Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Microbiol Methods ; 226: 107039, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265726

RESUMEN

Hepatopancreatic microsporidiosis (HPM), caused by the microsporidium Ecytonucleospora hepatopenaei (EHP) leads to retarded growth and enhanced susceptibility to other diseases in shrimp resulting in a major loss for the shrimp industry worldwide. It is little understood how EHP infects its host and hijacks its cellular machinery to replicate and exert clinical manifestations in infected shrimp. Since the initial record of HPM, histopathology and polymerase chain reaction (PCR)-based assays were developed for the detection of EHP to prevent spread of the disease. Availability of an antibody-based detection method would complement these existing diagnostic tools and be useful in studying EHP pathogenesis. We describe here an immunofluorescence assay (IFA) for detecting EHP using monoclonal antibodies (mAbs) that were originally developed against Cryptosporidium parvum, a coccidian parasite that infects calves (Bos taurus), other agriculturally important animals, and humans. Forty-one mAbs were screened and two mAbs, 3E2 and 3A12, were found to detect EHP successfully. The utility of these mAbs in detecting EHP was further assessed by testing 36 experimentally challenged EHP-infected shrimp (Penaeus vannamei). EHP-detection data from infected shrimp were compared by Hematoxylin and Eosin (H&E) histology, real-time PCR, and immunofluorescence. The data show IFA using mAbs 3E2 and 3A12 could successfully detect EHP and that the sensitivity of detection is comparable to H&E histology and quantitative PCR. Availability of mAbs that can detect EHP is expected to be immensely beneficial in HPM diagnosis. Since the pathobiology of C. parvum has been so widely studied, these cross-reactive mAbs may also aid in gaining some insight into EHP pathogenesis and disease.

2.
Fish Shellfish Immunol ; 154: 109902, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276814

RESUMEN

The Penaeus vannamei aquaculture industry is facing a significant challenge in the form of hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP), resulting in substantial economic losses. However, the extent of knowledge regarding the mechanisms by which shrimp resist EHP is limited. We screened resistant and susceptible shrimp and found that resistant shrimp had lower EHP load and less tissue damage. To gain insight into the molecular mechanisms underlying the EHP resistance of shrimp, a comparison was conducted at the transcriptional level between the resistant and susceptible families. Transcriptomic analysis of shrimp hepatopancreas revealed significant differences between the resistant and susceptible families. Compared to the susceptible family, the immune system of the resistant family was activated. The resistant family showed up-regulation in the expression of cathepsin L, C-type lectin, penaeidin, chitinase genes, and metabolism of xenobiotics by cytochrome P450-related genes. Additionally, the resistant shrimp exhibited a higher capacity for amino acid uptake. The observed differences in the resistant and susceptible family transcriptome may contribute to the shrimp's resistance to EHP.

3.
Microorganisms ; 12(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38930590

RESUMEN

Enterocytozoon hepatopenaei (EHP) is a parasite in shrimp farming. EHP mainly parasitizes the hepatopancreas of shrimp, causing slow growth, which severely restricts the economic income of shrimp farmers. To explore the pathogenic mechanism of EHP, the host subcellular construction, molecular biological characteristics, and mitochondrial condition of Litopenaeus vannamei were identified using transmission electron microscopy (TEM), real-time qPCR, an enzyme assay, and flow cytometry. The results showed that EHP spores, approximately 1 µm in size, were located on the cytoplasm of the hepatopancreas. The number of mitochondria increased significantly, and mitochondria morphology showed a condensed state in the high-concentration EHP-infected shrimp by TEM observation. In addition, there were some changes in mitochondrial potential, but apoptosis was not significantly different in the infected shrimp. The qPCR results showed that the gene expression levels of hexokinase and pyruvate kinase related to energy metabolism were both upregulated in the diseased L. vannamei. Enzymatic activity showed hexokinase and lactate dehydrogenase were significantly increased in the shrimp infected with EHP, indicating EHP infection can increase the glycolysis process and decrease the oxidative phosphorylation process of L. vannamei. Previous transcriptomic data analysis results also support this conclusion.

4.
Fish Shellfish Immunol ; 151: 109704, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880362

RESUMEN

White feces syndrome (WFS) is a multifactorial disease that affects global shrimp production. The diagnostic approach to identify WFS involves traditional and molecular scientific methods by examining histopathology, bioassays, PCR (polymerase chain reaction), and calorimetric estimation. The pathogenesis of WFS is closely associated with Vibrio spp., intestinal microbiota (IM) dysbiosis, and Enterocytozoon hepatopenaei (EHP). It also has caused over 10-15 % loss in the aquaculture industry and is also known to cause retardation, lethargy and slowly leading to high mortality in shrimp farms. Therefore, it is necessary to understand the molecular mechanisms processed under the association of IM dysbiosis, Vibrio spp., and EHP to analyze the impact of disease on the innate immune system of shrimp. However, only very few reviews have described the molecular pathways involved in WFS. Hence, this review aims to elucidate an in-depth analysis of molecular pathways involved in the innate immune system of shrimp and their response to pathogens. The analysis and understanding of the impact of shrimp's innate immune system on WFS would help in developing treatments to prevent the spread of disease, thereby improving the economic condition of shrimp farms worldwide.


Asunto(s)
Inmunidad Innata , Penaeidae , Animales , Penaeidae/inmunología , Penaeidae/genética , Penaeidae/microbiología , Inmunidad Innata/genética , Microbioma Gastrointestinal/inmunología , Vibrio/fisiología , Disbiosis/inmunología , Disbiosis/veterinaria , Enterocytozoon/genética , Enterocytozoon/inmunología , Acuicultura
5.
J Invertebr Pathol ; 204: 108115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719180

RESUMEN

To explore the relationship between the intestinal flora of Exopalaemon Carinicauda and infection by Enterocytozoo Hepatopenaei (EHP), we analyzed the species and richness of gut microbiota in infected individuals in different EHP load groups [i.e., control (C), high load (H), and low load (L)] using gene sequencing after infection. The results showed that the abundance of intestinal flora in the high-load EHP group was significantly lower than that in the healthy group. Based on the UPGMA cluster tree and PCoA analysis, with comparisons to healthy shrimp, the gut microbiota of the EHP high load and low load groups were clustered into one branch, which indicated that EHP infection changed the composition of the gut microbiota of infected shrimps. The heat map analysis of species abundance clustering revealed that the dominant bacteria in the low EHP load group and the control group were beneficial genera such as Lactococcus, Ligilactobacillius, and Bifidobacterium, but the dominant bacteria in the high EHP load group were harmful genera such as Pseudomonas, Photobacterium, and Candidatus hepatincola. The functions of the intestinal flora predicted that most genes related to metabolism were more abundant in healthy shrimp, most genes related to metabolism and the organisms' system were more abundant in the low EHP load group, and most genes related to diseases and environmental information processing were more abundant in the high EHP load group. After separation and purification, the dominant bacteria (Bifidobacterium animalis in healthy shrimp and Lactococcus garvieae in the low EHP load group) and the non-dominant bacteria (Macrococus caseolyticus in the low EHP load group) were obtained. Each of these isolated strains were used together with EHP to infect E. carinicauda, and the results showed that Bifidobacterium animali and Lactococcus garvieae significantly reduced the EHP load in EHP-infected individuals. At the same time, the morphology and structure of the hepatopancreas and intestinal tissue of EHP-infected E. carinicauda were improved. No improvement was seen in tissue that was infected with Macrococus caseolyticus.


Asunto(s)
Enterocytozoon , Microbioma Gastrointestinal , Palaemonidae , Animales , Palaemonidae/microbiología , Enterocytozoon/genética , Enterocytozoon/fisiología , Penaeidae/microbiología
6.
J Microbiol Biotechnol ; 34(5): 1146-1153, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38563108

RESUMEN

The increasing economic losses associated with growth retardation caused by Enterocytozoon hepatopenaei (EHP), a microsporidian parasite infecting penaeid shrimp, require effective monitoring. The internal transcribed spacer (ITS)-1 region, the non-coding region of ribosomal clusters between 18S and 5.8S rRNA genes, is widely used in phylogenetic studies due to its high variability. In this study, the ITS-1 region sequence (~600-bp) of EHP was first identified, and primers for a polymerase chain reaction (PCR) assay targeting that sequence were designed. A newly developed nested-PCR method successfully detected the EHP in various shrimp (Penaeus vannamei and P. monodon) and related samples, including water and feces collected from Indonesia, Thailand, South Korea, India, and Malaysia. The primers did not cross-react with other hosts and pathogens, and this PCR assay is more sensitive than existing PCR detection methods targeting the small subunit ribosomal RNA (SSU rRNA) and spore wall protein (SWP) genes. Phylogenetic analysis based on the ITS-1 sequences indicated that the Indonesian strain was distinct (86.2% nucleotide sequence identity) from other strains collected from Thailand and South Korea, and also showed the internal diversity among Thailand (N = 7, divided into four branches) and South Korean (N = 5, divided into two branches) samples. The results revealed the ability of the ITS-1 region to determine the genetic diversity of EHP from different geographical origins.


Asunto(s)
ADN Espaciador Ribosómico , Enterocytozoon , Microsporidiosis , Penaeidae , Filogenia , Reacción en Cadena de la Polimerasa , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Enterocytozoon/clasificación , Penaeidae/microbiología , Penaeidae/parasitología , Animales , ADN Espaciador Ribosómico/genética , Reacción en Cadena de la Polimerasa/métodos , Microsporidiosis/microbiología , Microsporidiosis/diagnóstico , ADN de Hongos/genética , Cartilla de ADN/genética , Heces/microbiología , Heces/parasitología , Análisis de Secuencia de ADN , Tailandia
7.
Sci Rep ; 14(1): 4830, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413745

RESUMEN

The microsporidian Enterocytozoon hepatopenaei (EHP) is a major threat to shrimp health worldwide. Severe EHP infections in shrimp cause growth retardation and increase susceptibility to opportunistic infections. EHP produces spores with a chitin wall that enables them to survive prolonged environmental exposure. Previous studies showed that polar tube extrusion is a prerequisite for EHP infection, such that inhibiting extrusion should prevent infection. Using a proteomic approach, polar tube protein 2 of EHP (EhPTP2) was found abundantly in protein extracts obtained from extruded spores. Using an immunofluorescent antibody against EhPTP2 for immunohistochemistry, extruded spores were found in the shrimp hepatopancreas (HP) and intestine, but not in the stomach. We hypothesized that presence of EhPTP2 might be required for successful EHP spore extrusion. To test this hypothesis, we injected EhPTP2-specific double-stranded RNA (dsRNA) and found that it significantly diminished EHP copy numbers in infected shrimp. This indicated reduced amplification of EHP-infected cells in the HP by spores released from previously infected cells. In addition, injection of the dsRNA into EHP-infected shrimp prior to their use in cohabitation with naïve shrimp significantly (p < 0.05) reduced the rate of EHP transmission to naïve shrimp. The results revealed that EhPTP2 plays a crucial role in the life cycle of EHP and that dsRNA targeting EHP mRNA can effectively reach the parasite developing in host cells. This approach is a model for future investigations to identify critical genes for EHP survival and spread as potential targets for preventative and therapeutic measures in shrimp.


Asunto(s)
Enterocytozoon , Microsporidios , Parásitos , Penaeidae , Animales , Reacción en Cadena de la Polimerasa/métodos , Proteómica , ARN Bicatenario , Penaeidae/parasitología
8.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38069062

RESUMEN

Enterocytozoon hepatopenaei (EHP) is a microsporidian parasite that infects Litopenaeus vannamei, causing severe hepatopancreatic microsporidiosis (HPM) and resulting in significant economic losses. This study utilizes a combined analysis of transcriptomics and metabolomics to unveil the dynamic molecular interactions between EHP and its host, the Pacific white shrimp, during the early and late stages of infection. The results indicate distinct immunological, detoxification, and antioxidant responses in the early and late infection phases. During early EHP infection in shrimp, immune activation coincides with suppression of genes like Ftz-F1 and SEPs, potentially aiding parasitic evasion. In contrast, late infection shows a refined immune response with phagocytosis-enhancing down-regulation of Ftz-F1 and a resurgence in SEP expression. This phase is characterized by an up-regulated detoxification and antioxidant response, likely a defense against the accumulated effects of EHP, facilitating a stable host-pathogen relationship. In the later stages of infection, most immune responses return to baseline levels, while some immune genes remain active. The glutathione antioxidant system is suppressed early on but becomes activated in the later stages. This phenomenon could facilitate the early invasion of EHP while assisting the host in mitigating oxidative damage caused by late-stage infection. Notably, there are distinctive events in polyamine metabolism. Sustained up-regulation of spermidine synthase and concurrent reduction in spermine levels suggest a potential role of polyamines in EHP development. Throughout the infection process, significant differences in genes such as ATP synthase and hexokinase highlight the continuous influence on energy metabolism pathways. Additionally, growth-related pathways involving amino acids such as tryptophan, histidine, and taurine are disrupted early on, potentially contributing to the growth inhibition observed during the initial stages of infection. In summary, these findings elucidate the dynamic interplay between the host, Litopenaeus vannamei, and the parasite, EHP, during infection. Specific phase differences in immune responses, energy metabolism, and antioxidant processes underscore the intricate relationship between the host and the parasite. The disruption of polyamine metabolism offers a novel perspective in understanding the proliferation mechanisms of EHP. These discoveries significantly advance our comprehension of the pathogenic mechanisms of EHP and its interactions with the host.


Asunto(s)
Enterocytozoon , Penaeidae , Animales , Antioxidantes , Enterocytozoon/genética , Alimentos Marinos , Penaeidae/genética , Poliaminas
9.
Fish Shellfish Immunol ; 142: 109088, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778737

RESUMEN

Enterocytozoon hepatopenaei (EHP) is a prevalent microsporidian pathogen responsible for hepatopancreatic microsporidiosis (HPM) in Litopenaeus vannamei. This infection not only leads to slowed growth in shrimp abut aslo inflicts substantial economic losses in the global aquaculture industry. However, the molecular mechanisms by which EHP influences the host during various infection stages remain unclear. This study employed comparative transcriptomics to examine the effects of EHP infection on Litopenaeus vannamei between early and late stage of infection groups. Utilizing transcriptomic approaches, we identified differentially expressed genes (DEGs) with notable biological significance through the COG, GO, KEGG, GSEA, and Mufzz time-series methodologies. The results reveal that EHP infection considerably influences host gene expression, with marked differences between early and late infection across distinct timeframes. Key processes such as detoxification, cell apoptosis, and lipid metabolism are pivotal during host-parasite interactions. Hexokinase and phosphatidic acid phosphatase emerge as key factors enabling invasion and sustained effects. Cytochrome P450 and glucose-6-phosphate dehydrogenase could facilitate infection progression. EHP significantly impacts growth, especially through ecdysteroids and 17ß-estradiol dehydrogenase. By delineating stage-specific effects, we gain insights into interaction between EHP and Litopenaeus vannamei, showing how intracellular pathogens reprogram host defenses into mechanisms enabling long-term persistence. This study provides a deeper understanding of host-pathogen dynamics, emphasizing the interplay between detoxification, metabolism, immunity, apoptosis and growth regulation over the course of long-term symbiosis.


Asunto(s)
Penaeidae , Transcriptoma , Animales , Simbiosis , Perfilación de la Expresión Génica/veterinaria , Acuicultura , Penaeidae/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-37749431

RESUMEN

Penaeus vannamei (whiteleg shrimp) is the most widely cultured shrimp globally. Enterocytozoon hepatopenaei (EHP), a microsporidian parasite, infects P. vannamei and causes severe growth retardation, subsequent production, and economic losses in the shrimp culture. The influence of EHP infection in the shrimp gut microbiota is poorly studied, and this would be an interesting area to investigate since the gut microbiome of shrimp influences a number of key host processes such as digestion and immunity. In this study, a metagenomic approach was followed to compare the overall species richness of the gut microbiota of EHP-infected and healthy P. vannamei. Bacterial genomic DNA from the healthy and EHP-infected gut sample were profiled for the bacterial 16S rRNA gene, targeting the V3-V4 conserved region. Operational taxonomic units (OTUs), an approximation of definitive taxonomic identity, were identified based on the sequence similarity within the sample reads and clustered together using a cut-off of 97% identity using UCLUST. The OTUs were then used for the computation of alpha diversity and beta diversity for each sample. EHP-infected gut sample showed lower bacterial abundance throughout the family, class, order, genus, and species levels when compared to healthy gut sample. This study shows that the shrimp gut microbiota is sensitive and exhibits a high level of plasticity during a microsporidian infection like EHP. Furthermore, Akkermansia muciniphila, a novel probiotic bacterium, has been reported in the shrimp gut for the first time.

11.
Fish Shellfish Immunol ; 140: 108976, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37506856

RESUMEN

Enterocytozoon hepatopenaei (EHP) is a microsporidian parasite that infects shrimp hepatopancreas, causing growth retardation and disease susceptibility. Knowledge of the host-pathogen molecular mechanisms is essential to understanding the microsporidian pathogenesis. Turtle-like protein (TLP) is part of the immunoglobulin superfamily of proteins, which is widely distributed in the animal kingdom. TLP has multiple functions, such as cell surface receptors and cell adhesion molecules. The spore wall proteins (SWPs) of microsporidia are involved in the infection mechanisms. Some SWPs are responsible for spore adherence, which is part of the activation and host cell invasion processes. Previous studies showed that TLP from silkworms (Bombyx mori) interacted with SWP26, contributing to the infectivity of Nosema bombycis to its host. In this study, we identified and characterized for the first time, the Litopenaeus vannamei TLP gene (LvTLP), which encodes an 827-aa protein (92.4 kDa) composed of five immunoglobulin domains, two fibronectin type III domains, and a transmembrane region. The LvTLP transcript was expressed in all tested tissues and upregulated in the hepatopancreas at 1 and 7 days post-cohabitation (dpc) and at 9 dpc in hemocytes. To identify the LvTLP binding counterpart, recombinant (r)LvTLP and recombinant (r)EhSWP1 were produced in Escherichia coli. Coimmunoprecipitation and enzyme-linked immunosorbent assays demonstrated that rLvTLP interacted with rEhSWP with high affinity (KD = 1.20 × 10-7 M). In EHP-infected hepatopancreases, LvTLP was clustered and co-localized with some of the developing EHP plasmodia. Furthermore, LvTLP gene silencing reduced the EHP copy numbers compared with those of the control group, suggesting the critical role of LvTLP in EHP infection. These results provide insight into the molecular mechanisms of the host-pathogen interactions during EHP infection.


Asunto(s)
Enterocytozoon , Penaeidae , Tortugas , Animales , Enterocytozoon/genética , Interacciones Huésped-Patógeno , Penaeidae/genética
12.
J Invertebr Pathol ; 200: 107958, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37429541

RESUMEN

Several PCR methodologies are available for the detection of Enterocytozoon hepatopenaei (EHP) that target the SSU rRNA gene. However, these methodologies are reported as unsuitable for the detection of EHP due to specificity issues. Here, we report the applicability of two commonly used SSU rRNA methodologies for the detection of additional microsporidia from the genus Vittaforma that is present in cultured Penaeus vannamei from Costa Rica. The molecular detection of DNA of the novel microsporidia can only be achieved using SSU rRNA targeting methodologies and does not cross-react with the highly specific spore wall protein gene PCR detection method.


Asunto(s)
Enterocytozoon , Microsporidia no Clasificados , Microsporidios , Penaeidae , Animales , Microsporidia no Clasificados/genética , Penaeidae/genética , Vittaforma/genética , Costa Rica , Reacción en Cadena de la Polimerasa/métodos , Enterocytozoon/genética , Microsporidios/genética , ARN Ribosómico
13.
Pharmaceutics ; 15(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514180

RESUMEN

The objective of this work was to investigate, for the first time, the antioxidant effect of a mixture of natural antimicrobials in an Enterocytozoon hepatopenaei (EHP) shrimp-gut model of infection and the biological mechanisms involved in their way of action. The study approach included investigations, firstly, in vitro, on shrimp-gut primary (SGP) epithelial cells and in vivo by using EHP-challenged shrimp. Our results show that exposure of EHP spores to 0.1%, 0.5%, 1%, and 2% AuraAqua (Aq) significantly reduced spore activity at all concentrations but was more pronounced after exposure to 0.5% Aq. The Aq was able to reduce EHP infection of SGP cells regardless of cells being pretreated or cocultured during infection with Aq. The survivability of SGP cells infected with EHP spores was significantly increased in both scenarios; however, a more noticeable effect was observed when the infected cells were pre-exposed to Aq. Our data show that infection of SGP cells by EHP activates the host NADPH oxidases and the release of H2O2 produced. When Aq was used during infection, a significant reduction in H2O2 was observed concomitant with a significant increase in the levels of CAT and SOD enzymes. Moreover, in the presence of 0.5% Aq, the overproduction of CAT and SOD was correlated with the inactivation of the NF-κB pathway, which, otherwise, as we show, is activated upon EHP infection of SGP cells. In a challenge test, Aq was able to significantly reduce mortality in EHP-infected shrimp and increase the levels of CAT and SOD in the gut tissue. Conclusively, these results show, for the first time, that a mixture of natural antimicrobials (Aq) can reduce the EHP-spore activity, improve the survival rates of primary gut-shrimp epithelial cells and reduce the oxidative damage caused by EHP infection. Moreover, we show that Aq was able to stop the H2O2 activation of the NF-κB pathway of Crustins, Penaeidins, and the lysozyme, and the CAT and SOD activity both in vitro and in a shrimp challenge test.

14.
Fish Shellfish Immunol ; 136: 108710, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004896

RESUMEN

Hemocytin, a multidomain hemostasis-related protein, is a homologous protein of hemolectin in Drosophila melanogaster and von Willebrand factor (vWF) in humans. The vWF type D (VWD) domain in hemocytin is thought to be a major mediator of hemocyte aggregation and the prophenoloxidase (proPO) activation system. Here, we report for the first time the role of hemocytin from Litopenaeus vannamei (LvHCT) against Enterocytozoon hepatopenaei (EHP), the pathogenic microsporidian causing hepatopancreatic microsporidiosis in Pacific white shrimp (L. vannamei). The LvHCT gene contains 58,366 base pairs consisting of 84 exons encoding for 4267 amino acids. Multiple sequence alignment and phylogenetic analysis revealed that LvHCT was clustered with crustacean hemocytins. Gene expression analysis by quantitative real-time RT-PCR showed that LvHCT in hemocytes was significantly upregulated at 9 and 11 days post-EHP cohabitation, which was consistent with EHP copy numbers in the infected shrimp. To further investigate the biological function of LvHCT in EHP infection, a recombinant protein containing an LvHCT-specific VWD domain (rLvVWD) was expressed in Escherichia coli. In vitro agglutination assays showed that rLvVWD was functionally representative of LvHCT and induced aggregation of pathogens, including Gram-negative and -positive bacteria, fungi, and EHP spore. LvHCT suppression resulted in higher EHP copy numbers and proliferation due to the lack of hemocytin-mediated EHP spore aggregation in LvHCT-silenced shrimp. Moreover, immune-related genes in the proPO-activating cascade and Toll, IMD and JAK/STAT signaling pathways were upregulated to eliminate the over-controlled EHP in LvHCT-silenced shrimp. Furthermore, the impaired phenoloxidase activity due to LvLGBP suppression was recovered after rLvVWD injection, suggesting that LvHCT may be directly involved in phenoloxidase activation. In conclusion, a novel LvHCT is involved in shrimp immunity against EHP via EHP spore aggregation and possible activation of the proPO-activating cascade.


Asunto(s)
Microsporidios , Penaeidae , Humanos , Animales , Monofenol Monooxigenasa , Filogenia , Drosophila melanogaster , Factor de von Willebrand , Inmunidad
15.
J Invertebr Pathol ; 198: 107910, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889458

RESUMEN

Infection by the microsporidian parasite Enterocytozoon hepatopenaei (EHP) has become a significant problem in the shrimp cultivation industry in Asian countries like Thailand, China, India, Vietnam, Indonesia, and Malaysia. The outbreak of this microsporidian parasite is predominantly related to the existence of macrofauna-carriers of EHP. However, information about potential macrofauna-carriers of EHP in rearing ponds is still limited. In this study, the screening of EHP in potential macrofauna-carriers was conducted in farming ponds of Penaeus vannamei in three states in Malaysia, namely Penang, Kedah, and Johor. A total of 82 macrofauna specimens (phyla: Arthropoda, Mollusca, and Chordata) were amplified through a polymerase chain reaction (PCR) assay targeting genes encoding spore wall proteins (SWP) of EHP. The PCR results showed an average prevalence of EHP (82.93%) from three phyla (Arthropoda, Mollusca and Chordata). The phylogenetic tree generated from the macrofauna sequences was revealed to be identical to the EHP-infected shrimp specimens from Malaysia (MW000458, MW000459, and MW000460), as well as those from India (KY674537), Thailand (MG015710), Vietnam (KY593132), and Indonesia (KY593133). These findings suggest that certain macrofauna species in shrimp ponds of P. vannamei are carriers of EHP spores and could be potential transmission vectors. This study provides preliminary information for the prevention of EHP infections that can be initiated at the pond stage by eradicating macrofauna species identified as potential vectors.


Asunto(s)
Enterocytozoon , Microsporidios , Penaeidae , Animales , Penaeidae/parasitología , Estanques , Malasia , Filogenia , Enterocytozoon/genética
16.
Fish Shellfish Immunol ; 135: 108698, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36958504

RESUMEN

Whiteleg shrimp (Litopenaeus vannamei) is the most important species of shrimp farmed worldwide in terms of its economic value. Enterocytozoon hepatopenaei (EHP) infects the hepatopancreas, resulting in the hepatopancreatic microsporidiosis (HPM) of the host, which causes slow growth of the shrimp and poses a threat to the farming industry. In this study, differentially expressed proteins (DEPs) between EHP-infected and uninfected shrimp were investigated through proteomics sequencing. A total of 9908 peptides and 2092 proteins were identified. A total of 69 DEPs were identified in the hepatopancreas (HP), of which, 28 were upregulated and 41 were downregulated. Our results showed that the differences among the level of multiple proteins involved in the apoptosis were significant after the EHP infection, which indicated that the apoptosis pathway was activated in whiteleg shrimp. In addition, expression leve of caspase 3 gene were identified related to the EHP infection. Furthermore, predictions of spatial structure, analysis of phylogeny and chromosome-level linearity of the caspase 3 protein were performed as well. In conclusion, a relatively complete proteomic data set of hepatopancreas tissues in whiteleg shrimp were established in this study. Findings about genes involved in the apoptosis here will provide a further understanding of the molecular mechanism of EHP infection in the internal immunity of whiteleg shrimp.


Asunto(s)
Enterocytozoon , Penaeidae , Animales , Caspasa 3/genética , Proteómica , Penaeidae/genética
17.
J Invertebr Pathol ; 197: 107900, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36806462

RESUMEN

Enterocytozoon hepatopenaei (EHP), an obligate intracellular parasite classified as microsporidia, is an emerging pathogen with a significant impact on the global shrimp aquaculture industry. The understanding of how microsporidia germinate has been a key factor in exploring its infection process. However, the germination process of EHP was rarely reported. To gain insight into the germination process, we conducted a high-throughput sequencing analysis of purified EHP spores that had undergone in vitro germination treatment. This analysis revealed 137 differentially expressed genes, with 84 up-regulated and 53 down-regulated genes. While the functions of some of the genes remain unknown, this study provides important data on the transcriptomic changes before and after EHP germination, which can aid in further studies on the EHP infection mechanism.


Asunto(s)
Enterocytozoon , Penaeidae , Animales , Transcriptoma , Penaeidae/parasitología , Perfilación de la Expresión Génica , Enterocytozoon/genética , Esporas
18.
Fish Shellfish Immunol ; 134: 108605, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36758659

RESUMEN

Enterocytozoon hepatopenaei (EHP) is a specialized intracellular parasite that mainly resides in the hepatopancreas of shrimp, causing significant growth retardation in shrimp. In this study, Penaeus vannamei was infected with EHP through an artificial challenge experiment, and the different genes and pathways in the hepatopancreas between EHP-infected and healthy shrimp were analyzed by transcriptome sequencing. The results showed that a total of 240 significantly differentially expressed genes were obtained, including 99 up-regulated genes and 141 down-regulated genes. Immune-related genes such as Astakine, lysozyme, NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), and macrophage mannose receptor 1-like (MMR) were up-regulated, and the expression levels of lipid metabolism-related genes pancreatic lipase-related protein 2 (PLRP2), lysosomal acid lipase (LIPA), and adiponectin receptor protein (AdipoR) were also increased. However, several genes were down-regulated in carbohydrate and protein metabolism, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), trypsin-1, and delta-1-pyrroline-5-carboxylate synthase (ALDH18A1). The results suggested that EHP infection of shrimps could significantly activate the immune system, but the energy and material metabolism processes were disturbed. This study identified a substantial number of genes and pathways associated with EHP infection, providing a valuable resource for revealing the molecular mechanism of growth retardation in shrimp.


Asunto(s)
Penaeidae , Animales , Hepatopáncreas , Perfilación de la Expresión Génica , Trastornos del Crecimiento , Transcriptoma
19.
J Invertebr Pathol ; 197: 107895, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36754116

RESUMEN

Enterocytozoon hepatopenaei (EHP) is a kind of microsporidian parasite belonging to fungi, and poses a serious threat to prawn farmers. Due to the lack of effective treatments for EHP, the establishment of a rapid and sensitive detection method would be beneficial to the control and prevention of this prawn parasitic disease. In this study, an isothermal enzymatic recombinase amplification (EHP-ERA) assay that could diagnose EHP within 20 min at 42 °C was developed and evaluated. The determined final concentrations of primers and probe in the reaction system were 400 nM and 120 nM, respectively. EHP-ERA was carried out within 13 min (24.31 ± 0.37 Ct) with a detection limit of 10 copies/µL. The results of specificity test showed that EHP-ERA had no cross-reactivity with white spot syndrome virus (WSSV), Vibrio parahaemolyticus strain causing acute hepatopancreatic necrosis disease (VpAHPND), and infectious hypodermal and hematopoietic necrosis virus (IHHNV) and specific pathogen free (SPF) shrimp. Using 32 clinical samples, the practical diagnostic results of EHP-ERA was consistent with nested PCR and real-time PCR (qPCR) under the premise of less time-consuming and simpler operation. In summary, we established a simple, rapid, and effective ERA assay for the detection of EHP, which had great potential to be widely used in both lab and practical usage.


Asunto(s)
Decápodos , Enterocytozoon , Penaeidae , Animales , Recombinasas , Reacción en Cadena en Tiempo Real de la Polimerasa , Enterocytozoon/genética
20.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674953

RESUMEN

Enterocytozoon hepatopenaei (EHP) causes slow growth syndrome in shrimp, resulting in huge economic losses for the global shrimp industry. Despite worldwide reports, there are no effective therapeutics for controlling EHP infections. In this study, five potential druggable targets of EHP, namely, aquaporin (AQP), cytidine triphosphate (CTP) synthase, thymidine kinase (TK), methionine aminopeptidase2 (MetAP2), and dihydrofolate reductase (DHFR), were identified via functional classification of the whole EHP proteome. The three-dimensional structures of the proteins were constructed using the artificial-intelligence-based program AlphaFold 2. Following the prediction of druggable sites, the ZINC15 and ChEMBL databases were screened against targets using docking-based virtual screening. Molecules with affinity scores ≥ 7.5 and numbers of interactions ≥ 9 were initially selected and subsequently enriched based on their ADMET properties and electrostatic complementarities. Five compounds were finally selected against each target based on their complex stabilities and binding energies. The compounds CHEMBL3703838, CHEMBL2132563, and CHEMBL133039 were selected against AQP; CHEMBL1091856, CHEMBL1162979, and CHEMBL525202 against CTP synthase; CHEMBL4078273, CHEMBL1683320, and CHEMBL3674540 against TK; CHEMBL340488, CHEMBL1966988, and ZINC000828645375 against DHFR; and CHEMBL3913373, ZINC000016682972, and CHEMBL3142997 against MetAP2.The compounds exhibited high stabilities and low binding free energies, indicating their abilities to suppress EHP infections; however, further validation is necessary for determining their efficacy.


Asunto(s)
Enterocytozoon , Penaeidae , Animales , Alimentos Marinos , Proteoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...