Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.900
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39378130

RESUMEN

Whole-exome sequencing (WES) data are frequently used for cancer diagnosis and genome-wide association studies (GWAS), based on high-coverage read mapping, informative variant calling, and high-quality reference genomes. The center position of the currently used genome assembly, GRCh38, is now challenged by two newly published telomere-to-telomere (T2T) genomes, T2T-CHM13 and T2T-YAO, and it becomes urgent to have a comparative study to test population specificity using the three reference genomes based on real case WES data. Here we report our analysis along this line for 19 tumor samples collected from Chinese patients. The primary comparison of the exon regions among the three references reveals that the sequences in up to ∼ 1% target regions in T2T-YAO are widely diversified from GRCh38 and may lead to off-target in sequence capture. However, T2T-YAO still outperforms GRCh38 genomes by obtaining 7.41% more mapped reads. Due to more reliable read-mapping and closer phylogenetic relationship with the samples than GRCh38, T2T-YAO reduces half of variant calls of clinical significance which are mostly benign, while maintaining sensitivity in identifying pathogenic variants. T2T-YAO also outperforms T2T-CHM13 in reducing calls of Chinese-specific variants. Our findings highlight the critical need for employing population-specific reference genomes in genomic analysis to ensure accurate variant analysis and the significant benefits of tailoring these approaches to the unique genetic backgrounds of each ethnic group.

2.
Parkinsonism Relat Disord ; 129: 107157, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39378566

RESUMEN

INTRODUCTION: Indian Parkinson's Disease (PD) patients are severely underrepresented in terms of genetic studies and little is known about the frequency of variants and their impact on motor and nonmotor symptoms (NMS). METHODS: This retrospective cross-sectional study was conducted in PD patients undergoing treatment at a tertiary care hospital from India. Patients were advised genetic testing if they had (i) age at onset (AAO) of motor symptoms at or before 50 years (EOPD), (ii) positive family history of PD, parkinsonism or dystonia. All patients underwent whole exome sequencing and potentially pathogenic variants were identified. RESULTS: Clinical and genetic data were available for 230 (163 males, 70.4 %) patients. Thirty-five pathogenic and likely pathogenic variants in various PD genes were identified in 47 patients resulting in a yield of 20.4 %. In the remaining, 82 patients had either variants of uncertain significance or had variants in genes not associated with parkinsonism and 101 patients did not have any non-benign variants. Patients with genetically mediated PD had a lower AAO and statistically greater frequency of dystonia (36.2 %), postural instability (29.8 %) and mood disorder (29.8 %) and a higher Hoehn and Yahr score (2.9). Among the 47 patients, 11 patients had PARK-PRKN, six patients had PARK-PLA2G6, and 22 patients had PARK-GBA1. CONCLUSION: Around one-fifth of early-onset PD can have an underlying monogenetic cause. PARK-GBA1, PARK-PRKN and PARK-PLA2G6 are the commoner causes of genetically mediated PD in India. Patients with genetic cause had an earlier age at onset, and more frequent dystonia, postural instability and dyskinesia.

3.
Front Neurosci ; 18: 1396240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39381681

RESUMEN

Background: Childhood apraxia of speech (CAS) is a genetically heterogeneous pediatric motor speech disorder. The advent of whole exome sequencing (WES) and whole genome sequencing techniques has led to increased identification of pathogenic variants in CAS genes. In an as yet uncharacterized Italian cohort, we aimed both to identify new pathogenic gene variants associated with CAS, and to confirm the disease-related role of genes already reported by others. We also set out to refine the clinical and neurodevelopmental characterization of affected children, with the aim of identifying specific, gene-related phenotypes. Methods: In a single-center study aiming to explore the genetic etiology of CAS in a cohort of 69 Italian children, WES was performed in the families of the 34 children found to have no copy number variants. Each of these families had only one child affected by CAS. Results: High-confidence (HC) gene variants were identified in 7/34 probands, in two of whom they affected KAT6A and CREBBP, thus confirming the involvement of these genes in speech impairment. The other probands carried variants in low-confidence (LC) genes, and 20 of these variants occurred in genes not previously reported as associated with CAS. UBA6, ZFHX4, and KAT6A genes were found to be more enriched in the CAS cohort compared to control individuals. Our results also showed that most HC genes are involved in epigenetic mechanisms and are expressed in brain regions linked to language acquisition processes. Conclusion: Our findings confirm a relatively high diagnostic yield in Italian patients.

4.
Mol Genet Genomic Med ; 12(10): e70016, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39359128

RESUMEN

OBJECTIVE: To investigate the clinical value of whole-exome sequencing (WES) in the diagnosis of foetuses with central nervous system (CNS) abnormalities but having a normal karyotyping and chromosomal microarray result. METHOD: During the period of 2016-2022, there were a total of 149 foetuses with CNS abnormalities but having negative karyotyping and chromosomal microarray analysis results; WES was performed on these foetuses and their parents. Variants were classified according to ACMG guidelines, and the association of pathogenic variants with specific types of CNS abnormalities was explored. RESULTS: Among these 149 foetuses, three categories of abnormalities, namely, single CNS abnormality, multiple CNS abnormalities, CNS abnormalities along with other organ system abnormalities were identified, for which the detection rate of P/LP variants is 17.4% (12/69), 28.6% (14/49) and 54.8% (17/31), respectively. CONCLUSION: WES brought about an increase of 28.9% in diagnostic yield in the prenatal evaluation of foetuses with CNS abnormalities but having negative karyotyping and chromosome array results. WES may also be of benefit for the diagnosis of foetuses with isolated CNS abnormalities, as well as for making more informed interpretations of imaging findings and for providing better genetic counselling.


Asunto(s)
Secuenciación del Exoma , Diagnóstico Prenatal , Humanos , Femenino , Secuenciación del Exoma/métodos , Embarazo , Diagnóstico Prenatal/métodos , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/diagnóstico , Adulto , Pruebas Genéticas/métodos , Feto/anomalías , Sistema Nervioso Central/anomalías , Cariotipificación/métodos
5.
J Diabetes Res ; 2024: 3076895, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364395

RESUMEN

Aims: This study is aimed at comparing whole exome sequencing (WES) data with the clinical presentation in children with type 1 diabetes onset ≤ 5 years of age (EOT1D). Methods: WES was performed in 99 unrelated children with EOT1D with subsequent analysis to identify potentially deleterious rare variants in MODY genes. High-resolution HLA class II haplotyping, SNP genotyping, and T1D-genetic risk score (T1D-GRS) were also evaluated. Results: Eight of the ninety-nine EOT1D participants carried a potentially deleterious rare variant in a MODY gene. Rare variants affected five genes: GCK (n = 1), HNF1B (n = 2), HNF4A (n = 1), PDX1 (n = 2), and RFX6 (n = 2). At diagnosis, these children had a mean age of 3.0 years, a mean HbA1c of 10.5%, a detectable C-peptide in 5/8, and a positive islet autoantibody in 6/7. Children with MODY variants tend to exhibit a lower number of pancreatic autoantibodies and a lower fasting C-peptide compared to EOT1D without MODY rare variants. They also carried at least one high-risk DR3-DQ2 or DR4-DQ8 haplotype and exhibited a T1D-GRS similar to the other individuals in the EOT1D cohort, but higher than healthy controls. Conclusions: WES found potentially deleterious rare variants in MODY genes in 8.1% of EOT1D, occurring in the context of a T1D genetic background. Such genetic variants may contribute to disease precipitation by a ß-cell dysfunction mechanism. This supports the concept of different endotypes of T1D, and WES at T1D onset may be a prerequisite for the implementation of precision therapies in children with autoimmune diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Humanos , Diabetes Mellitus Tipo 1/genética , Preescolar , Femenino , Masculino , Factor Nuclear 1-beta del Hepatocito/genética , Transactivadores/genética , Proteínas de Homeodominio/genética , Factor Nuclear 4 del Hepatocito/genética , Quinasas del Centro Germinal/genética , Polimorfismo de Nucleótido Simple , Lactante , Péptido C/sangre , Autoanticuerpos , Niño , Haplotipos , Diabetes Mellitus Tipo 2/genética , Glucoquinasa/genética , Factores de Transcripción del Factor Regulador X
6.
Sci Rep ; 14(1): 22847, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354002

RESUMEN

Anterior cruciate ligament (ACL) injury is a common orthopedic disease with a high incidence, long recovery time, and often requiring surgical treatment. However, the susceptibility factors for ACL injury are currently unclear, and there is a lack of analysis on the differences in the ligament itself. Previous studies have focused on germline mutations, with less research on somatic mutations. To determine the role of somatic mutations in ACL injuries, we recruited seven patients between the ages of 20 and 39 years diagnosed with ACL injuries, collected their peripheral blood, injured ligament ends, and healthy ligament ends tissues, and performed exome sequencing with gene function enrichment analysis. We detected multiple gene mutations and gene deletions, which were only present in some of the samples. Unfortunately, it was not possible to determine whether these somatic mutations are related to ligament structure or function, or are involved in ACL injury. However, this study provides valuable clues for future in-depth research.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Mutación , Humanos , Lesiones del Ligamento Cruzado Anterior/genética , Adulto , Masculino , Femenino , Adulto Joven , Secuenciación del Exoma , Ligamento Cruzado Anterior/cirugía , Ligamento Cruzado Anterior/patología , Predisposición Genética a la Enfermedad
7.
BMC Pediatr ; 24(1): 631, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363269

RESUMEN

BACKGROUND: X-linked intellectual disability-hypotonic facies syndrome-1 (MRXHF1) and Alpha-thalassemia X-linked intellectual disability (ATR-X) syndrome are caused by pathogenic variant in the ATRX gene, a member of the switch/sucrose non-fermentable (SWI-SNF) protein family that exhibits chromatin remodeling activity. These syndromes show a wide spectrum of clinical manifestations, such as distinctive dysmorphic features, mild-to-profound intellectual disability, motor development delay, seizures, urogenital abnormalities, and gastrointestinal disorders. CASE PRESENTATION AND LITERATURE REVIEW: A 3-year-old boy from a Chinese non-consanguineous family was diagnosed with MRXHF1 by whole-exome sequencing. Comprehensive family history information was obtained. The Medline database was searched until 1st Aug 2023 for articles related to ATRX pathogenic variant. Data on gene/protein mutations and clinical symptoms were extracted. The proband showed intellectual disability, motor development delay, typical facial abnormalities, urogenital defect, behavior problems, and optical nerve dysplasia. A novel frameshift mutation c.399_400dup, (p.Leu134Cysfs*2) in the ATRX gene was the primary cause, which occurs right before the ATRXDNMT3-DNMT3L (ADD) domain of ATRX protein. Missense mutation is the most common variation type. The ADD and helicase-like domains are the most frequently affected domains. Epilepsy, congenital heart disease, urogenital defect, acoustic defect, and optical defect are more prevalent in patients with frameshift mutations compared to those with missense mutations. There are more urogenital defects with C-terminal frameshift mutations than with N-terminal frameshift mutations. CONCLUSION: We described a novel frameshift mutation in the ATRX gene in a patient with MRXHF1 syndrome and summarized the genotype-phenotype relationship of ATRX pathogenic variant by variation type and affected protein domain. The regulatory mechanism underlying ATRX variant requires comprehensive analysis in future studies.


Asunto(s)
Mutación del Sistema de Lectura , Proteína Nuclear Ligada al Cromosoma X , Humanos , Masculino , Proteína Nuclear Ligada al Cromosoma X/genética , Preescolar , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Talasemia alfa/genética , Talasemia alfa/diagnóstico , Estudios de Asociación Genética , Fenotipo , Secuenciación del Exoma
8.
J Transl Med ; 22(1): 969, 2024 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-39465437

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy (NACT) became a standard treatment strategy for patients with inflammatory breast cancer (IBC) because of high disease aggressiveness. However, given the heterogeneity of IBC, no molecular feature reliably predicts the response to chemotherapy. Whole-exome sequencing (WES) of clinical tumor samples provides an opportunity to identify genomic alterations associated with chemosensitivity. METHODS: We retrospectively applied WES to 44 untreated IBC primary tumor samples and matched normal DNA. The pathological response to NACT, assessed on operative specimen, distinguished the patients with versus without pathological complete response (pCR versus no-pCR respectively). We compared the mutational profiles, spectra and signatures, pathway mutations, copy number alterations (CNAs), HRD, and heterogeneity scores between pCR versus no-pCR patients. RESULTS: The TMB, HRD, and mutational spectra were not different between the complete (N = 13) versus non-complete (N = 31) responders. The two most frequently mutated genes were TP53 and PIK3CA. They were more frequently mutated in the complete responders, but the difference was not significant. Only two genes, NLRP3 and SLC9B1, were significantly more frequently mutated in the complete responders (23% vs. 0%). By contrast, several biological pathways involved in protein translation, PI3K pathway, and signal transduction showed significantly higher mutation frequency in the patients with pCR. We observed a higher abundance of COSMIC signature 7 (due to ultraviolet light exposure) in tumors from complete responders. The comparison of CNAs of the 3808 genes included in the GISTIC regions between both patients' groups identified 234 genes as differentially altered. The CIN signatures were not differentially represented between the complete versus non-complete responders. Based on the H-index, the patients with heterogeneous tumors displayed a lower pCR rate (11%) than those with less heterogeneous tumors (35%). CONCLUSIONS: This is the first study aiming at identifying correlations between the WES data of IBC samples and the achievement of pCR to NACT. Our results, obtained in this 44-sample series, suggest a few subtle genomic alterations associated with pathological response. Additional investigations are required in larger series.


Asunto(s)
Secuenciación del Exoma , Neoplasias Inflamatorias de la Mama , Mutación , Terapia Neoadyuvante , Humanos , Femenino , Neoplasias Inflamatorias de la Mama/genética , Neoplasias Inflamatorias de la Mama/patología , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Persona de Mediana Edad , Mutación/genética , Exoma/genética , Adulto , Resultado del Tratamiento , Variaciones en el Número de Copia de ADN/genética , Anciano
9.
Arch Iran Med ; 27(9): 522-526, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39465527

RESUMEN

After GJB2, SLC26A4 is the second most common contributor to autosomal recessive nonsyndromic hearing loss (ARNSHL) worldwide. In this study, we used Exome Sequencing (ES) to present a village with 31 individuals affected by hereditary hearing loss (HHL) in southeastern Iran near the border of Pakistan. The village harbored the known pathogenic missense SLC26A4 (NM_000441.2):c.716T>A (p.Val239Asp) mutation, which has a founder effect attributed to Pakistan, Iran's southeastern neighbor. Our findings, in addition to unraveling the molecular cause of non-syndromic hearing loss in these patients and further confirming the common ancestry and migration story between the people of this region and Pakistan, provide further insight into the genetic background of this region and highlight the importance of understanding the mutation spectrum of GJB2 and SLC26A4 in different regions to choose cost-effective strategies for molecular genetic testing.


Asunto(s)
Conexina 26 , Transportadores de Sulfato , Humanos , Irán , Transportadores de Sulfato/genética , Femenino , Masculino , Conexina 26/genética , Niño , Mutación Missense , Efecto Fundador , Secuenciación del Exoma , Adulto , Preescolar , Linaje , Pérdida Auditiva Sensorineural/genética , Adolescente , Proteínas de Transporte de Membrana/genética
10.
Cancers (Basel) ; 16(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39456581

RESUMEN

Background/Objectives: Intracranial Epidermoid Cysts (IECs) are rare intracranial tumors primarily treated through surgery. Cyst adherence complicates complete removal, leading to high rates of tumor progression after subtotal resection. The molecular drivers of IEC remain unknown. Consequently, advances in treatment have fallen short. Tumor genetic profiling has revealed potential targets for drug development, including FDA-approved options and reshaping treatment. The genetic landscape of IECs has not been explored. We applied Whole Exome Sequencing (WES) to IECs to gain insights into the mechanisms of oncogenesis and identify potential therapeutic targets. Methods: We performed WES on tumor tissue and matched blood samples, when available. Following GATK best practices, we conducted read processing, quality control, somatic variant calling, and copy-number inference. Data analyses and visualization were conducted in R. Results: Top altered genes are associated with the immune system and tumor microenvironment, suggesting a mechanism of immune evasion. Gene and pathway enrichment revealed a high mutation burden in genes associated with Extracellular Matrix (ECM) and PI3K-AKT-mTOR cascades. Recurrent and deleterious alterations in NOTCH2 and USP8 were identified in 50% and 30% of the cohort, respectively. Frequent amplifications in deubiquitinases and beta-defensins strengthened the involvement of immune mechanisms for oncogenic transformation. Conclusions: Top altered genes and recurrent mutations may play a role in shaping the microenvironment and modulating immune evasion in IECs. USP8 and NOTCH2 may serve as clinically relevant target for IECs. Finally, we present evidence that the crosstalk between the PI3K-Akt-mTOR and ECM signaling pathways may play a role in modulating the immune escape mechanism in IECs.

11.
Int J Mol Sci ; 25(20)2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39456768

RESUMEN

Deleterious variations in STXBP1 are responsible for early infantile epileptic encephalopathy type 4 (EIEE4, OMIM # 612164) because of its dysfunction in the central nervous system. The clinical spectrum of the neurodevelopmental delays associated with STXBP1 aberrations is collectively defined as STXBP1 encephalopathy (STXBP1-E), the conspicuous features of which are highlighted by early-onset epileptic seizures without structural brain anomalies. A girl was first diagnosed with unexplained disorders of movement and cognition, which later developed into STXBP1-E with unexpected leukoaraiosis and late onset of seizures. Genetic screening and molecular tests alongside neurological examinations were employed to investigate the genetic etiology and establish the diagnosis. A heterozygous mutation of c.37+2dupT at the STXBP1 splice site was identified as the pathogenic cause in the affected girl. The de novo mutation (DNM) did not result in any truncated proteins but immediately triggered mRNA degradation by nonsense-mediated mRNA decay (NMD), which led to the haploinsufficiency of STXBP1. The patient showed atypical phenotypes characterized by hypomyelinating leukodystrophy, and late onset of epileptic seizures, which had never previously been delineated in STXBP1-E. These findings strongly indicated that the haploinsufficiency of STXBP1 could also exhibit divergent clinical phenotypes because of the genetic heterogeneity in the subset of encephalopathies.


Asunto(s)
Proteínas Munc18 , Mutación , Empalme del ARN , Espasmos Infantiles , Humanos , Proteínas Munc18/genética , Femenino , Espasmos Infantiles/genética , Empalme del ARN/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Lactante , Preescolar , Haploinsuficiencia/genética , Fenotipo
12.
Int J Mol Sci ; 25(20)2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39457042

RESUMEN

Hermansky-Pudlak syndrome (HPS) is a rare disease inherited in the autosomal recessive mode, including 11 clinical genetic subtypes. They are associated with impaired function of the BLOC protein complex (Biogenesis of Lysosome-related Organelles Complexes), and the subunits of the AP-3 complex (adaptor protein complex). Each has its own clinical features, but they are all characterized by albinism, bleeding disorder, and visual abnormalities. Eleven patients from eight unrelated families with an incoming diagnosis of albinism were examined and novel and previously described genetic variants in HPS1, HPS6, and BLOC1S6 genes (types HPS1, HPS6, and HPS9) were found. To determine the optimal therapy and recommendations for further follow up, it is necessary to consider the entire clinical spectrum and genetic polymorphism of the disease. An interdisciplinary approach, combined with the use of non-routine diagnostic techniques such as RNA analysis, is essential for achieving accurate diagnoses in certain complex cases.


Asunto(s)
Síndrome de Hermanski-Pudlak , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/diagnóstico , Humanos , Femenino , Masculino , Niño , Albinismo/genética , Preescolar , Mutación , Adulto , Adolescente , Proteínas de la Membrana/genética , Lactante , Péptidos y Proteínas de Señalización Intracelular
13.
Int J Mol Sci ; 25(20)2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39457051

RESUMEN

Environmental heat stress represents a pervasive threat to warfighters, athletes, and occupational workers, impacting performance and increasing the risk of injury. Exertional heat illness (EHI) is a spectrum of clinical disorders of increasing severity. While frequently predictable, EHI can occur unexpectedly and may be followed by long-term comorbidities, including cardiovascular dysfunction and exercise intolerance. The objective of this study was to assess genetic factors contributing to EHI. Whole-exome sequencing was performed in a cohort of 53 cases diagnosed with EHI. Rare variants in prioritized gene sets were analyzed and classified per published guidelines. Clinically significant pathogenic and potentially pathogenic variants were identified in 30.2% of the study cohort. Variants were found in 14 genes, including the previously known RYR1 and ACADVL genes and 12 other genes (CAPN3, MYH7, PFKM, RYR2, TRPM4, and genes for mitochondrial disorders) reported here for the first time in EHI. Supporting structural and functional studies of the TRPM4 p.Arg905Trp variant show that it impairs the thermal sensitivity of the TRPM4 channel, revealing a potentially new molecular mechanism contributing to EHI susceptibility. Our study demonstrates associations between EHI and genes implicated in muscle disorders, cardiomyopathies, thermoregulation, and oxidative phosphorylation deficiencies. These results expand the genetic heterogeneity of EHI and shed light on its molecular pathogenesis.


Asunto(s)
Secuenciación del Exoma , Trastornos de Estrés por Calor , Humanos , Masculino , Femenino , Trastornos de Estrés por Calor/genética , Adulto , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Canal Liberador de Calcio Receptor de Rianodina/genética , Canales Catiónicos TRPM/genética , Esfuerzo Físico
14.
Clin Case Rep ; 12(10): e9506, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39445201

RESUMEN

Key Clinical Message: The discovery of compound heterozygous NMNAT1 mutations (c.245T>C; p.Val82Ala and c.575A>G; p.Asp192Gly) provides a genetic explanation for Leber congenital amaurosis 9 in an Iranian patient. The proband's symptoms-including severe visual impairment, nystagmus, night blindness, and retinal degeneration-align with Leber congenital amaurosis 9 clinical features. This case underscores the value of exome-sequencing in diagnosing rare genetic disorders and highlights its role in guiding personalized genetic counseling and potential treatments. Abstract: Leber congenital amaurosis is a severe early-onset inherited retinal dystrophy. This study delves into the genetic basis of Leber congenital amaurosis, pinpointing compound heterozygous mutations in the NMNAT1 gene as significant causative factors. While one mutation validates previous findings (c.245T>C; p.Val82Ala), the second (c.575A>G; p.Asp192Gly) proves novel, expanding the genetic landscape of Leber congenital amaurosis 9. Both mutations, inherited independently from nonconsanguineous parents, contribute to the intricate genetic basis of light on Leber congenital amaurosis 9 in this case. The identified mutations shed light on Leber congenital amaurosis genetics in the Iranian population, showcasing the efficacy of exome-sequencing for molecular diagnoses in hereditary retinal degeneration. These findings provide valuable insights for tailored genetic counseling and potential therapeutic interventions.

15.
Sci Rep ; 14(1): 24746, 2024 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-39433808

RESUMEN

Variant annotations are crucial for efficient identification of pathogenic variants. In this study, we retrospectively analyzed the utility of four annotation tools (allele frequency, ClinVar, SpliceAI, and Phenomatcher) in identifying 271 pathogenic single nucleotide and small insertion/deletion variants (SNVs/small indels). Although variant filtering based on allele frequency is essential for narrowing down on candidate variants, we found that 13 de novo pathogenic variants in autosomal dominant or X-linked dominant genes are registered in gnomADv4.0 or 54KJPN, with an allele frequency of less than 0.001%, suggesting that very rare variants in large cohort data can be pathogenic de novo variants. Notably, 38.4% candidate SNVs/small indels are registered in the ClinVar database as pathogenic or likely pathogenic, which highlights the significance of this database. SpliceAI can detect candidate variants affecting RNA splicing, leading to the identification of four variants located 11 to 50 bp away from the exon-intron boundary. Prioritization of candidate genes by proband phenotype using the PhenoMatcher module revealed that approximately 95% of the candidate genes had a maximum PhenoMatch score ≥ 0.6, suggesting the utility of phenotype-based variant prioritization. Our results suggest that a combination of multiple annotation tools and appropriate evaluation can improve the diagnosis of rare diseases.


Asunto(s)
Secuenciación del Exoma , Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/diagnóstico , Secuenciación del Exoma/métodos , Niño , Frecuencia de los Genes , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Estudios Retrospectivos , Polimorfismo de Nucleótido Simple , Mutación INDEL , Bases de Datos Genéticas , Exoma/genética , Anotación de Secuencia Molecular , Predisposición Genética a la Enfermedad , Masculino , Fenotipo , Femenino
16.
Front Pediatr ; 12: 1448895, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39439447

RESUMEN

Background: Genetic diseases exhibit significant clinical and genetic diversity, leading to a complex and challenging diagnostic process. Exploiting novel approaches is imperative for the molecular diagnosis of genetic diseases. In this study, we utilized whole-exome sequencing (WES) to facilitate early diagnosis in patients suspected of genetic disorders. Methods: This retrospective analysis included 144 patients diagnosed by singleton-WES Trio-WES between January 2021 and December 2023. We investigated the relevance of diagnosis rates with age, clinical presentation, and sample type. Results: Among the 144 patients, 61 were diagnosed, yielding an overall diagnostic rate of 42.36%, with Trio-WES demonstrating a significantly higher diagnostic rate of 51.43% (36/70) compared to singleton-WES at 33.78% (25/74) (p < 0.05). Global developmental delay had a diagnosis rate of 67.39%, significantly higher than muscular hypotonia at 30.43% (p < 0.01) among different clinical phenotypic groups. Autosomal dominant disorders accounted for 70.49% (43/61) of positive cases, with autosomal abnormalities being fivefold more prevalent than sex chromosome abnormalities. Notably, sex chromosome abnormalities were more prevalent in males (80%, 8/10). Furthermore, 80.56% (29/36) of pathogenic variants were identified as de novo mutations through Trio-WES. Conclusions: These findings highlight the effectiveness of WES in identifying genetic variants, and elucidating the molecular basis of genetic diseases, ultimately enabling early diagnosis in affected children.

17.
Sci Rep ; 14(1): 24468, 2024 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-39424910

RESUMEN

Polycystic ovarian syndrome (PCOS) is one of the most common endocrinopathies among reproductive women worldwide, contributing greatly on the incidence of female infertility and gynecological cancers. It is a complex health condition combining of multiple symptoms like androgen excess, uncontrolled weight gain, alopecia, hirsutism, etc. Conventionally PCOS was associated with obesity while it is often found among lean women nowadays, making the disease more critical to diagnose as well treatment. The disorder has an impact on several signal transduction pathways, including steroidogenesis, steroid hormone activity, gonadotrophin regulation, insulin secretion, energy balance, and chronic inflammation. Understanding the aetiology and pathophysiology of PCOS is difficult due to its multiple causes, which include environmental factors, intricate genetic predisposition, and epigenetic modifications. Despite research supporting the role of familial aggregations in PCOS outcomes, the inheritance pattern remains unknown. Henceforth, to reduce the burden of PCOS, it is inevitably important to diagnose at early ages as well as intervene through personalized medicine. With this brief background, it was imperative to elucidate the genetic architecture of PCOS considering BMI as an controlling factor. This study aims to investigate the genetic basis behind obesity-mediated PCOS, focusing on both obese and lean individuals. It uses a comprehensive bioinformatics methodology to depict pathways and functionality enrichment, allowing for cost-effective risk prediction and management. In the present research, the representative study participants (N = 2) were chosen from a cross-sectional epidemiological survey, based on their anthropometric parameters and confirmation of PCOS. Upon voluntary participation and written consent, biological fluids (whole blood and buccal swab) were taken from where DNA was extracted. The clinical-exome sequencing was performed by the Next-generation Illumina platform using the Twist Human Comprehensive Exome Kit. A comprehensive bioinformatics methodology was employed to identify the most important, unique, and common genes. A total of 26,550 variants were identified in clinically important exomes from two samples, with 5170 common and 2232 and 2322 unique among PCOS lean and obese phenotypes, respectively. Only 262 and 94 variants were PCOS-specific in lean and obese PCOS. Three filters were applied to shortlist the most potent variants, with 4 unique variants in lean PCOS, 2 unique variants in obese PCOS, and 5 common variants in both. The study found that leptin signalling impairment and insulin resistance, as well as mutations in CYP1A1, CYP19A1, ESR1, AR, AMH, AdipoR1, NAMPT, NPY, PTEN, EGFR, and Akt, all play significant roles in PCOS in the studied group. Young women in West Bengal, India, are more likely to have co-occurring PCOS, which includes estrogen resistance, leptin receptor insufficiency, folate deficiency, T2DM, and acanthosis nigricans, with obesity being a common phenotypic expression.


Asunto(s)
Secuenciación del Exoma , Obesidad , Síndrome del Ovario Poliquístico , Humanos , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/diagnóstico , Femenino , Obesidad/genética , Obesidad/complicaciones , Adulto , Fenotipo , Medicina de Precisión/métodos , Predisposición Genética a la Enfermedad , Análisis Costo-Beneficio , Delgadez/genética , Índice de Masa Corporal
19.
Genes (Basel) ; 15(10)2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39457434

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDDs) represent a significant challenge in pediatric genetics, often requiring advanced diagnostic tools for the accurate identification of genetic variants. OBJECTIVES: To determine the diagnostic yield of whole exome sequencing (WES) with targeted gene panels in children with neurodevelopmental disorders (NDDs). METHODS: This observational, prospective study included a total of 176 Spanish-speaking pediatric patients with neurodevelopmental disorders (NDDs), encompassing intellectual disability (ID), global developmental delay (GDD), and/or autism spectrum disorder (ASD). Participants were recruited from January 2019 to January 2023 at a University Hospital in Madrid, Spain. Clinical and sociodemographic variables were recorded, along with genetic study results. The age range of the subjects was 9 months to 16 years, and the percentage of males was 72.1%. The diagnostic yield of whole exome sequencing (WES) was calculated both before and after parental testing via Sanger DNA sequencing. RESULTS: The study included 176 children: 67 (38.1%) with ID, 62 (35.2%) with ASD, and 47 (26.7%) with ASD + ID. The diagnostic yield of proband-only exome sequencing was 12.5% (22/176). By group, the diagnostic yield of proband-only exome sequencing was 3.2% in the ASD, 12.7% in the ASD + ID, and 20.8% in the ID group. Variants of uncertain significance (VUS) were found in 39.8% (70/176). After parental testing, some variants were reclassified as "likely pathogenic", increasing the diagnostic yield by 4.6%, with an overall diagnostic yield of 17.1%. Diagnostic yield was higher in patients with syndromic ID (70.6%% vs. 29.4%; p = 0.036). CONCLUSIONS: A sequential approach utilizing WES followed by panel-based analysis, starting with the index case and, when appropriate, including the parents, proves to be a cost-effective strategy. WES is particularly suitable for complex conditions, as it allows for the identification of potentially causative genes beyond those covered by targeted panels, providing a more comprehensive analysis. Including parental testing enhances the diagnostic yield and improves accuracy, especially in cases with variants of uncertain significance (VUS), thereby advancing our understanding of NDDs.


Asunto(s)
Trastorno del Espectro Autista , Discapacidades del Desarrollo , Secuenciación del Exoma , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Niño , Secuenciación del Exoma/métodos , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/diagnóstico , Preescolar , Femenino , Adolescente , Discapacidad Intelectual/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/diagnóstico , España , Lactante , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Estudios Prospectivos , Pruebas Genéticas/métodos
20.
Genes (Basel) ; 15(10)2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39457470

RESUMEN

BACKGROUND: Inherited pediatric motor neuron diseases (MNDs) are a group of neurodegenerative disorders characterized by the degeneration of motor neurons in the brain and the spinal cord. These diseases can manifest as early as infancy and originate from inherited pathogenic mutations in known genes. Key clinical features of MNDs include muscle weakness, hypotonia, and atrophy due to the degeneration of lower motor neurons or spasticity, hypertonia, and hyperreflexia caused by upper motor neuron dysfunction. The course of the disease varies among individuals and is influenced by the specific subtype. METHODS: We performed a non-systematic, narrative clinical review, employing a systematic methodology for the literature search and article selection to delineate the features of hereditary pediatric motor neuron diseases. RESULTS: The growing availability of advanced molecular testing, such as whole-exome sequencing (WES) and whole-genome sequencing (WGS), has expanded the range of identified genetic factors. These advancements provide insights into the genetic complexity and underlying mechanisms of these disorders. As more MND-related genes are discovered, the accumulating genetic data will help prioritize promising candidate genes for future research. In some cases, targeted treatments based on specific genetic mechanisms have already emerged, underscoring the critical role of early and timely diagnosis in improving patient outcomes. Common MNDs include amyotrophic lateral sclerosis, spinal muscular atrophy, and bulbar spinal muscular atrophy. CONCLUSION: This narrative clinical review covers the clinical presentation, genetics, molecular features, and pathophysiology of inherited pediatric MNDs.


Asunto(s)
Enfermedad de la Neurona Motora , Humanos , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/patología , Niño , Mutación , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/diagnóstico , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...