade, at least 303 high-value metabolites have been isolated from the Astragalus medicinal plants, including 124 saponins, 150 flavonoids, two alkaloids, six sterols, and over 20 other types of compounds. These medicinal plants contain abundant endophytic fungi with unique functions, and nearly 600 endophytic fungi with known identity have been detected, but only about 35 strains belonging to 13 genera have been isolated. Among them, at least four strains affiliated to Penicillium roseopurpureum, Alternaria eureka, Neosartorya hiratsukae, and Camarosporium laburnicola have demonstrated the ability to biotransform four saponin compounds from the Astragalus genus, resulting in the production of 66 new compounds, which have significantly enhanced our understanding of the formation of metabolites in plants of the Astragalus genus. They provide a scientific basis for improving the cultivation quality of Astragalus plants through the modification of dominant fungal endophytes or reshaping the endophytic fungal community. Additionally, they open up new avenues for the discovery of specialized, green, efficient, and sustainable biotransformation pathways for complex pharmaceutical intermediates.

19.
Front Plant Sci ; 15: 1383918, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899155

RESUMEN

Introduction: Endophytic fungi can promote secondary metabolite accumulation in medicinal plants. Previously, we observed that the culture filtrate of Fusarium solani CL105 promoted flavonoid production in Scutellaria baicalensis calli. However, the active ingredients and mechanisms associated with this secondary metabolite accumulation remain unclear. Methods: This study evaluates the effects of different elicitors from the culture filtrate of F. solani CL105 namely, exopolysaccharide (EPS), exoprotein (EP), and other parts (OP), on the flavonoid production in S. baicalensis calli by HPLC. Subsequently, the underlying mechanism of EPS induced flavonoid production in S. baicalensis calli was revealed by transcriptomics and RT-PCR. Results and discussion: The results indicated a significant increase in flavonoid production in S. baicalensis calli following treatment with EPS. Baicalin (1.40 fold), wogonoside (1.91 fold), and wogonin (2.76 fold) were most significantly up-regulated compared with the control. Transcriptome analysis further revealed up-regulation of key enzyme genes (CHS, CHI, FNS, and F6H) involved in flavonoid synthesis after 5 days of EPS treatment. Moreover, the expression of GA2ox and CYP707A-genes involved in gibberellin acid (GA) and abscisic acid biosynthesis (ABA), respectively-were significantly up-regulated. The expression levels of certain transcription factors, including MYB3, MYB8, and MYB13, were also significantly higher than in controls. Our results indicated that EPS was a main active elicitor involved in promoting flavonoid production in S. baicalensis calli. We postulated that EPS might stimulate the expression of MYB3, MYB8, MYB13, GA2ox, and CYP707A, leading to markedly upregulated CHS, CHI, FNS, and F6H expression levels, ultimately promoting flavonoid synthesis. This study provides a novel avenue for large-scale in vitro production of flavonoids in S. baicalensis.

20.
MycoKeys ; 105: 295-316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855320

RESUMEN

Apiospora species are widely distributed fungi with diverse lifestyles, primarily functioning as plant pathogens, as well as exhibiting saprophytic and endophytic behaviors. This study reports the discovery of three new species of Apiospora, namely A.gongcheniae, A.paragongcheniae, and A.neogongcheniae, isolated from healthy Poaceae plants in China. These novel species were identified through a multi-gene phylogenetic analysis. The phylogenetic analysis of the combined ITS, LSU, tef1, and tub2 sequence data revealed that the three new species formed a robustly supported clade with A.garethjonesii, A.neogarethjonesii, A.setostroma, A.subrosea, A.mytilomorpha, and A.neobambusae. Detailed descriptions of the newly discovered species are provided and compared with closely related species to enhance our understanding of the genus Apiospora.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...