RESUMEN
Introduction: Non-alcoholic fatty liver disease (NAFLD) results from increased hepatic total cholesterol (TC) and total triglyceride (TG) accumulation. In our previous study, we found that rats treated with hyperoside became resistant to hepatic lipid accumulation. Objectives: The present study aims to investigate the possible mechanisms responsible for the inhibitory effects of hyperoside on the lipid accumulation in the liver tissues of the NAFLD rats. Methods: Label-free proteomics and metabolomics targeting at bile acid (BA) metabolism were applied to disclose the mechanisms for hyperoside reducing hepatic lipid accumulation among the NAFLD rats. Results: In response to hyperoside treatment, several proteins related to the fatty acid degradation pathway, cholesterol metabolism pathway, and bile secretion pathway were altered, including ECI1, Acnat2, ApoE, and BSEP, etc. The expression of nuclear receptors (NRs), including farnesoid X receptor (FXR) and liver X receptor α (LXRα), were increased in hyperoside-treated rats' liver tissue, accompanied by decreased protein expression of catalyzing enzymes in the hepatic de novo lipogenesis and increased protein level of enzymes in the classical and alternative BA synthetic pathway. Liver conjugated BAs were less toxic and more hydrophilic than unconjugated BAs. The BA-targeted metabolomics suggest that hyperoside could decrease the levels of liver unconjugated BAs and increase the levels of liver conjugated BAs. Conclusions: Taken together, the results suggest that hyperoside could improve the condition of NAFLD by regulating the cholesterol metabolism as well as BAs metabolism and excretion. These findings contribute to understanding the mechanisms by which hyperoside lowers the cholesterol and triglyceride in NAFLD rats.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ácidos y Sales Biliares , Colesterol , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Quercetina/análogos & derivados , RatasRESUMEN
Since metabolic process differs between humans and mice, studies were performed in hamsters, which are generally considered to be a more appropriate animal model for studies of obesity-related metabolic disorders. The modulation of gut microbiota, bile acids and the farnesoid X receptor (FXR) axis is correlated with obesity-induced insulin resistance and hepatic steatosis in mice. However, the interactions among the gut microbiota, bile acids and FXR in metabolic disorders remained largely unexplored in hamsters. In the current study, hamsters fed a 60% high-fat diet (HFD) were administered vehicle or an antibiotic cocktail by gavage twice a week for four weeks. Antibiotic treatment alleviated HFD-induced glucose intolerance, hepatic steatosis and inflammation accompanied with decreased hepatic lipogenesis and elevated thermogenesis in subcutaneous white adipose tissue (sWAT). In the livers of antibiotic-treated hamsters, cytochrome P450 family 7 subfamily B member 1 (CYP7B1) in the alternative bile acid synthesis pathway was upregulated, contributing to a more hydrophilic bile acid profile with increased tauro-ß-muricholic acid (TßMCA). The intestinal FXR signaling was suppressed but remained unchanged in the liver. This study is of potential translational significance in determining the role of gut microbiota-mediated bile acid metabolism in modulating diet-induced glucose intolerance and hepatic steatosis in the hamster.
RESUMEN
BACKGROUND & AIMS: The organic solute transporter α-ß (OSTα-OSTß) mainly facilitates transport of bile acids across the basolateral membrane of ileal enterocytes. Therefore, inhibition of OSTα-OSTß might have similar beneficial metabolic effects as intestine-specific agonists of the major nuclear receptor for bile acids, the farnesoid X receptor (FXR). However, no OSTα-OSTß inhibitors have yet been identified. METHODS: Here, we developed a screen to identify specific inhibitors of OSTα-OSTß using a genetically encoded Förster Resonance Energy Transfer (FRET)-bile acid sensor that enables rapid visualization of bile acid efflux in living cells. RESULTS: As proof of concept, we screened 1280 Food and Drug Administration-approved drugs of the Prestwick chemical library. Clofazimine was the most specific hit for OSTα-OSTß and reduced transcellular transport of taurocholate across Madin-Darby canine kidney epithelial cell monolayers expressing apical sodium bile acid transporter and OSTα-OSTß in a dose-dependent manner. Moreover, pharmacologic inhibition of OSTα-OSTß also moderately increased intracellular taurocholate levels and increased activation of intestinal FXR target genes. Oral administration of clofazimine in mice (transiently) increased intestinal FXR target gene expression, confirming OSTα-OSTß inhibition in vivo. CONCLUSIONS: This study identifies clofazimine as an inhibitor of OSTα-OSTß in vitro and in vivo, validates OSTα-OSTß as a drug target to enhance intestinal bile acid signaling, and confirmed the applicability of the Förster Resonance Energy Transfer-bile acid sensor to screen for inhibitors of bile acid efflux pathways.
RESUMEN
In addition to their well-known function as dietary lipid detergents, bile acids have emerged as important signalling molecules that regulate energy homeostasis. Recent studies have highlighted that disrupted bile acid metabolism is associated with metabolism disorders such as dyslipidaemia, intestinal chronic inflammatory diseases and obesity. In particular, type 2 diabetes (T2D) is associated with quantitative and qualitative modifications in bile acid metabolism. Bile acids bind and modulate the activity of transmembrane and nuclear receptors (NR). Among these receptors, the G-protein-coupled bile acid receptor 1 (TGR5) and the NR farnesoid X receptor (FXR) are implicated in the regulation of bile acid, lipid, glucose and energy homeostasis. The role of these receptors in the intestine in energy metabolism regulation has been recently highlighted. More precisely, recent studies have shown that FXR is important for glucose homeostasis in particular in metabolic disorders such as T2D and obesity. This review highlights the growing importance of the bile acid receptors TGR5 and FXR in the intestine as key regulators of glucose metabolism and their potential as therapeutic targets.
Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Mucosa Intestinal/metabolismo , Obesidad/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Investigación Biomédica/educación , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Glucemia/metabolismo , Congresos como Asunto , Diabetes Mellitus Tipo 2/sangre , Humanos , Ciencias de la Nutrición/educación , Ciencias de la Nutrición/métodos , Ciencias de la Nutrición/tendencias , Obesidad/sangre , Sociedades CientíficasRESUMEN
The human body is now viewed as a complex ecosystem that on a cellular and gene level is mainly prokaryotic. The mammalian liver synthesizes and secretes hydrophilic primary bile acids, some of which enter the colon during the enterohepatic circulation, and are converted into numerous hydrophobic metabolites which are capable of entering the portal circulation, returned to the liver, and in humans, accumulating in the biliary pool. Bile acids are hormones that regulate their own synthesis, transport, in addition to glucose and lipid homeostasis, and energy balance. The gut microbial community through their capacity to produce bile acid metabolites distinct from the liver can be thought of as an "endocrine organ" with potential to alter host physiology, perhaps to their own favor. We propose the term "sterolbiome" to describe the genetic potential of the gut microbiome to produce endocrine molecules from endogenous and exogenous steroids in the mammalian gut. The affinity of secondary bile acid metabolites to host nuclear receptors is described, the potential of secondary bile acids to promote tumors, and the potential of bile acids to serve as therapeutic agents are discussed.
RESUMEN
The liver is the central organ involved in lipid metabolism. Dyslipidemia and its related disorders, including non-alcoholic fatty liver disease (NAFLD), obesity and other metabolic diseases, are of increasing public health concern due to their increasing prevalence in the population. Besides their well-characterized functions in cholesterol homoeostasis and nutrient absorption, bile acids are also important metabolic regulators and function as signaling hormones by activating specific nuclear receptors, G-protein coupled receptors, and multiple signaling pathways. Recent studies identified a new signaling pathway by which conjugated bile acids (CBA) activate the extracellular regulated protein kinases (ERK1/2) and protein kinase B (AKT) signaling pathway via sphingosine-1-phosphate receptor 2 (S1PR2). CBA-induced activation of S1PR2 is a key regulator of sphingosine kinase 2 (SphK2) and hepatic gene expression. This review focuses on recent findings related to the role of bile acids/S1PR2-mediated signaling pathways in regulating hepatic lipid metabolism.
RESUMEN
Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor (FXR) and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a) and PPARα (peroxisome proliferator-activated receptor alpha) in regulation of autophagy-related gene transcription program and liver injury in response to alcohol exposure.