RESUMEN
Corona virus disease 2019 (COVID-19) has exerted a profound adverse impact on human health. Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people. Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks. Monitoring of pathogenic microorganisms in the air, especially in densely populated areas, may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage. The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation, allocate health resources, and formulate epidemic response policies. This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission, which lays a theoretical foundation for the monitoring and prediction of epidemic development. Secondly, the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized. Subsequently, this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology, atmospheric sciences, environmental sciences, sociology, demography, etc. By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere, this review proposes suggestions for epidemic response, namely, the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.
RESUMEN
Accurate prediction of the temporal and spatial characteristics of COVID-19 infection is of paramount importance for effective epidemic prevention and control. In order to accomplish this objective, we incorporated individual antibody dynamics into an agent-based model and devised a methodology that encompasses the dynamic behaviors of each individual, thereby explicitly capturing the count and spatial distribution of infected individuals with varying symptoms at distinct time points. Our model also permits the evaluation of diverse prevention and control measures. Based on our findings, the widespread employment of nucleic acid testing and the implementation of quarantine measures for positive cases and their close contacts in China have yielded remarkable outcomes in curtailing a less transmissible yet more virulent strain; however, they may prove inadequate against highly transmissible and less virulent variants. Additionally, our model excels in its ability to trace back to the initial infected case (patient zero) through early epidemic patterns. Ultimately, our model extends the frontiers of traditional epidemiological simulation methodologies and offers an alternative approach to epidemic modeling.
RESUMEN
In this paper, a graph convolution network prediction model based on the lioness optimization algorithm (LsOA-GCN) is proposed to predict the cumulative number of confirmed COVID-19 cases in 17 regions of Hubei Province from March 23 to March 29, 2020, according to the transmission characteristics of COVID-19. On the one hand, Spearman correlation analysis with delay days and LsOA are used to capture the dynamic changes of feature information to obtain the temporal features. On the other hand, the graph convolutional network is used to capture the topological structure of the city network, so as to obtain spatial information and finally realize the prediction task. Then, we evaluate this model through performance evaluation indicators and statistical test methods and compare the results of LsOA-GCN with 10 representative prediction methods in the current epidemic prediction study. The experimental results show that the LsOA-GCN prediction model is significantly better than other prediction methods in all indicators and can successfully capture spatio-temporal information from feature data, thereby achieving accurate prediction of epidemic trends in different regions of Hubei Province.
RESUMEN
The Susceptible-Infectious-Recovered (SIR) equations and their extensions comprise a commonly utilized set of models for understanding and predicting the course of an epidemic. In practice, it is of substantial interest to estimate the model parameters based on noisy observations early in the outbreak, well before the epidemic reaches its peak. This allows prediction of the subsequent course of the epidemic and design of appropriate interventions. However, accurately inferring SIR model parameters in such scenarios is problematic. This article provides novel, theoretical insight on this issue of practical identifiability of the SIR model. Our theory provides new understanding of the inferential limits of routinely used epidemic models and provides a valuable addition to current simulate-and-check methods. We illustrate some practical implications through application to a real-world epidemic data set.
Asunto(s)
Enfermedades Transmisibles , Epidemias , Enfermedades Transmisibles/epidemiología , Brotes de Enfermedades , Susceptibilidad a Enfermedades/epidemiología , Modelos Epidemiológicos , HumanosRESUMEN
Crowd gatherings are an important cause of COVID-19 outbreaks. However, how the scale, scene and other factors of gatherings affect the spread of the epidemic remains unclear. A total of 184 gathering events worldwide were collected to construct a database, and 99 of them with a clear gathering scale were used for statistical analysis of the impact of these factors on the disease incidence among the crowd in the study. The results showed that the impact of small-scale (less than 100 people) gathering events on the spread of COVID-19 in the city is also not to be underestimated due to their characteristics of more frequent occurrence and less detection and control. In our dataset, 22.22% of small-scale events have an incidence of more than 0.8. In contrast, the incidence of most large-scale events is less than 0.4. Gathering scenes such as "Meal" and "Family" occur in densely populated private or small public places have the highest incidence. We further designed a model of epidemic transmission triggered by crowd gathering events and simulated the impact of crowd gathering events on the overall epidemic situation in the city. The simulation results showed that the number of patients will be drastically reduced if the scale and the density of crowds gathering are halved. It indicated that crowd gatherings should be strictly controlled on a small scale. In addition, it showed that the model well reproduce the epidemic spread after crowd gathering events better than does the original SIER model and could be applied to epidemic prediction after sudden gathering events.
Asunto(s)
COVID-19 , Epidemias , COVID-19/epidemiología , Simulación por Computador , Aglomeración , Brotes de Enfermedades , HumanosRESUMEN
BACKGROUND: With the spread of COVID-19, the time-series prediction of COVID-19 has become a research hotspot. Unlike previous epidemics, COVID-19 has a new pattern of long-time series, large fluctuations, and multiple peaks. Traditional dynamical models are limited to curves with short-time series, single peak, smoothness, and symmetry. Secondly, most of these models have unknown parameters, which bring greater ambiguity and uncertainty. There are still major shortcomings in the integration of multiple factors, such as human interventions, environmental factors, and transmission mechanisms. METHODS: A dynamical model with only infected humans and removed humans was established. Then the process of COVID-19 spread was segmented using a local smoother. The change of infection rate at different stages was quantified using the continuous and periodic Logistic growth function to quantitatively describe the comprehensive effects of natural and human factors. Then, a non-linear variable and NO2 concentrations were introduced to qualify the number of people who have been prevented from infection through human interventions. RESULTS: The experiments and analysis showed the R2 of fitting for the US, UK, India, Brazil, Russia, and Germany was 0.841, 0.977, 0.974, 0.659, 0.992, and 0.753, respectively. The prediction accuracy of the US, UK, India, Brazil, Russia, and Germany in October was 0.331, 0.127, 0.112, 0.376, 0.043, and 0.445, respectively. CONCLUSION: The model can not only better describe the effects of human interventions but also better simulate the temporal evolution of COVID-19 with local fluctuations and multiple peaks, which can provide valuable assistant decision-making information.
Asunto(s)
COVID-19 , Brasil/epidemiología , COVID-19/epidemiología , Humanos , India/epidemiología , Pandemias , SARS-CoV-2RESUMEN
At present, the Corona Virus Disease 2019 (COVID-19) is ravaging the world, bringing great impact on people's life safety and health as well as the healthy development of economy and society, so the research on the prediction of the development trend of the epidemic is crucial. In this paper, we focus on the prevention and control of epidemic using the relevant technologies in the field of artificial intelligence and signal analysis. With the unknown principle of epidemic transmission, we first smooth out the complex and variable epidemic data through the empirical mode decomposition model to obtain the change trends of epidemic data at different time scales. On this basis, the change trends under different time scales are trained using an extreme learning machine to obtain the corresponding prediction values, and finally the epidemic prediction results are obtained by fitting through Adaptive Network-based Fuzzy Inference System. The experimental results show that the algorithm has good learning ability, especially in the prediction of time-series sequences can guarantee the accuracy rate while having low time complexity. Therefore, this paper not only plays a theoretical support for epidemic prevention and control, but also plays an important role in the construction of public emergency health system in the long run.
RESUMEN
Continuous surveillance of COVID-19 diffusion remains crucial to control its diffusion and to anticipate infection waves. Detecting viral RNA load in wastewater samples has been suggested as an effective approach for epidemic monitoring and the development of an effective warning system. However, its quantitative link to the epidemic status and the stages of outbreak is still elusive. Modelling is thus crucial to address these challenges. In this study, we present a novel mechanistic model-based approach to reconstruct the complete epidemic dynamics from SARS-CoV-2 viral load in wastewater. Our approach integrates noisy wastewater data and daily case numbers into a dynamical epidemiological model. As demonstrated for various regions and sampling protocols, it quantifies the case numbers, provides epidemic indicators and accurately infers future epidemic trends. Following its quantitative analysis, we also provide recommendations for wastewater data standards and for their use as warning indicators against new infection waves. In situations of reduced testing capacity, our modelling approach can enhance the surveillance of wastewater for early epidemic prediction and robust and cost-effective real-time monitoring of local COVID-19 dynamics.
Asunto(s)
COVID-19 , COVID-19/epidemiología , Humanos , ARN Viral , SARS-CoV-2 , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas ResidualesRESUMEN
BACKGROUND: The global spread of COVID-19 has shown that reliable forecasting of public health related outcomes is important but lacking. METHODS: We report the results of the first large-scale, long-term experiment in crowd-forecasting of infectious-disease outbreaks, where a total of 562 volunteer participants competed over 15 months to make forecasts on 61 questions with a total of 217 possible answers regarding 19 diseases. RESULTS: Consistent with the "wisdom of crowds" phenomenon, we found that crowd forecasts aggregated using best-practice adaptive algorithms are well-calibrated, accurate, timely, and outperform all individual forecasters. CONCLUSIONS: Crowd forecasting efforts in public health may be a useful addition to traditional disease surveillance, modeling, and other approaches to evidence-based decision making for infectious disease outbreaks.
Asunto(s)
COVID-19 , Brotes de Enfermedades , Predicción , Humanos , Inteligencia , Modelos Estadísticos , SARS-CoV-2RESUMEN
Background: Recently, Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome virus 2 (SARS-CoV-2), has affected more than 200 countries and lead to enormous losses. This study systematically reviews the application of Artificial Intelligence (AI) techniques in COVID-19, especially for diagnosis, estimation of epidemic trends, prognosis, and exploration of effective and safe drugs and vaccines; and discusses the potential limitations. Methods: We report this systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched PubMed, Embase and the Cochrane Library from inception to 19 September 2020 for published studies of AI applications in COVID-19. We used PROBAST (prediction model risk of bias assessment tool) to assess the quality of literature related to the diagnosis and prognosis of COVID-19. We registered the protocol (PROSPERO CRD42020211555). Results: We included 78 studies: 46 articles discussed AI-assisted diagnosis for COVID-19 with total accuracy of 70.00 to 99.92%, sensitivity of 73.00 to 100.00%, specificity of 25 to 100.00%, and area under the curve of 0.732 to 1.000. Fourteen articles evaluated prognosis based on clinical characteristics at hospital admission, such as clinical, laboratory and radiological characteristics, reaching accuracy of 74.4 to 95.20%, sensitivity of 72.8 to 98.00%, specificity of 55 to 96.87% and AUC of 0.66 to 0.997 in predicting critical COVID-19. Nine articles used AI models to predict the epidemic of the COVID-19, such as epidemic peak, infection rate, number of infected cases, transmission laws, and development trend. Eight articles used AI to explore potential effective drugs, primarily through drug repurposing and drug development. Finally, 1 article predicted vaccine targets that have the potential to develop COVID-19 vaccines. Conclusions: In this review, we have shown that AI achieved high performance in diagnosis, prognosis evaluation, epidemic prediction and drug discovery for COVID-19. AI has the potential to enhance significantly existing medical and healthcare system efficiency during the COVID-19 pandemic.
RESUMEN
Bovine Viral Diarrhea (BVD) is a cattle disease that causes substantial financial losses, in particular to the dairy industry. Hence, several countries including Germany introduced compulsory disease control programs. For the case of Germany in particular, all animals had to be tested and persistently infected animals (PI animals) were removed from the population. The program was successful in reducing the number of PI animals, but was overtly expensive. Alternative approaches were therefore discussed to eliminate the remaining PI animals and alter the testing system in order to reduce costs. Contributing to these efforts, we developed an agent-based model that aimed to cover all relevant aspects of the disease biology and would allow to evaluate different control strategies. For the biological part of the infection spread, the model includes horizontal and vertical transmission, transient and persistent infections. Moreover, several control strategies including import of animals, trade restrictions, vaccination, as well as various testing schemes were included. The model was furthermore defined to be stochastic, event-driven and hierarchical, with cattle movements as the main route of spreading between farms. For the spread within farms, we included susceptible-infected-recovered (SIR) dynamics with an additional permanently infectious class. The interaction between the farms was described by a supply and demand farm manager mechanism governing the network structure and dynamics. Additionally, we carried out a sensitivity analysis of the input parameters to study the impact of extreme values on the model. Since the population size in the model is limited, we tested the influence of the initial population size on the model results. Our results showed that the model could accurately describe the dynamics of the disease in the presence and absence of disease control. Although we developed the model for the spread of BVD, it may be adapted to similar diseases of cattle and swine.
Asunto(s)
Diarrea Mucosa Bovina Viral , Virus de la Diarrea Viral Bovina , Animales , Diarrea Mucosa Bovina Viral/epidemiología , Diarrea Mucosa Bovina Viral/prevención & control , Bovinos , Industria Lechera , Diarrea/prevención & control , Diarrea/veterinaria , Ganado , PorcinosRESUMEN
The dangerously contagious virus named "COVID-19" has struck the world strong and has locked down billions of people in their homes to stop the further spread. All the researchers and scientists in various fields are continually developing a vaccine and prevention methods to aid the world from this challenging situation. However, a reliable prediction of the epidemic may help control this contiguous disease until the cure is available. The machine learning techniques are one of the frontiers in predicting this outbreak's future trend and behavior. Our research is focused on finding a suitable machine learning algorithm that can predict the COVID-19 daily new cases with higher accuracy. This research has used the adaptive neuro-fuzzy inference system (ANFIS) and the long short-term memory (LSTM) to foresee the newly infected cases in Bangladesh. We have compared both the experiments' results, and it can be forenamed that LSTM has shown more satisfactory results. Upon study and testing on several models, we have shown that LSTM works better on a scenario-based model for Bangladesh with mean absolute percentage error (MAPE)-4.51, root-mean-square error (RMSE)-6.55, and correlation coefficient-0.75. This study is expected to shed light on COVID-19 prediction models for researchers working with machine learning techniques and avoid proven failures, especially for small imprecise datasets.
RESUMEN
The present work summarizes the major research findings related to wastewater-based epidemiology (WBE) study of COVID-19 and puts forward a conceptual framework, termed as "Surveillance of Wastewater for Early Epidemic Prediction (SWEEP)" for implementation of WBE. SWEEP framework is likely to tackle few practical issues related to WBE and simultaneously proposes refinements to the approach for better outcome and efficiency to save precious lives around the globe. It is observed that the present pandemic offers an opportunity for SWEEP to get included in routine urban water management to put the humankind at front to stop such pandemic in future or at least be prepared to fight against it. With global collaboration, SWEEP can be fine-tuned to meet diverse needs, making the present and future generations resilient to future viral outbreaks. Recent WBE studies conducted to check for the presence of SARS-CoV-2 in wastewater revealed that raw sewage samples tested positive to PCR-based assays while the treated samples showed absence of viral titers. Moreover, the lockdown had a positive impact on decreasing the viral loading in sewage. The proposed SWEEP protocol has an advantage over testifying individuals for predicting the stage of pandemic.
Asunto(s)
COVID-19 , Control de Enfermedades Transmisibles , Humanos , SARS-CoV-2 , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas ResidualesRESUMEN
COVID-19, responsible of infecting billions of people and economy across the globe, requires detailed study of the trend it follows to develop adequate short-term prediction models for forecasting the number of future cases. In this perspective, it is possible to develop strategic planning in the public health system to avoid deaths as well as managing patients. In this paper, proposed forecast models comprising autoregressive integrated moving average (ARIMA), support vector regression (SVR), long shot term memory (LSTM), bidirectional long short term memory (Bi-LSTM) are assessed for time series prediction of confirmed cases, deaths and recoveries in ten major countries affected due to COVID-19. The performance of models is measured by mean absolute error, root mean square error and r2_score indices. In the majority of cases, Bi-LSTM model outperforms in terms of endorsed indices. Models ranking from good performance to the lowest in entire scenarios is Bi-LSTM, LSTM, GRU, SVR and ARIMA. Bi-LSTM generates lowest MAE and RMSE values of 0.0070 and 0.0077, respectively, for deaths in China. The best r2_score value is 0.9997 for recovered cases in China. On the basis of demonstrated robustness and enhanced prediction accuracy, Bi-LSTM can be exploited for pandemic prediction for better planning and management.
RESUMEN
Understanding the transmission dynamics of COVID-19 is crucial for evaluating its spread pattern, especially in metropolitan areas of China, as its spread could lead to secondary outbreaks. In addition, the experiences gained and lessons learned from China have the potential to provide evidence to support other metropolitan areas and large cities outside China with their emerging cases. We used data reported from January 24, 2020, to February 23, 2020, to fit a model of infection, estimate the likely number of infections in four high-risk metropolitan areas based on the number of cases reported, and increase the understanding of the COVID-19 spread pattern. Considering the effect of the official quarantine regulations and travel restrictions for China, which began January 23~24, 2020, we used the daily travel intensity index from the Baidu Maps app to roughly simulate the level of restrictions and estimate the proportion of the quarantined population. A group of SEIR model statistical parameters were estimated using Markov chain Monte Carlo (MCMC) methods and fitting on the basis of reported data. As a result, we estimated that the basic reproductive number, R 0, was 2.91 in Beijing, 2.78 in Shanghai, 2.02 in Guangzhou, and 1.75 in Shenzhen based on the data from January 24, 2020, to February 23, 2020. In addition, we inferred the prediction results and compared the results of different levels of parameters. For example, in Beijing, the predicted peak number of cases was 467 with a peak time of March 01, 2020; however, if the city were to implement different levels (strict, moderate, or weak) of travel restrictions or regulation measures, the estimation results showed that the transmission dynamics would change and that the peak number of cases would differ by between 54% and 209%. We concluded that public health interventions would reduce the risk of the spread of COVID-19 and that more rigorous control and prevention measures would effectively contain its further spread, and awareness of prevention should be enhanced when businesses and social activities return to normal before the end of the epidemic. Further, the experiences gained and lessons learned from China offer the potential to provide evidence supporting other metropolitan areas and big cities with their emerging cases outside China.
RESUMEN
The outbreak of coronavirus disease 2019 (COVID-19) in Wuhan has aroused widespread concern and attention from all over the world. Many articles have predicted the development of the epidemic. Most of them only use very basic SEIR model without considering the real situation. In this paper, we build a model called e-ISHR model based on SEIR model. Then we add hospital system and time delay system into the original model to simulate the spread of COVID-19 better. Besides, in order to take the government's control and people's awareness into consideration, we change our e-ISHR model into a 3-staged model which effectively shows the impact of these factors on the spread of the disease. By using this e-ISHR model, we fit and predict the number of confirmed cases in Wuhan and China except Hubei. We also change some of parameters in our model. The results indicate the importance of isolation and increasing the number of beds in hospital.
RESUMEN
The outbreak of coronavirus disease 2019 (COVID-19) has been spreading rapidly in China and the Chinese government took a series of policies to control the epidemic. Therefore, it will be helpful to predict the tendency of the epidemic and analyze the influence of official policies. Existing models for prediction, such as cabin models and individual-based models, are either oversimplified or too meticulous, and the influence of the epidemic was studied much more than that of official policies. To predict the epidemic tendency, we consider four groups of people, and establish a propagation dynamics model. We also create a negative feedback to quantify the public vigilance to the epidemic. We evaluate the tendency of epidemic in Hubei and China except Hubei separately to predict the situation of the whole country. Experiments show that the epidemic will terminate around 17 March 2020 and the final number of cumulative infections will be about 78 191 (prediction interval, 74 872 to 82 474). By changing the parameters of the model accordingly, we demonstrate the control effect of the policies of the government on the epidemic situation, which can reduce about 68% possible infections. At the same time, we use the capital asset pricing model with dummy variable to evaluate the effects of the epidemic and official policies on the revenue of multiple industries.
RESUMEN
BACKGROUND: Influenza is an infectious respiratory disease that can cause serious public health hazard. Due to its huge threat to the society, precise real-time forecasting of influenza outbreaks is of great value to our public. RESULTS: In this paper, we propose a new deep neural network structure that forecasts a real-time influenza-like illness rate (ILI%) in Guangzhou, China. Long short-term memory (LSTM) neural networks is applied to precisely forecast accurateness due to the long-term attribute and diversity of influenza epidemic data. We devise a multi-channel LSTM neural network that can draw multiple information from different types of inputs. We also add attention mechanism to improve forecasting accuracy. By using this structure, we are able to deal with relationships between multiple inputs more appropriately. Our model fully consider the information in the data set, targetedly solving practical problems of the Guangzhou influenza epidemic forecasting. CONCLUSION: We assess the performance of our model by comparing it with different neural network structures and other state-of-the-art methods. The experimental results indicate that our model has strong competitiveness and can provide effective real-time influenza epidemic forecasting.
Asunto(s)
Predicción/métodos , Gripe Humana/epidemiología , Redes Neurales de la Computación , China/epidemiología , Brotes de Enfermedades , Humanos , Salud Pública/estadística & datos numéricosRESUMEN
We will inevitably face new epidemics where the lack of long time-series data and the uncertainty about the outbreak dynamics make difficult to obtain quantitative predictions. Here we present an algorithm to qualitatively infer time-varying contact rates from short time-series data, letting us predict the start, relative magnitude and decline of epidemic outbreaks. Using real time-series data of measles, dengue, and the current zika outbreak, we demonstrate our algorithm can outperform existing algorithms based on estimating reproductive numbers.
Asunto(s)
Dengue/epidemiología , Epidemias/estadística & datos numéricos , Sarampión/epidemiología , Incertidumbre , Infección por el Virus Zika/epidemiología , Algoritmos , Brasil/epidemiología , Colombia/epidemiología , Estudios de Evaluación como Asunto , Humanos , New York/epidemiologíaRESUMEN
BACKGROUND: The quest for an effective system capable of monitoring and predicting the trends of epidemic diseases is a critical issue for communities worldwide. With the prevalence of Internet access, more and more researchers today are using data from both search engines and social media to improve the prediction accuracy. In particular, a prediction market system (PMS) exploits the wisdom of crowds on the Internet to effectively accomplish relatively high accuracy. OBJECTIVE: This study presents the architecture of a PMS and demonstrates the matching mechanism of logarithmic market scoring rules. The system was implemented to predict infectious diseases in Taiwan with the wisdom of crowds in order to improve the accuracy of epidemic forecasting. METHODS: The PMS architecture contains three design components: database clusters, market engine, and Web applications. The system accumulated knowledge from 126 health professionals for 31 weeks to predict five disease indicators: the confirmed cases of dengue fever, the confirmed cases of severe and complicated influenza, the rate of enterovirus infections, the rate of influenza-like illnesses, and the confirmed cases of severe and complicated enterovirus infection. RESULTS: Based on the winning ratio, the PMS predicts the trends of three out of five disease indicators more accurately than does the existing system that uses the five-year average values of historical data for the same weeks. In addition, the PMS with the matching mechanism of logarithmic market scoring rules is easy to understand for health professionals and applicable to predict all the five disease indicators. CONCLUSIONS: The PMS architecture of this study affords organizations and individuals to implement it for various purposes in our society. The system can continuously update the data and improve prediction accuracy in monitoring and forecasting the trends of epidemic diseases. Future researchers could replicate and apply the PMS demonstrated in this study to more infectious diseases and wider geographical areas, especially the under-developed countries across Asia and Africa.