Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.185
Filtrar
1.
Sci Rep ; 14(1): 26591, 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39496680

RESUMEN

Social media has emerged as a dominant platform where individuals freely share opinions and communicate globally. Its role in disseminating news worldwide is significant due to its easy accessibility. However, the increase in the use of these platforms presents severe risks for potentially misleading people. Our research aims to investigate different techniques within machine learning, deep learning, and ensemble learning frameworks in Arabic fake news detection. We integrated FastText word embeddings with various machine learning and deep learning methods. We then leveraged advanced transformer-based models, including BERT, XLNet, and RoBERTa, optimizing their performance through careful hyperparameter tuning. The research methodology involves utilizing two Arabic news article datasets, AFND and ARABICFAKETWEETS datasets, categorized into fake and real subsets and applying comprehensive preprocessing techniques to the text data. Four hybrid deep learning models are presented: CNN-LSTM, RNN-CNN, RNN-LSTM, and Bi-GRU-Bi-LSTM. The Bi-GRU-Bi-LSTM model demonstrated superior performance regarding the F1 score, accuracy, and loss metrics. The precision, recall, F1 score, and accuracy of the hybrid Bi-GRU-Bi-LSTM model on the AFND Dataset are 0.97, 0.97, 0.98, and 0.98, and on the ARABICFAKETWEETS dataset are 0.98, 0.98, 0.99, and 0.99 respectively. The study's primary conclusion is that when spotting fake news in Arabic, the Bi-GRU-Bi-LSTM model outperforms other models by a significant margin. It significantly aids the global fight against false information by setting the stage for future research to expand fake news detection to multiple languages.

2.
ACS Nano ; 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39485345

RESUMEN

Despite many accessible AI models that have been developed, it is an open challenge to fully exploit interpretable insights to enable effective materials design and develop materials with desired properties for target applications. Here, we introduce an interpretable surrogate learning framework that can actively design and generate electronic materials (EMGen), akin to producing updated materials with requirements by screening all possible elements and fractions. Taking the materials system with required band gaps as a case study, EMGen exhibits a benchmarking predictive error and a running time of 1.7 min for designing and producing a structure with a desired band gap. Using EMGen, we establish a large hybrid functional band gap database, and more uplifting is that the proposed EMGen effectively designs GaxOy with a wide band gap (>5.0 eV) for deep ultraviolet (DUV) optoelectronic devices, enabling a breakthrough extension of the applicability of GaxOy films in photodetectors to DUV light below 240 nm. The augmented band gap also helps improve the breakdown voltage and the heat resilience performance of the amorphous GaxOy film, thereby achieving considerable potential within the realm of power electronics applications. The proposed EMGen, as a specialized, interpretable AI model for the generation of electronic materials, is demonstrated to be an essential tool for on-demand semiconductor materials design.

3.
J Agric Food Chem ; 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39495772

RESUMEN

Hypertension is a common chronic disorder and a major risk factor for cardiovascular diseases. Angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II, causing vasoconstriction and raising blood pressure. Pharmacotherapy is the mainstay of traditional hypertension treatment, leading to various negative side effects. Some food-derived peptides can suppress ACE, named ACEIP with fewer undesirable effects. Therefore, it is crucial to seek strong dietary ACEIP to aid in hypertension treatment. In this article, we propose a new model called AI4ACEIP to identify ACEIP. AI4ACEIP uses a novel two-layer stacked ensemble architecture to predict ACEIP relying on integrated view features derived from sequence, large language models, and molecular-based information. The analysis of feature combinations reveals that four selected integrated feature pairs exhibit enhancing performance for identifying ACEIP. For finding meta models with strong abilities to learn information from integrated feature pairs, PowerShap, a feature selection method, is used to select 40 optimal feature and meta model combinations. Compared with seven state-of-the-art methods on the source and clear benchmark data sets, AI4ACEIP significantly outperformed by 8.47 to 20.65% and 5.49 to 14.42% for Matthew's correlation coefficient. In brief, AI4ACEIP is a reliable model for ACEIP prediction and is freely available at https://github.com/abcair/AI4ACEIP.

4.
Int J Biol Macromol ; : 136940, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39490873

RESUMEN

RNA N4-acetylcytidine (ac4C) modification plays a crucial role in gene expression regulation. However, existing prediction methods face limitations in capturing RNA sequence features, particularly in handling sequence complexity and long-range dependencies. To enhance the accuracy of RNA-ac4C modification sites prediction, this study introduces, for the first time, the transformer-based RNAErnie pre-trained model, which deeply extracts semantic information from RNA sequences. This model is combined with six traditional feature extraction methods (such as One-hot, ENAC, etc.) to form a multidimensional feature set. On this basis, we propose the Voting-ac4C model, which utilizes a deep neural network for feature selection. The selected features are then fed into a soft voting ensemble learning model, integrating the strengths of various machine learning algorithms to predict RNA-ac4C modification sites. Experimental results demonstrate that compared to the state-of-the-art methods, Voting-ac4C achieves significant improvements across multiple metrics, including AUC, SN, SP, ACC, and MCC. This study provides a novel approach for RNA modification sites prediction and highlights the potential applications of pre-trained models in biological sequence analysis.

5.
Toxics ; 12(10)2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39453118

RESUMEN

With the rapid development of industrialization, the problem of heavy metal wastewater treatment has become increasingly serious, posing a serious threat to the environment and human health. Biochar shows great potential for application in the field of wastewater treatment; however, biochars prepared from different biomass sources and experimental conditions have different physicochemical properties, resulting in differences in their adsorption capacity for uranium, which limits their wide application in wastewater treatment. Therefore, there is an urgent need to deeply explore and optimize the key parameter settings of biochar to significantly improve its adsorption capacity. This paper combines the nonlinear mapping capability of SCN and the ensemble learning advantage of the Adaboost algorithm based on existing experimental data on wastewater treatment. The accuracy of the model is evaluated by metrics such as coefficient of determination (R2) and error rate. It was found that the Adaboost-SCN model showed significant advantages in terms of prediction accuracy, precision, model stability and generalization ability compared to the SCN model alone. In order to further improve the performance of the model, this paper combined Adaboost-SCN with maximum information coefficient (MIC), random forest (RF) and energy valley optimizer (EVO) feature selection methods to construct three models, namely, MIC-Adaboost-SCN, RF-Adaboost-SCN and EVO-Adaboost-SCN. The results show that the prediction model with added feature selection is significantly better than the Adaboost-SCN model without feature selection in each evaluation index, and EVO has the most significant effect on feature selection. Finally, the correlation between biochar adsorption properties and production parameters was discussed through the inversion study of key parameters, and optimal parameter intervals were proposed to improve the adsorption properties. Providing strong support for the wide application of biochar in the field of wastewater treatment helps to solve the urgent environmental problem of heavy metal wastewater treatment.

6.
Comput Biol Chem ; 113: 108244, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39454455

RESUMEN

Drug-Target interaction (DTI) prediction, a transformative approach in pharmaceutical research, seeks novel therapeutic applications for computational method based virtual screening, existing drugs to address untreated diseases and discovery of existing drugs side effects. The proposed model predict DTI through Heterogeneous biological network by combining drug, genes and disease related knowledge. For the purpose of embedding extraction Self-supervised learning (SSL) has been used which, trains models through pretext tasks, eliminating the need for manual annotations. The pretext tasks are related to either structural based information or similarity based information. To mitigate GNN vulnerability to non-robustness, ensemble learning can be incorporated into GNNs, harnessing multiple models to enhance robustness. This paper introduces a Graph neural network based architecture consisting of task based module and ensemble module for link prediction of DTI. The ensemble module of dual task combinations, both in cold start and warm start scenarios achieve very good performance as it provide 0.960 in cold start and 0.970 in warm start mean AUCROC score with less deviation.

7.
Comput Biol Med ; 183: 109240, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39442439

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition marked by inattention and impulsivity, linked to disruptions in functional brain connectivity and structural alterations in large-scale brain networks. Although sensory pathway anomalies have been implicated in ADHD, the exploration of sensory integration regions remains limited. In this study, we adopted an exploratory approach to investigate the connectivity profile of auditory-visual integration networks (AVIN) in children with ADHD and neurotypical controls using the ADHD-200 rs-fMRI dataset. We expanded our exploration beyond network-based statistics (NBS) by extracting a diverse range of graph theoretical features. These features formed the basis for applying machine learning (ML) techniques to discern distinguishing patterns between the control group and children with ADHD. To address class imbalance and sample heterogeneity, we employed ensemble learning models, including balanced random forest (BRF), XGBoost, and EasyEnsemble classifier (EEC). Our findings revealed significant differences in AVIN between ADHD individuals and neurotypical controls, enabling automated diagnosis with moderate accuracy (74.30%). Notably, the EEC model demonstrated balanced sensitivity and specificity metrics, crucial for diagnostic applications, offering valuable insights for potential clinical use. These results contribute to understanding ADHD's neural underpinnings and highlight the diagnostic potential of AVIN measures. However, the exploratory nature of this study underscores the need for future research to confirm and refine these findings with specific hypotheses and rigorous statistical controls.

8.
J Comput Graph Stat ; 33(3): 1061-1072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39439808

RESUMEN

Ensemble methods such as bagging and random forests are ubiquitous in various fields, from finance to genomics. Despite their prevalence, the question of the efficient tuning of ensemble parameters has received relatively little attention. This paper introduces a cross-validation method, ECV (Extrapolated Cross-Validation), for tuning the ensemble and subsample sizes in randomized ensembles. Our method builds on two primary ingredients: initial estimators for small ensemble sizes using out-of-bag errors and a novel risk extrapolation technique that leverages the structure of prediction risk decomposition. By establishing uniform consistency of our risk extrapolation technique over ensemble and subsample sizes, we show that ECV yields δ -optimal (with respect to the oracle-tuned risk) ensembles for squared prediction risk. Our theory accommodates general predictors, only requires mild moment assumptions, and allows for high-dimensional regimes where the feature dimension grows with the sample size. As a practical case study, we employ ECV to predict surface protein abundances from gene expressions in single-cell multiomics using random forests under a computational constraint on the maximum ensemble size. Compared to sample-split and K -fold cross-validation, ECV achieves higher accuracy by avoiding sample splitting. Meanwhile, its computational cost is considerably lower owing to the use of the risk extrapolation technique.

9.
Adv Sci (Weinh) ; : e2408239, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39450690

RESUMEN

The development of better density functional theory (DFT) methods is one of the most active research areas, given the importance of DFT for ubiquitous molecular and materials simulations. However, this research primarily focuses on improving a specific exchange-correlation Kohn-Sham density functional. Here, a robust procedure is proposed for constructing transferable ensembles of density functionals that perform superior to any constituent individual density functional. It is shown that such ensembles built only with the density functionals predating the GMTKN55 benchmark of 2017 can reach a record-low weighted error of 1.62 kcal mol-1 on this benchmark compared to 3.08 kcal mol-1 of the best constituent density functional. The DENS24 density functional ensembles are also introduced as practical DFT methods with consistently accurate performance for various simulations at affordable cost. DENS24 ensembles are open-source and can be used for simulations online. Additionally, it is shown that the ensembles can be integrated into the SCF procedure by creating mixed DENS24 functionals, which have the same accuracy but are faster than ensembles of independent functionals.

10.
Diagnostics (Basel) ; 14(19)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39410657

RESUMEN

Background: Breast cancer is one of the most lethal cancers among women. Early detection and proper treatment reduce mortality rates. Histopathological images provide detailed information for diagnosing and staging breast cancer disease. Methods: The BreakHis dataset, which includes histopathological images, is used in this study. Medical images are prone to problems such as different textural backgrounds and overlapping cell structures, unbalanced class distribution, and insufficiently labeled data. In addition to these, the limitations of deep learning models in overfitting and insufficient feature extraction make it extremely difficult to obtain a high-performance model in this dataset. In this study, 20 state-of-the-art models are trained to diagnose eight types of breast cancer using the fine-tuning method. In addition, a comprehensive experimental study was conducted to determine the most successful new model, with 20 different custom models reported. As a result, we propose a novel model called MultiHisNet. Results: The most effective new model, which included a pointwise convolution layer, residual link, channel, and spatial attention module, achieved 94.69% accuracy in multi-class breast cancer classification. An ensemble model was created with the best-performing transfer learning and custom models obtained in the study, and model weights were determined with an Equilibrium Optimizer. The proposed ensemble model achieved 96.71% accuracy in eight-class breast cancer detection. Conclusions: The results show that the proposed model will support pathologists in successfully diagnosing breast cancer.

11.
Heliyon ; 10(19): e38515, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39421375

RESUMEN

Feature extraction plays a critical role in text classification, as it converts textual data into numerical representations suitable for machine learning models. A key challenge lies in effectively capturing both semantic and contextual information from text at various levels of granularity while avoiding overfitting. Prior methods have often demonstrated suboptimal performance, largely due to the limitations of the feature extraction techniques employed. To address these challenges, this study introduces Multi-TextCNN, an advanced feature extractor designed to capture essential textual information across multiple levels of granularity. Multi-TextCNN is integrated into a proposed classification model named MuTCELM, which aims to enhance text classification performance. The proposed MuTCELM leverages five distinct sub-classifiers, each designed to capture different linguistic features from the text data. These sub-classifiers are integrated into an ensemble framework, enhancing the overall model performance by combining their complementary strengths. Empirical results indicate that MuTCELM achieves average improvements across all datasets in accuracy, precision, recall, and F1-macro scores by 0.2584, 0.2546, 0.2668, and 0.2612, respectively, demonstrating significant performance gains over baseline models. These findings underscore the effectiveness of Multi-TextCNN in improving model performance relative to other ensemble methods. Further analysis reveals that the non-overlapping confidence intervals between MuTCELM and baseline models indicate statistically significant differences, suggesting that the observed performance improvements of MuTCELM are not attributable to random chance but are indeed statistically meaningful. This evidence indicates the robustness and superiority of MuTCELM across various languages and text classification tasks.

12.
Comput Biol Chem ; 113: 108248, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39426256

RESUMEN

Lung cancer significantly contributes to global cancer mortality, posing challenges in clinical management. Early detection and accurate prognosis are crucial for improving patient outcomes. This study develops an interpretable stacking ensemble model (SEM) for lung cancer prognosis prediction and identifies key risk factors. Using a Kaggle dataset of 1000 patients with 22 variables, the model classifies prognosis into Low, Medium, and High-risk categories. The bootstrap method was employed for evaluation metrics, while SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) assessed model interpretability. Results showed SEM's superior interpretability over traditional models, such as Random Forest, Logistic Regression, Decision Tree, Gradient Boosting Machine, Extreme Gradient Boosting Machine, and Light Gradient Boosting Machine. SEM achieved an accuracy of 98.90 %, precision of 98.70 %, F1 score of 98.85 %, sensitivity of 98.77 %, specificity of 95.45 %, Cohen's kappa value of 94.56 %, and an AUC of 98.10 %. The SEM demonstrated robust performance in lung cancer prognosis, revealing chronic lung cancer and genetic risk as major factors.

13.
Biochim Biophys Acta Gen Subj ; 1868(12): 130721, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39426757

RESUMEN

Antifreeze proteins (AFPs) are a unique class of biomolecules capable of protecting other proteins, cell membranes, and cellular structures within organisms from damage caused by freezing conditions. Given the significance of AFPs in various domains such as biotechnology, agriculture, and medicine, several machine learning methods have been developed to identify AFPs. However, due to the complexity and diversity of AFPs, the predictive performance of existing methods is limited. Therefore, there is an urgent need to develop an efficient and rapid computational method for accurately predicting AFPs. In this study, we proposed a novel predictor based on transformer-embedding features and ensemble learning for the identification of AFPs, termed VotePLMs-AFP. Firstly, three types of feature descriptors were extracted from pre-trained protein language models (PLMs) during the feature extraction process. Subsequently, we analyzed six combinations generated by these three embeddings to explore the optimal feature set, which was input into the soft voting-based ensemble learning classifier for the identification of AFPs. Finally, we evaluated the model on the two benchmark datasets. The experimental results show that our model achieves high prediction accuracy in 10-fold cross-validation (CV) and independent set testing, outperforming existing state-of-the-art methods. Therefore, our model could serve as an effective tool for predicting AFPs.

14.
Ther Innov Regul Sci ; 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39428447

RESUMEN

Post-marketing surveillance refers to the process of monitoring the safety of drugs once they reach the market, after the successful completion of clinical trials. In this work, we investigate a computational approach using data mining tools to detect safety signals from post-market safety databases, or in other words, to identify adverse events (AEs) with disproportionately high reporting rates compared to other AEs, associated with a particular drug or a drug class. Essentially, we view this as a problem of cluster analysis-based anomaly detection on post-market safety data, where the goal is to 'unsupervisedly' detect the anomalous or the signal AEs. Our findings demonstrate the potential of using a clustering ensemble method to detect drug safety signals. It employs multiple clustering or anomaly detection algorithms, followed by a performance comparison of the candidate algorithms based on a collection of appropriate measures of goodness of clustering results. The method is general enough to include any number of clustering or anomaly detection algorithms and goodness measures, and performs better than any of the candidate algorithms in identifying the signal AEs. Extensive simulation studies illustrate that the ensemble method detects the AE signals from synthetic post-market safety datasets pretty accurately across the different scenarios explored. Based on the cases reported to the FDA Adverse Event Reporting System (FAERS) between 2013 and 2022, we further demonstrate that the ensemble method successfully identifies and confirms most of the adverse events that are known to occur most frequently in reaction to antiepileptic drugs and ß -lactam antibiotics.

15.
Brief Bioinform ; 25(6)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39406523

RESUMEN

Inflammatory responses may lead to tissue or organ damage, and proinflammatory peptides (PIPs) are signaling peptides that can induce such responses. Many diseases have been redefined as inflammatory diseases. To identify PIPs more efficiently, we expanded the dataset and designed an ensemble learning model with manually encoded features. Specifically, we adopted a more comprehensive feature encoding method and considered the actual impact of certain features to filter them. Identification and prediction of PIPs were performed using an ensemble learning model based on five different classifiers. The results show that the model's sensitivity, specificity, accuracy, and Matthews correlation coefficient are all higher than those of the state-of-the-art models. We named this model MultiFeatVotPIP, and both the model and the data can be accessed publicly at https://github.com/ChaoruiYan019/MultiFeatVotPIP. Additionally, we have developed a user-friendly web interface for users, which can be accessed at http://www.bioai-lab.com/MultiFeatVotPIP.


Asunto(s)
Aprendizaje Automático , Péptidos , Péptidos/química , Humanos , Biología Computacional/métodos , Programas Informáticos , Inflamación , Algoritmos , Votación
16.
IEEE Open J Eng Med Biol ; 5: 769-782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39464488

RESUMEN

Esophageal cancer (EC) poses a significant health concern, particularly among the elderly, warranting effective treatment strategies. While immunotherapy holds promise in activating the immune response against tumors, its specific impact and associated reactions in EC patients remain uncertain. Precise prognosis prediction becomes crucial for guiding appropriate interventions. This study, based on data from the First Affiliated Hospital of Xiamen University (January 2017 to May 2021), focuses on 113 EC patients undergoing immunotherapy. The primary objectives are to elucidate the effectiveness of immunotherapy in EC treatment and to introduce a stacking ensemble learning method for predicting the survival of EC patients who have undergone immunotherapy, in the context of small sample sizes, addressing the imperative of supporting clinical decision-making for healthcare professionals. Our method incorporates five sub-learners and one meta-learner. Leveraging optimal features from the training dataset, this approach achieved compelling accuracy (89.13%) and AUC (88.83%) in predicting three-year survival status, surpassing conventional techniques. The model proves efficient in guiding clinical decisions, especially in scenarios with small-size follow-up data.

17.
Viruses ; 16(10)2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39459938

RESUMEN

Usutu virus (USUV) is an emerging mosquito-transmitted flavivirus with increasing incidence of human infection and geographic expansion, thus posing a potential threat to public health. In this study, we established a comprehensive spatiotemporal database encompassing USUV infections in vectors, animals, and humans worldwide by an extensive literature search. Based on this database, we characterized the geographic distribution and epidemiological features of USUV infections. By employing boosted regression tree (BRT) models, we projected the distributions of three main vectors (Culex pipiens, Aedes albopictus, and Culiseta longiareolata) and three main hosts (Turdus merula, Passer domesticus, and Ardea cinerea) to obtain the mosquito index and bird index. These indices were further incorporated as predictors into the USUV infection models. Through an ensemble learning model, we achieved a decent model performance, with an area under the curve (AUC) of 0.992. The mosquito index contributed significantly, with relative contributions estimated at 25.51%. Our estimations revealed a potential exposure area for USUV spanning 1.80 million km2 globally with approximately 1.04 billion people at risk. This can guide future surveillance efforts for USUV infections, especially for countries located within high-risk areas and those that have not yet conducted surveillance activities.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Mosquitos Vectores , Animales , Flavivirus/aislamiento & purificación , Flavivirus/genética , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/veterinaria , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología , Humanos , Mosquitos Vectores/virología , Aedes/virología , Salud Global , Culicidae/virología , Aves/virología
18.
Sensors (Basel) ; 24(20)2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39460010

RESUMEN

Autonomous vehicles are revolutionizing the future of intelligent transportation systems by integrating smart and intelligent onboard units (OBUs) that minimize human intervention. These vehicles can communicate with their environment and one another, sharing critical information such as emergency alerts or media content. However, this communication infrastructure is susceptible to cyber-attacks, necessitating robust mechanisms for detection and defense. Among these, the most critical threat is the denial-of-service (DoS) attack, which can target any entity within the system that communicates with autonomous vehicles, including roadside units (RSUs), or other autonomous vehicles. Such attacks can lead to devastating consequences, including the disruption or complete cessation of service provision by the infrastructure or the autonomous vehicle itself. In this paper, we propose a system capable of detecting DoS attacks in autonomous vehicles across two scenarios: an infrastructure-based scenario and an infrastructureless scenario, corresponding to vehicle-to-everything communication (V2X) Mode 3 and Mode 4, respectively. For Mode 3, we propose an ensemble learning (EL) approach, while for the Mode 4 environment, we introduce a gossip learning (GL)-based approach. The gossip and ensemble learning approaches demonstrate remarkable achievements in detecting DoS attacks on the UNSW-NB15 dataset, with efficiencies of 98.82% and 99.16%, respectively. Moreover, these methods exhibit superior performance compared to existing schemes.

19.
Med Biol Eng Comput ; 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39465436

RESUMEN

Accurate segmentation of the temporomandibular joint (TMJ) from cone beam CT (CBCT) images holds significant clinical value for diagnosing temporomandibular joint osteoarthrosis (TMJOA) and related conditions. Convolutional neural network-based medical image segmentation methods have achieved state-of-the-art performance in various segmentation tasks. However, 3D medical images segmentation requires substantial global context and rich spatial semantic information, demanding much more GPU memory and computational resources. To address these challenges in 3D medical image segmentation, we propose a novel network- the MVEL-Net (Multi-view Ensemble Learning Network) for TMJ CBCT image segmentation. By resampling images along three dimensions, we generate multiple weak learners with different spatial semantic information. A subsequent strong learning network effectively integrates the outputs from these weak learners to achieve more accurate segmentation results. We evaluated our network model using a clinical dataset comprising 88 subjects with TMJ CBCT images. The average Dice similarity coefficient (DSC) was 0.9817 ± 0.0049, the average surface distance was 0.0540 ± 0.0179 mm, and the 95% Hausdorff distance was 0.1743 ± 0.0550 mm. Our proposed MVEL-Net demonstrates excellent segmentation performance on TMJ from CBCT images, while using fewer GPU memory resources compared to other 3D networks. The effectiveness of this method in capturing spatial context could be leveraged for tasks like organ segmentation from volumetric scans. This may facilitate wider adoption of AI-based solutions for automated analysis of 3D medical images.

20.
Sci Rep ; 14(1): 25454, 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39462071

RESUMEN

Soil moisture (SM) is a critical variable influencing various environmental processes, but traditional microwave sensors often lack the spatial resolution needed for local-scale studies. This study develops a novel stacking ensemble learning framework to enhance the spatial resolution of satellite-derived SM data to 1 km in the Urmia basin, a region facing significant water scarcity. We integrated in-situ SM measurements (obtained using time-domain reflectometry [TDR]), Soil Moisture Active Passive (SMAP) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SM products, Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and vegetation indices, precipitation records, and topography data. Ten base machine-learning models were evaluated using the Complex Proportional Assessment (COPRAS) method, and the top-performing models were selected as base learners for the stacking ensemble. The ensemble model, incorporating Random Forest, Gradient Boosting, and XGBoost, significantly improved SM estimation accuracy and resolution compared to individual models. The XGBoost and Gradient Boosting meta-models achieved the highest accuracy, with an unbiased root mean square error (ubRMSE) of 1.23% m3/m3 and a coefficient of determination (R2) of 0.97 during testing, demonstrating the exceptional predictive capabilities of our approach. SHapley Additive exPlanations (SHAP) analysis revealed the influence of each base model on the ensemble's predictions, highlighting the synergistic benefits of combining diverse models. This study establishes new benchmarks for soil moisture monitoring by showcasing the potential of ensemble learning to improve the spatial resolution and accuracy of satellite-derived SM data, providing crucial insights for environmental science and agricultural planning, particularly in water-stressed regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...