Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 287(1939): 20202310, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33203331

RESUMEN

Sauropods, the giant long-necked dinosaurs, became the dominant group of large herbivores in terrestrial ecosystems after multiple related lineages became extinct towards the end of the Early Jurassic (190-174 Ma). The causes and precise timing of this key faunal change, as well as the origin of eusauropods (true sauropods), have remained ambiguous mainly due to the scarce dinosaurian fossil record of this time. The terrestrial sedimentary successions of the Cañadón Asfalto Basin in central Patagonia (Argentina) document this critical interval of dinosaur evolution. Here, we report a new dinosaur with a nearly complete skull that is the oldest eusauropod known to date and provide high-precision U-Pb geochronology that constrains in time the rise of eusauropods in Patagonia. We show that eusauropod dominance was established after a massive magmatic event impacting southern Gondwana (180-184 Ma) and coincided with severe perturbations to the climate and a drastic decrease in the floral diversity characterized by the rise of conifers with small scaly leaves. Floral and faunal records from other regions suggest these were global changes that impacted the terrestrial ecosystems during the Toarcian warming event and formed part of a second-order mass extinction event.


Asunto(s)
Dinosaurios , Calentamiento Global , Herbivoria , Animales , Argentina , Evolución Biológica , Clima , Ecosistema , Extinción Biológica , Fósiles , Filogenia , Cráneo
2.
PeerJ ; 7: e6404, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30783572

RESUMEN

Four isolated sauropod axial elements from the Oxford Clay Formation (Callovian, Middle Jurassic) of Peterborough, UK, are described. Two associated posterior dorsal vertebrae show a dorsoventrally elongated centrum and short neural arch, and nutrient or pneumatic foramina, most likely belonging to a non-neosauropod eusauropod, but showing ambiguous non-neosauropod eusauropod and neosauropod affinities. An isolated anterior caudal vertebra displays a ventral keel, a 'shoulder' indicating a wing-like transverse process, along with a possible prespinal lamina. This, together with an overall high complexity of the anterior caudal transverse process (ACTP) complex, indicates that this caudal could have belonged to a neosauropod. A second isolated middle-posterior caudal vertebra also shows some diagnostic features, despite the neural spine and neural arch not being preserved and the neurocentral sutures being unfused. The positioning of the neurocentral sutures on the anterior one third of the centrum indicates a middle caudal position, and the presence of faint ventrolateral crests, as well as a rhomboid anterior articulation surface, suggest neosauropod affinities. The presence of possible nutrient foramina are only tentative evidence of a neosauropod origin, as they are also found in Late Jurassic non-neosauropod eusauropods. As the caudals from the two other known sauropods from the Peterborough Oxford Clay, Cetiosauriscus stewarti and an indeterminate non-neosauropod eusauropod, do not show the features seen on either of the new elements described, both isolated caudals indicate a higher sauropod species diversity in the faunal assemblage than previously recognised. An exploratory phylogenetic analysis using characters from all four isolated elements supports a basal neosauropod placement for the anterior caudal, and a diplodocid origin for the middle caudal. The dorsal vertebrae are an unstable OTU, and therefore remain part of an indeterminate eusauropod of uncertain affinities. Together with Cetiosauriscus, and other material assigned to different sauropod groups, this study indicates the presence of a higher sauropod biodiversity in the Oxford Clay Formation than previously recognised. This study shows that it is still beneficial to examine isolated elements, as these may be indicators for higher species richness in deposits that are otherwise poor in terrestrial fauna.

3.
PeerJ ; 7: e6348, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30697494

RESUMEN

The Jurassic/Cretaceous (J/K) boundary, 145 million years ago, has long been recognised as an extinction event or faunal turnover for sauropod dinosaurs, with many 'basal' lineages disappearing. However, recently, a number of 'extinct' groups have been recognised in the Early Cretaceous, including diplodocids in Gondwana, and non-titanosauriform macronarians in Laurasia. Turiasauria, a clade of non-neosauropod eusauropods, was originally thought to have been restricted to the Late Jurassic of western Europe. However, its distribution has recently been extended to the Late Jurassic of Tanzania (Tendaguria tanzaniensis), as well as to the Early Cretaceous of the USA (Mierasaurus bobyoungi and Moabosaurus utahensis), demonstrating the survival of another 'basal' clade across the J/K boundary. Teeth from the Middle Jurassic-Early Cretaceous of western Europe and North Africa have also tentatively been attributed to turiasaurs, whilst recent phylogenetic analyses recovered Late Jurassic taxa from Argentina and China as further members of Turiasauria. Here, an anterior dorsal centrum and neural arch (both NHMUK 1871) from the Early Cretaceous Wealden Supergroup of the UK are described for the first time. NHMUK 1871 shares several synapomorphies with Turiasauria, especially the turiasaurs Moabosaurus and Tendaguria, including: (1) a strongly dorsoventrally compressed centrum; (2) the retention of prominent epipophyses; and (3) an extremely low, non-bifid neural spine. NHMUK 1871 therefore represents the first postcranial evidence for Turiasauria from European deposits of Early Cretaceous age. Although turiasaurs show clear heterodont dentition, only broad, characteristically 'heart'-shaped teeth can currently be attributed to Turiasauria with confidence. As such, several putative turiasaur occurrences based on isolated teeth from Europe, as well as the Middle Jurassic and Early Cretaceous of Africa, cannot be confidently referred to Turiasauria. Unequivocal evidence for turiasaurs is therefore restricted to the late Middle Jurassic-Early Cretaceous of western Europe, the Late Jurassic of Tanzania, and the late Early Cretaceous of the USA, although remains from elsewhere might ultimately demonstrate that the group had a near-global distribution.

4.
PeerJ ; 4: e2578, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27781168

RESUMEN

The Early Jurassic of China has long been recognized for its diverse array of sauropodomorph dinosaurs. However, the contribution of this record to our understanding of early sauropod evolution is complicated by a dearth of information on important transitional taxa. We present a revision of the poorly known taxon Sanpasaurus yaoi Young, 1944 from the late Early Jurassic Ziliujing Formation of Sichuan Province, southwest China. Initially described as the remains of an ornithopod ornithischian, we demonstrate that the material catalogued as IVPP V156 is unambiguously referable to Sauropoda. Although represented by multiple individuals of equivocal association, Sanpasaurus is nonetheless diagnosable with respect to an autapomorphic feature of the holotypic dorsal vertebral series. Additional material thought to be collected from the type locality is tentatively referred to Sanpasaurus. If correctly attributed, a second autapomorphy is present in a referred humerus. The presence of a dorsoventrally compressed pedal ungual in Sanpasaurus is of particular interest, with taxa possessing this typically 'vulcanodontid' character exhibiting a much broader geographic distribution than previously thought. Furthermore, the association of this trait with other features of Sanpasaurus that are broadly characteristic of basal eusauropods underscores the mosaic nature of the early sauropod-eusauropod transition. Our revision of Sanpasaurus has palaeobiogeographic implications for Early Jurassic sauropods, with evidence that the group maintained a cosmopolitan Pangaean distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...