Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell Mol Life Sci ; 81(1): 244, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814462

RESUMEN

Four-and-a-half LIM domains protein 2 (FHL2) is an adaptor protein that may interact with hypoxia inducible factor 1α (HIF-1α) or ß-catenin, two pivotal protective signaling in acute kidney injury (AKI). However, little is known about the regulation and function of FHL2 during AKI. We found that FHL2 was induced in renal tubular cells in patients with acute tubular necrosis and mice model of ischemia-reperfusion injury (IRI). In cultured renal proximal tubular cells (PTCs), hypoxia induced FHL2 expression and promoted the binding of HIF-1 to FHL2 promoter. Compared with control littermates, mice with PTC-specific deletion of FHL2 gene displayed worse renal function, more severe morphologic lesion, more tubular cell death and less cell proliferation, accompanying by downregulation of AQP1 and Na, K-ATPase after IRI. Consistently, loss of FHL2 in PTCs restricted activation of HIF-1 and ß-catenin signaling simultaneously, leading to attenuation of glycolysis, upregulation of apoptosis-related proteins and downregulation of proliferation-related proteins during IRI. In vitro, knockdown of FHL2 suppressed hypoxia-induced activation of HIF-1α and ß-catenin signaling pathways. Overexpression of FHL2 induced physical interactions between FHL2 and HIF-1α, ß-catenin, GSK-3ß or p300, and the combination of these interactions favored the stabilization and nuclear translocation of HIF-1α and ß-catenin, enhancing their mediated gene transcription. Collectively, these findings identify FHL2 as a direct downstream target gene of HIF-1 signaling and demonstrate that FHL2 could play a critical role in protecting against ischemic AKI by promoting the activation of HIF-1 and ß-catenin signaling through the interactions with its multiple protein partners.


Asunto(s)
Lesión Renal Aguda , Túbulos Renales Proximales , Proteínas con Homeodominio LIM , Proteínas Musculares , Daño por Reperfusión , Factores de Transcripción , beta Catenina , Animales , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Humanos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/genética , Ratones , beta Catenina/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Masculino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Transducción de Señal , Ratones Endogámicos C57BL , Ratones Noqueados , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Proliferación Celular , Apoptosis
2.
Front Med (Lausanne) ; 11: 1363643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784225

RESUMEN

Background: Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology with a poor prognosis, characterized by a lack of effective diagnostic and therapeutic interventions. The role of immunity in the pathogenesis of IPF is significant, yet remains inadequately understood. This study aimed to identify potential key genes in IPF and their relationship with immune cells by integrated bioinformatics analysis and verify by in vivo and in vitro experiments. Methods: Gene microarray data were obtained from the Gene Expression Omnibus (GEO) for differential expression analysis. The differentially expressed genes (DEGs) were identified and subjected to functional enrichment analysis. By utilizing a combination of three machine learning algorithms, specific genes associated with idiopathic pulmonary fibrosis (IPF) were pinpointed. Then their diagnostic significance and potential co-regulators were elucidated. We further analyzed the correlation between key genes and immune infiltrating cells via single-sample gene set enrichment analysis (ssGSEA). Subsequently, a single-cell RNA sequencing data (scRNA-seq) was used to explore which cell types expressed key genes in IPF samples. Finally, a series of in vivo and in vitro experiments were conducted to validate the expression of candidate genes by western blot (WB), quantitative real-time PCR (qRT-PCR), and immunohistochemistry (IHC) analysis. Results: A total of 647 DEGs of IPF were identified based on two datasets, including 225 downregulated genes and 422 upregulated genes. They are closely related to biological functions such as cell migration, structural organization, immune cell chemotaxis, and extracellular matrix. CFH and FHL2 were identified as key genes with diagnostic accuracy for IPF by three machine learning algorithms. Analysis using ssGSEA revealed a significant association of both CFH and FHL2 with diverse immune cells, such as B cells and NK cells. Further scRNA-seq analysis indicated CFH and FHL2 were specifically upregulated in human IPF tissues, which was confirmed by in vitro and in vivo experiments. Conclusion: In this study, CFH and FHL2 have been identified as novel potential biomarkers for IPF, with potential diagnostic utility in future clinical applications. Subsequent investigations into the functions of these genes in IPF and their interactions with immune cells may enhance comprehension of the disease's pathogenesis and facilitate the identification of therapeutic targets.

3.
Mol Carcinog ; 63(7): 1334-1348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38629424

RESUMEN

Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.


Asunto(s)
Tumores del Estroma Gastrointestinal , Proteínas con Homeodominio LIM , Proteínas Musculares , Proteínas Proto-Oncogénicas c-kit , Transducción de Señal , Factores de Transcripción , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Tumores del Estroma Gastrointestinal/metabolismo , Animales , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Mesilato de Imatinib/farmacología , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/metabolismo , Línea Celular Tumoral , Ubiquitinación
4.
Artículo en Inglés | MEDLINE | ID: mdl-38664060

RESUMEN

BACKGROUND AND HYPOTHESIS: Arterial medial calcification (AMC) is a common complication in individuals with chronic kidney disease (CKD), which can lead to cardiovascular morbidity and mortality. The progression of AMC is controlled by a key transcription factor called runt-related transcription factor 2 (RUNX2), which induces vascular smooth muscle cells (VSMCs) transdifferentiation into a osteogenic phenotype. However, RUNX2 has not been targeted for therapy due to its essential role in bone development. The objective of our study was to discover a RUNX2 coactivator that is highly expressed in arterial VSMCs as a potential therapy for AMC. METHODS: We employed transcriptomic analysis of human data and an animal reporter system to pinpoint FHL2 as a potential target. Subsequently, we investigated the mRNA and protein expression patterns of FHL2 in the aortas of both human and animal subjects with CKD. To examine the role of FHL2 in the RUNX2 transcription machinery, we conducted coimmunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) experiments. Next, we manipulated FHL2 expression in cultured VSMCs to examine its impact on high phosphate-induced transdifferentiation. Finally, we employed FHL2 null mice to confirm the role of FHL2 in the development of AMC in vivo. RESULTS: Among all the potential RUNX2 cofactor, FHL2 displays selective expression within the cardiovascular system. In the context of CKD subjects, FHL2 undergoes upregulation and translocation from the cytosol to the nucleus of arterial VSMCs. Once in the nucleus, FHL2 interacts structurally and functionally with RUNX2, acting as a coactivator of RUNX2. Notably, the inhibition of FHL2 expression averts transdifferentiation of VSMCs into an osteogenic phenotype and mitigates aortic calcification in uremic animals, without causing any detrimental effects on the skeletal system. CONCLUSION: These observations provide evidence that FHL2 is a promising target for treating arterial calcification in patients with CKD.

5.
J Biol Chem ; 300(5): 107254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569934

RESUMEN

Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.


Asunto(s)
Conectina , Proteínas con Dominio LIM , Proteínas Musculares , Miocitos Cardíacos , Proteínas del Tejido Nervioso , Proteínas Nucleares , Sarcómeros , Animales , Humanos , Ratones , Ratas , Conectina/metabolismo , Conectina/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Homeodominio LIM , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Sarcómeros/metabolismo , Factores de Transcripción
6.
Biochem Genet ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512583

RESUMEN

Radiotherapy resistance is a major cause of treatment failure and leads to poor prognosis in nasopharyngeal carcinoma (NPC). Evidences indicate that microRNA (miRNAs) are closely associated with radiotherapy for NPC. In this study, we found that the expression level of miR-92b-3p was significantly higher in radiotherapy-sensitive NPC patients than in radiotherapy-resistant patients. High expression of miR-92b-3p was associated with good prognosis in patients with NPC, and high expression of FHL2 was associated with poor prognosis in patients with NPC. It was predicted that miR-92b-3p could directly target and bind FHL2. Overexpression of miR-92b-3p significantly inhibited FHL2 expression at the mRNA as well as protein levels, while inhibition of miR-92b-3p expression significantly upregulated FHL2 expression. Overexpression of miR-92b-3p significantly reduced proliferation and colony formation in NPC cells. Inhibition of miR-92b-3p attenuated the sensitivity of nasopharyngeal carcinoma to radiotherapy, while simultaneous inhibition of miR-92b-3p and FHL2 increased the sensitivity of NPC to radiotherapy. Our findings highlighted that miR-92b-3p is closely associated with radiotherapy sensitivity and prognosis in NPC patients and may improve the sensitivity of NPC to radiotherapy by targeting FHL2.

7.
J Thorac Dis ; 16(2): 1424-1437, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38505066

RESUMEN

Background: Antiangiogenetic therapy is one of the effective strategies for non-small cell lung cancer (NSCLC) treatment. Four-and-a-half LIM-domain protein 2 (FHL2) serves as a key function in cell growth and metastasis of multiple cancers, but the role of FHL2 in NSCLC angiogenesis has not been intensely examined. Methods: FHL2 expression in NSCLC tissues and cell lines and its correlation with patients prognosis were investigated by using The Cancer Genome Atlas (TCGA) database and quantitative polymerase chain reaction (qPCR). Cell Counting Kit-8 (CCK-8) assay, EdU (5-ethynyl-2'-deoxyuridine) assay, and a xenograft model were used to investigate the effects of FHL2 on NSCLC progression in vitro and in vivo. CCK-8, wound-healing, Transwell invasion, tube formation, and permeability assays were performed to determine the roles of FHL2 in angiogenesis and vascular permeability. Vascular endothelial growth factor A (VEGFA) enzyme-linked immunosorbent assay (ELISA) assay, Western blot analysis, and MK-2206 were used to investigate the specific mechanism mediated by FHL2. Results: We demonstrated that FHL2 was significantly upregulated in NSCLC tissues and cell lines and was associated with poor prognosis. FHL2 overexpression enhanced the cell viability of NSCLC cells, as well as the proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). In addition, we determined that FHL2 activated the AKT-mTOR signaling pathway in HUVECs by promoting VEGFA secretion from NSCLC cells, thereby inducing angiogenesis and vascular leakiness. We further confirmed that FHL2 also promoted NSCLC tumor growth in vivo. Conclusions: Our study revealed the role of FHL2 in NSCLC and the mechanism by which FHL2 promotes NSCLC tumorigenesis, providing novel insights into targeted therapy for NSCLC.

8.
Front Endocrinol (Lausanne) ; 15: 1292653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304464

RESUMEN

Introduction: Cardiac-enriched FHL2-interacting protein (CEFIP) is a recently identified protein, first found in the z-disc of striated muscles, and related to cardiovascular diseases. Our objectives are: 1) to quantify CEFIP in saliva in healthy 7-9 years old school-children; and 2) to assess the associations of salivary CEFIP concentration and blood pressure, physical (in)activity and physical fitness in these children. Methods: A total of 72 children (7.6 ± 0.3 years) were included in the study, recruited in primary schools in Girona (Spain). A sandwich enzyme-linked immunosorbent assay was used (abx506878; Abbexa, United Kingdom) to quantify CEFIP in saliva. Anthropometric evaluation was performed [body mass, height and body mass index (BMI)]. Systolic and diastolic blood pressure were measured by means of an electronic oscillometer and the diastolic-to-systolic blood pressure ratio (D/S BP ratio) was calculated. Physical (in)activity [sedentary time and time spent in physical activity (PA)] were assessed by means of a triaxial Actigraph GT3X accelerometer (Actigraph, Pensacola, FL, USA) that children were instructed to wear for 24h during 7 conssecutive days. Finally, physical fitness (speed and agility, explosive power of legs, handgrip strength, flexibility and balance) were assessed through validated and standardized testing batteries. Results: CEFIP was easily detected and measured in all saliva samples (mean concentration: 0.6 ± 0.2 pg/ml). Salivary CEFIP was positively associated with D/S BP ratio (r=0.305, p=0.010) and sedentary time (r=0.317, p=0.012), but negatively associated with PA in 7-9 years old school-children (r=-0.350, p=0.002). Furthermore, salivary CEFIP was related to lower level of balance i.e., higher center of pressure (CoP) displacement in these children (r=0.411, p<0.001). The associations of salivary CEFIP with D/S BP ratio (Beta=0.349, p=0.004), sedentary time (Beta=0.354, p=0.009) and CoP displacement (Beta=0.401, p=0.001), were maintained significant after adjustment for potential confounding variables such as age, gender and BMI in linear regression analyses. Conclusion: CEFIP can be easily assessed in saliva as a promising biomarker associated with cardiovascular health in 7-9 years old school-children. Interestingly, higher salivary CEFIP concentration was related to higher D/S BP ratio, more sedentary time and higher CoP displacement i.e., lower level of balance in these children.


Asunto(s)
Presión Sanguínea , Péptidos y Proteínas de Señalización Intercelular , Conducta Sedentaria , Niño , Humanos , Presión Sanguínea/fisiología , Índice de Masa Corporal , Ejercicio Físico/fisiología , Fuerza de la Mano , Proteínas con Homeodominio LIM , Proteínas Musculares , Factores de Transcripción , Péptidos y Proteínas de Señalización Intercelular/análisis
9.
Thorac Cancer ; 15(8): 630-641, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38323374

RESUMEN

BACKGROUND: Increasing evidence indicates that four and a half LIM domains 2 (FHL2) plays a crucial role in the progression of various cancers. However, the biological functions and molecular mechanism of FHL2 in lung adenocarcinoma (LUAD) remain unclear. METHODS: We evaluated the prognostic value of FHL2 in LUAD using public datasets and further confirmed its prognostic value with our clinical data. The biological functions of FHL2 in LUAD were evaluated by in vitro and in vivo experiments. Pathway analysis and rescue experiments were subsequently performed to explore the molecular mechanism by which FHL2 promoted the progression of LUAD. RESULTS: FHL2 was upregulated in LUAD tissues compared to adjacent normal lung tissues, and FHL2 overexpression was correlated with unfavorable outcomes in patients with LUAD. FHL2 knockdown significantly suppressed the proliferation, migration and invasion of LUAD cells, while FHL2 overexpression had the opposite effect. Mechanistically, FHL2 upregulated the PI3K/AKT/mTOR pathway and subsequently inhibited autophagy in LUAD cells. The effects FHL2 on the proliferation, migration and invasion of LUAD cells are dependent on the inhibition of autophagy, as of induction autophagy attenuated the aggressive phenotype induced by FHL2 overexpression. CONCLUSIONS: FHL2 promotes the progression of LUAD by activating the PI3K/AKT/mTOR pathway and subsequently inhibiting autophagy, which can be exploited as a potential therapeutic target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Adenocarcinoma del Pulmón/patología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Pulmonares/patología , Autofagia , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/farmacología
10.
Reprod Biomed Online ; 48(1): 103342, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37945432

RESUMEN

RESEARCH QUESTION: Is four and a half LIM domain 2 (FHL2) involved in trophoblast migration, invasion and epithelial-mesenchymal transition (EMT) in recurrent miscarriage? DESIGN: Villus tissue was collected from 24 patients who had experienced recurrent miscarriage and 24 healthy controls. FHL2 mRNA and protein expression in villus specimens were observed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Small interfering RNA and overexpression plasmid were used to change the FHL2 expression. JAR and HTR8/SVneo cell lines were used to conduct scratch-wound assay and transwell assay to detect trophoblast migration and invasion of FHL2. Downstream molecule expression of mRNA and protein and EMT markers were verified by qRT-PCR and Western blot. RESULTS: Significantly lower FHL2 mRNA (P = 0.019) and protein (P = 0.0014) expression was found in trophoblasts from the recurrent miscarriage group compared with healthy controls. FHL2 knockdown repressed migration (P = 0.0046), invasion (P < 0.001) and EMT, as shown by significant differences in mRNA and protein expression of the EMT markers N-cadherin, E-cadherin, Vimentin and Snail (all P < 0.05) of extravillus trophoblasts. FHL2 overexpression enhanced migration (P = 0.025), invasion (P < 0.001) and EMT of extravillus trophoblasts (all EMT markers P < 0.05). The positive upstream factor FHL2 in the extracellular signal-related kinase pathway induced JunD expression, thereby promoting trophoblast migration and invasion via matrix metalloproteinase 2. CONCLUSIONS: FHL2 is involved in a regulatory pathway of trophoblast migration, invasion and EMT during early pregnancy, and may have a role in recurrent miscarriage pathogenesis, which can serve as a possible target for novel therapeutic development.


Asunto(s)
Aborto Habitual , Metaloproteinasa 2 de la Matriz , Embarazo , Femenino , Humanos , Regulación hacia Abajo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Trofoblastos/patología , Transición Epitelial-Mesenquimal/genética , Aborto Habitual/patología , ARN Mensajero/metabolismo , Movimiento Celular , Proliferación Celular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Factores de Transcripción/genética , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo
11.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834391

RESUMEN

Obesity is characterized by the expansion of the adipose tissue, usually accompanied by inflammation, with a prominent role of macrophages infiltrating the visceral adipose tissue (VAT). This chronic inflammation is a major driver of obesity-associated comorbidities. Four-and-a-half LIM-domain protein 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of various biological functions and the maintenance of the homeostasis of different tissues. In this study, we aimed to gain new insights into the expression and functional role of FHL2 in VAT in diet-induced obesity. We found enhanced FHL2 expression in the VAT of mice with Western-type diet (WTD)-induced obesity and obese humans and identified macrophages as the cellular source of enhanced FHL2 expression in VAT. In mice with FHL2 deficiency (FHL2KO), WTD feeding resulted in reduced body weight gain paralleled by enhanced energy expenditure and uncoupling protein 1 (UCP1) expression, indicative of activated thermogenesis. In human VAT, FHL2 was inversely correlated with UCP1 expression. Furthermore, macrophage infiltration and the expression of the chemokine MCP-1, a known promotor of macrophage accumulation, was significantly reduced in WTD-fed FHL2KO mice compared with wild-type (wt) littermates. While FHL2 depletion did not affect the differentiation or lipid metabolism of adipocytes in vitro, FHL2 depletion in macrophages resulted in reduced expressions of MCP-1 and the neuropeptide Y (NPY). Furthermore, WTD-fed FHL2KO mice showed reduced NPY expression in VAT compared with wt littermates, and NPY expression was enhanced in VAT resident macrophages of obese individuals. Stimulation with recombinant NPY induced not only UCP1 expression and lipid accumulation but also MCP-1 expression in adipocytes. Collectively, these findings indicate that FHL2 is a positive regulator of NPY and MCP-1 expression in macrophages and herewith closely linked to the mechanism of obesity-associated lipid accumulation and inflammation in VAT. Thus, FHL2 appears as a potential novel target to interfere with the macrophage-adipocyte crosstalk in VAT for treating obesity and related metabolic disorders.


Asunto(s)
Grasa Intraabdominal , Neuropéptido Y , Animales , Humanos , Ratones , Tejido Adiposo/metabolismo , Dieta , Dieta Alta en Grasa , Inflamación/metabolismo , Grasa Intraabdominal/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Lípidos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Factores de Transcripción/metabolismo
12.
Int Immunopharmacol ; 124(Pt A): 110853, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37708708

RESUMEN

Neuronal apoptosis and inflammation exacerbate the secondary injury after spinal cord injury (SCI). Four and a half domains 2 (FHL2) is a multifunctional scaffold protein with tissue- and cell-type specific effects on the regulation of inflammation, but its role in SCI remains unclear. The T10 mouse spinal cord contusion model was established, and the mice were immediately injected with lentiviruses carrying FHL2 shRNA after SCI. The results showed that FHL2 expression was increased following SCI, and then gradually decreased. Moreover, FHL2 depletion aggravated functional impairment, neuronal necrosis, and enlarged lesion cavity areas in the injured spinal cord. FHL2 deficiency facilitated neuronal apoptosis by elevating cleaved caspase 3/9 expression, neuroinflammation by regulating microglia polarization, and bone loss. Indeed, FHL2 deficiency increased the secretion of TNF-α and IL-6, M1 microglia polarization, and the activation of STAT1 pathway but decreased the secretion of IL-10 and IL-4, M2 microglia polarization, and the activation of the STAT6 pathway in the spinal cord. In vitro, FHL2 silencing promoted LPS + IFN-γ-induced microglia M1 polarization through activating the STAT1 pathway and alleviated IL-4-induced microglia M2 polarization via inhibiting the STAT6 pathway. FHL2 positively regulated the expression of poly (ADP-ribose) polymerase family member 14 (PARP14) by promoting its transcription. PARP14 overexpression inhibited FHL2 silencing-induced microglia M1 polarization and relieved the inhibitory effect of FHL2 silencing on microglia M2 polarization. Collectively, the study suggests that FHL2 reduces the microglia M1/M2 polarization-mediated inflammation via PARP14-dependent STAT1/6 pathway and thereby improves functional recovery after SCI.

13.
Transl Cancer Res ; 12(6): 1516-1534, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37434686

RESUMEN

Background: The FHL family (four-and-a-half-LIM-only protein family) contains five multifunctional proteins (FHL1-5) that are involved in cell survival, transcriptional regulation, and signal transduction. Among these proteins, FHL2 is one of the most reported members in tumors, which is differentially expressed in numerous tumors. However, no systematic pan-cancer analysis of FHL2 has been performed so far. Methods: We obtained The Cancer Genome Atlas (TCGA) expression profiles and clinical data from Xena database and the Tumor Immune Estimation Resource (TIMER) database. Gene expression, prognosis, mRNA modification, and immune infiltration of FHL2 in pan-cancer were analyzed. Functional analysis validated the potential mechanism of FHL2 in lung adenocarcinoma (LUAD). Results: FHL2 is differentially expressed in a wide range of tumors and has prognostic value. Digging into the immune landscape of FHL2, we found that FHL2 is significantly associated with tumor-associated fibroblasts. Furthermore, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) suggested that FHL2 may be involved in epithelial-mesenchymal transition (EMT)-associated pathways such as NF-KB and TGF-ß in LUAD. Conclusions: Our comprehensive bioinformatics analysis identified mRNA level expression of FHL2 correlates with prognosis in different cancers. This study may help to more fully explore the role of FHL2 in tumor progression and metastasis.

14.
Clin Exp Med ; 23(7): 3113-3124, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37103649

RESUMEN

LIM domain protein 2, also known as LIM protein FHL2, is a member of the LIM-only family. Due to its LIM domain protein characteristics, FHL2 is capable of interacting with various proteins and plays a crucial role in regulating gene expression, cell growth, and signal transduction in muscle and cardiac tissue. In recent years, mounting evidence has indicated that the FHLs protein family is closely associated with the development and occurrence of human tumors. On the one hand, FHL2 acts as a tumor suppressor by down-regulating in tumor tissue and effectively inhibiting tumor development by limiting cell proliferation. On the other hand, FHL2 serves as an oncoprotein by up-regulating in tumor tissue and binding to multiple transcription factors to suppress cell apoptosis, stimulate cell proliferation and migration, and promote tumor progression. Therefore, FHL2 is considered a double-edged sword in tumors with independent and complex functions. This article reviews the role of FHL2 in tumor occurrence and development, discusses FHL2 interaction with other proteins and transcription factors, and its involvement in multiple cell signaling pathways. Finally, the clinical significance of FHL2 as a potential target in tumor therapy is examined.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias/genética , Transducción de Señal , Proteínas con Dominio LIM , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
15.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901761

RESUMEN

Type 2 diabetes mellitus (T2D) is a prevalent disease often accompanied by the occurrence of dyslipidemia. Four and a half LIM domains 2 (FHL2) is a scaffolding protein, whose involvement in metabolic disease has recently been demonstrated. The association of human FHL2 with T2D and dyslipidemia in a multiethnic setting is unknown. Therefore, we used the large multiethnic Amsterdam-based Healthy Life in an Urban Setting (HELIUS) cohort to investigate FHL2 genetic loci and their potential role in T2D and dyslipidemia. Baseline data of 10,056 participants from the HELIUS study were available for analysis. The HELIUS study contained individuals of European Dutch, South Asian Surinamese, African Surinamese, Ghanaian, Turkish, and Moroccan descent living in Amsterdam and were randomly sampled from the municipality register. Nineteen FHL2 polymorphisms were genotyped, and associations with lipid panels and T2D status were investigated. We observed that seven FHL2 polymorphisms associated nominally with a pro-diabetogenic lipid profile including triglyceride (TG), high-density and low-density lipoprotein-cholesterol (HDL-C and LDL-C), and total cholesterol (TC) concentrations, but not with blood glucose concentrations or T2D status in the complete HELIUS cohort upon correcting for age, gender, BMI, and ancestry. Upon stratifying for ethnicity, we observed that only two of the nominally significant associations passed multiple testing adjustments, namely, the association of rs4640402 with increased TG and rs880427 with decreased HDL-C concentrations in the Ghanaian population. Our results highlight the effect of ethnicity on pro-diabetogenic selected lipid biomarkers within the HELIUS cohort, as well as the need for more large multiethnic cohort studies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dislipidemias , Humanos , Ghana , Triglicéridos , HDL-Colesterol , Proteínas Musculares , Factores de Transcripción , Proteínas con Homeodominio LIM
16.
Exp Cell Res ; 423(2): 113470, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36641135

RESUMEN

OBJECTIVE: This study aimed to investigate the inhibiting effects of FHL2 and Arbutin on cell fibrosis and their possible mechanisms. METHODS: The mRNA expression of FHL2 in pulmonary fibrosis tissues was analyzed by bioinformatics. TGF⁃ß1 induced fibrosis of mouse lung fibroblast (Mlg) and mouse primary pulmonary fibroblast (PPF) in rat's lung fibroblasts. FHL2 siRNA was transfected into Mlg and mouse PPF cells to inhibit FHL2. FHL2, α-smooth muscle actin (α-SMA), collagen 1 (Col I), and Fibronectin (Fn) were detected by qRT-PCR. Western blot expression levels of Smad3, p-Smad3, Smad2, and p-Smad2 proteins in cells. High-throughput drug screening for FHL2 inhibitors and the inhibitory effect of Arbutin on pulmonary fibrosis were validated in cellular and animal models of pulmonary fibrosis. RESULTS: The mRNA expression of FHL2 in lung fiber tissue was increased. Meanwhile, the decrease of FHL2 expression significantly inhibited the cellular fibrosis morphological changes of rat's lung fibroblasts (Mlgs) and primary lung fibroblasts (PPFs). The expression levels of α⁃SMA, Col I, and Fn were decreased. High-throughput screening showed that Arbutin targeted FHL2. Arbutin alleviated bleomycin (BLM)-induced pulmonary fibrosis in rats by inhibiting FHL2 and then the TGF-ß1/Smad signaling pathway. CONCLUSION: Inhibition of FHL2 can effectively reduce the fibrosis process induced by TGF⁃ß1 and bleomycin, and then inhibit the fibrosis.


Asunto(s)
Fibrosis Pulmonar , Animales , Ratones , Ratas , Arbutina/efectos adversos , Arbutina/metabolismo , Bleomicina/farmacología , Fibroblastos/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Pulmón/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
17.
Cell Signal ; 104: 110587, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36610523

RESUMEN

The LIM-domain-only protein FHL2 is a modulator of signal transduction and has been shown to direct the differentiation of mesenchymal stem cells towards osteoblast and myocyte phenotypes. We hypothesized that FHL2 may simultaneously interfere with the induction of the adipocyte lineage. Therefore, we investigated the role of FHL2 in adipocyte differentiation. For these studies pre-adipocytes isolated from mouse adipose tissue and the 3T3-L1 (pre)adipocyte cell line were applied. We performed FHL2 gain of function and knockdown experiments followed by extensive RNAseq analyses and phenotypic characterization of the cells by oil-red O (ORO) lipid staining. Through affinity-purification mass spectrometry (AP-MS) novel FHL2 interacting proteins were identified. Here we report that FHL2 is expressed in pre-adipocytes and for accurate adipocyte differentiation, this protein needs to be downregulated during the early stages of adipogenesis. More specifically, constitutive overexpression of FHL2 drastically inhibits adipocyte differentiation in 3T3-L1 cells, which was demonstrated by suppressed activation of the adipogenic gene expression program as shown by RNAseq analyses, and diminished lipid accumulation. Analysis of the protein-protein interactions mediating this repressive activity of FHL2 on adipogenesis revealed the interaction of FHL2 with the Nuclear factor of activated T-cells 5 (NFAT5). NFAT5 is an established inhibitor of adipocyte differentiation and its knockdown rescued the inhibitory effect of FHL2 overexpression on 3T3-L1 differentiation, indicating that these proteins act cooperatively. We present a new regulatory function of FHL2 in early adipocyte differentiation and revealed that FHL2-mediated inhibition of pre-adipocyte differentiation is dependent on its interaction with NFAT5. FHL2 expression increases with aging, which may affect mesenchymal stem cell differentiation, more specifically inhibit adipocyte differentiation.


Asunto(s)
Adipocitos , Adipogénesis , Ratones , Animales , Adipogénesis/genética , Diferenciación Celular , Adipocitos/metabolismo , Transducción de Señal , Lípidos , Células 3T3-L1 , Factores de Transcripción/metabolismo , Proteínas Musculares/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/farmacología
18.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38203523

RESUMEN

SARS-CoV-2 triggered the global COVID-19 pandemic, posing a severe threat to public health worldwide. The innate immune response in cells infected by SARS-CoV-2 is primarily orchestrated by type I interferon (IFN), with IFN-ß exhibiting a notable inhibitory impact on SARS-CoV-2 replication. FHL2, acting as a docking site, facilitates the assembly of multiprotein complexes and regulates the transcription of diverse genes. However, the association between SARS-CoV-2 and FHL2 remains unclear. In this study, we report for the first time that SARS-CoV-2 infection in Caco2 cells results in the upregulation of FHL2 expression, while the virus's N proteins can enhance FHL2 expression. Notably, the knockdown of FHL2 significantly amplifies SARS-CoV-2 replication in vitro. Conversely, the overexpression of FHL2 leads to a marked reduction in SARS-CoV-2 replication, with the antiviral property of FHL2 being independent of the cell or virus type. Subsequent experiments reveal that FHL2 supports IFN-ß transcription by upregulating the expression and phosphorylation of IRF-3, thereby impeding SARS-CoV-2 replication in cells. These findings highlight FHL2 as a potential antiviral target for treating SARS-CoV-2 infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Células CACO-2 , Proteínas con Homeodominio LIM/genética , Proteínas Musculares/genética , Pandemias , Factores de Transcripción , Interferón beta/metabolismo
19.
Aging (Albany NY) ; 14(19): 7986-8000, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36227138

RESUMEN

BACKGROUND: Lung cancer is the most frequent cancer globally with a high number of cancer-related deaths. The 4-and-a-half LIM domain protein 2 (FHL2) is an oncogenic gene, which promotes the proliferation, invasion, and metastasis of cancer cells. In this study, we aimed to demonstrate that lung cancer patients with high FHL2 expression have worse overall survival (OS) and relapse-free survival (RFS). METHODS: TCGA was used to study FHL2 mRNA expression. Nomograms were used to predict the relationship between FHL2 expression levels and survival. The qRT-PCR was used to detect the FHL2 expression in lung cancer cells. In vitro experiments including CCK-8 assay, wound healing, and Transwell assay were performed. RESULTS: This study comprised RNA-Seq gene expression data and clinical features for 1018 lung cancer patients. FHL2 was found to be overexpressed in lung cancer tissues. FHL2 demonstrated moderate diagnostic ability for lung cancer (AUC = 0.857). Kaplan-Meier curves and Cox regression analysis revealed the higher FHL2 expression with the poorer OS and RFS (P < 0.001). The nomogram results indicated that FHL2 could be used to predict the survival of lung cancer patients. GSEA analysis results show that high expression of FHL2 is related to glycolysis and unfolded protein reflection. FHL2 was highly expressed in lung cancer cells and related to their proliferation, migration, and invasion ability. CONCLUSIONS: The high expression level of FHL2 in lung cancer can be used as an independent predictor of prognosis in clinical practice.


Asunto(s)
Neoplasias Pulmonares , Factores de Transcripción , Humanos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Pronóstico , ARN Mensajero/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Recurrencia Local de Neoplasia , Neoplasias Pulmonares/genética
20.
Front Pharmacol ; 13: 918335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910357

RESUMEN

Purpose: Heart failure (HF) is a leading cause of morbidity and mortality worldwide, and it is characterized by cardiac hypertrophy and fibrosis. However, effective treatments are not available to block cardiac fibrosis after cardiac hypertrophy. The QiShenYiQi pill (QSYQ) is an effective treatment for chronic HF. However, the underlying mechanism remains unclear. Methods: In the present study, a pressure overload-induced cardiac hypertrophy model was established in rats by inducing ascending aortic stenosis for 4 weeks. QSYQ was administered for 6 weeks, and its effects on cardiac fibrosis, myocardial apoptosis, RP S19 release, macrophage polarization, TGF-ß1 production, and TGF-ß1/Smad signaling were analyzed. In vitro studies using H9C2, Raw264.7, and RDF cell models were performed to confirm the in vivo study findings and evaluate the contribution to the observed effects of the main ingredients of QSYQ, namely, astragaloside IV, notoginsenoside R1, 3,4-dihydroxyl-phenyl lactic acid, and Dalbergia odorifera T. C. Chen oil. The role of four-and-a-half LIM domains protein 2 (FHL2) in cardiac fibrosis and QSYQ's effects were assessed by small interfering RNAs (siRNAs). Results: QSYQ ameliorated cardiac fibrosis after pressure overload-induced cardiac hypertrophy and attenuated cardiomyocyte apoptosis, low FHL2 expression, and TGF-ß1 release by the injured myocardium. QSYQ also inhibited the following: release of RP S19 from the injured myocardium, activation of C5a receptors in monocytes, polarization of macrophages, and release of TGF-ß1. Moreover, QSYQ downregulated TGF-ßR-II expression induced by TGF-ß1 in fibroblasts and inhibited Smad protein activation and collagen release and deposition. Conclusion: The results showed that QSYQ inhibited myocardial fibrosis after pressure overload, which was mediated by RP S19-TGF-ß1 signaling and decreased FHL2, thus providing support for QSYQ as a promising therapy for blocking myocardial fibrosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...