Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20160, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39215103

RESUMEN

Site-specific recombinases (SSRs) are critical for achieving precise spatiotemporal control of engineered alleles. These enzymes play a key role in facilitating the deletion or inversion of loci flanked by recombination sites, resulting in the activation or repression of endogenous genes, selection markers or reporter elements. However, multiple recombination in complex alleles can be laborious. To address this, a new and efficient method using AAV vectors has been developed to simplify the conversion of systems based on Cre, FLP, Dre and Vika recombinases. In this study, we present an effective method for ex vivo allele conversion using Cre, FLP (flippase), Dre, and Vika recombinases, employing adeno-associated viruses (AAV) as delivery vectors. AAVs enable efficient allele conversion with minimal toxicity in a reporter mouse line. Moreover, AAVs facilitate sequential allele conversion, essential for fully converting alleles with multiple recombination sites, typically found in conditional knockout mouse models. While simple allele conversions show a 100% efficiency rate, complex multiple conversions consistently achieve an 80% conversion rate. Overall, this strategy markedly reduces the need for animals and significantly speeds up the process of allele conversion, representing a significant improvement in genome engineering techniques.


Asunto(s)
Alelos , Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Vectores Genéticos/genética , Ratones , Conversión Génica , Blastocisto/metabolismo , ADN Nucleotidiltransferasas/genética , ADN Nucleotidiltransferasas/metabolismo , Recombinación Genética
2.
BMC Genomics ; 25(1): 568, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840068

RESUMEN

BACKGROUND: Transgenic (Tg) mice are widely used in biomedical research, and they are typically generated by injecting transgenic DNA cassettes into pronuclei of one-cell stage zygotes. Such animals often show unreliable expression of the transgenic DNA, one of the major reasons for which is random insertion of the transgenes. We previously developed a method called "pronuclear injection-based targeted transgenesis" (PITT), in which DNA constructs are directed to insert at pre-designated genomic loci. PITT was achieved by pre-installing so called landing pad sequences (such as heterotypic LoxP sites or attP sites) to create seed mice and then injecting Cre recombinase or PhiC31 integrase mRNAs along with a compatible donor plasmid into zygotes derived from the seed mice. PITT and its subsequent version, improved PITT (i-PITT), overcome disadvantages of conventional Tg mice such as lack of consistent and reliable expression of the cassettes among different Tg mouse lines, and the PITT approach is superior in terms of cost and labor. One of the limitations of PITT, particularly using Cre-mRNA, is that the approach cannot be used for insertion of conditional expression cassettes using Cre-LoxP site-specific recombination. This is because the LoxP sites in the donor plasmids intended for achieving conditional expression of the transgene will interfere with the PITT recombination reaction with LoxP sites in the landing pad. RESULTS: To enable the i-PITT method to insert a conditional expression cassette, we modified the approach by simultaneously using PhiC31o and FLPo mRNAs. We demonstrate the strategy by creating a model containing a conditional expression cassette at the Rosa26 locus with an efficiency of 13.7%. We also demonstrate that inclusion of FLPo mRNA excludes the insertion of vector backbones in the founder mice. CONCLUSIONS: Simultaneous use of PhiC31 and FLP in i-PITT approach allows insertion of donor plasmids containing Cre-loxP-based conditional expression cassettes.


Asunto(s)
Genoma , Integrasas , Ratones Transgénicos , Animales , Ratones , Integrasas/genética , Integrasas/metabolismo , Transgenes , Marcación de Gen/métodos , Técnicas de Transferencia de Gen , Plásmidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mutagénesis Insercional
3.
Insect Sci ; 31(1): 28-46, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37356084

RESUMEN

The safety of transgenic technology is a major obstacle in the popularization and use of transgenic silkworms and their products. In sericulture, only the first filial generation (F1 ) hybrid eggs produced by cross-breeding Japanese and Chinese original strains are usually used for the large-scale breeding of silkworms, but this may result in uncontrolled transgene dispersal during the popularization and application of the F1 hybrid transgenic eggs. To address this issue, we developed a safe and efficient strategy using the GAL4/Upstream activating sequence (UAS) system, the FLP/flippase recognition target (FRT) system, and the gonad-specific expression gene promoters (RSHP1p and Nanosp) for the germ cell-specific automatic excision of foreign DNA in the F1 hybrid transgenic silkworms. We established 2 types of activator strains, R1p::GAL4-Gr and Nsp::GAL4-Gr, containing the testis-specific GAL4 gene expression cassettes driven by RSHP1p or Nanosp, respectively, and 1 type of effector strain, UAS::FLP-Rg, containing the UAS-linked FLP gene expression cassette. The FLP recombinase-mediated sperm-specific complete excision of FRT-flanked target DNA in the F1 double-transgenic silkworms resulting from the hybridization of R1p::GAL4-Gr and UAS::FLP-Rg was 100%, whereas the complete excision efficiency resulting from the hybridization of Nsp::GAL4-Gr and UAS::FLP-Rg ranged from 13.73% to 80.3%. Additionally, we identified a gene, sw11114, that is expressed in both testis and ovary of Bombyx mori, and can be used to establish novel gonad-specific expression systems in transgenic silkworms. This strategy has the potential to fundamentally solve the safety issue in the production of F1 transgenic silkworm eggs and provides an important reference for the safety of transgenic technology in other insect species.


Asunto(s)
Bombyx , Femenino , Animales , Masculino , Bombyx/genética , Proteínas Fluorescentes Verdes/genética , Semen , Animales Modificados Genéticamente , ADN , Células Germinativas
4.
Methods Mol Biol ; 2637: 161-180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773146

RESUMEN

The Cre/loxP system is a versatile and powerful tool that has been used to develop many kinds of genetically modified mice, such as conditional knockout mice and mutant protein-expressing mice through the excision of a STOP cassette. However, while numerous in vivo and in vitro applications of the Cre/loxP system have been reported, it remains difficult to target at one time more than one set of recognition sites in an identical single cell in mice using the Cre/loxP system. To overcome this barrier, we developed two novel site-specific recombination systems called VCre/VloxP and SCre/SloxP. These systems allow multiple independent site-specific recombination, for example, multiple targeted deletions in the same cell at different times. In this chapter, I describe the features of VCre/VloxP and SCre/SloxP, practical protocols and tips on how to use them in genomic engineering applications, potential problems in their use, and how problems can be identified and solved.


Asunto(s)
Genoma , Integrasas , Ratones , Animales , Integrasas/genética , Ratones Noqueados , Genómica , Recombinación Genética
5.
Genetics ; 223(1)2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36321973

RESUMEN

Control of gene expression in specific tissues and/or at certain stages of development allows the study and manipulation of gene function with high precision. Site-specific genome recombination by the flippase (FLP) and cyclization recombination (Cre) enzymes has proved particularly relevant. Joint efforts of many research groups have led to the creation of efficient FLP and Cre drivers to regulate gene expression in a variety of tissues in Caenorhabditis elegans. Here, we extend this toolkit by the addition of FLP lines that drive recombination specifically in distal tip cells, the somatic gonad, coelomocytes, and the epithelial P lineage. In some cases, recombination-mediated gene knockouts do not completely deplete protein levels due to persistence of long-lived proteins. To overcome this, we developed a spatiotemporally regulated degradation system for green fluorescent fusion proteins based on FLP-mediated recombination. Using 2 stable nuclear pore proteins, MEL-28/ELYS and NPP-2/NUP85 as examples, we report the benefit of combining tissue-specific gene knockout and protein degradation to achieve complete protein depletion. We also demonstrate that FLP-mediated recombination can be utilized to identify transcriptomes in a C. elegans tissue of interest. We have adapted RNA polymerase DamID for the FLP toolbox and by focusing on a well-characterized tissue, the hypodermis, we show that the vast majority of genes identified by RNA polymerase DamID are known to be expressed in this tissue. These tools allow combining FLP activity for simultaneous gene inactivation and transcriptomic profiling, thus enabling the inquiry of gene function in various complex biological processes.


Asunto(s)
Caenorhabditis elegans , ADN Nucleotidiltransferasas , Animales , ADN Nucleotidiltransferasas/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteolisis , Transcriptoma , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
6.
Front Microbiol ; 13: 977580, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177460

RESUMEN

Ralstonia solanacearum species complex (RSSC) is a group of Gram-negative bacterial pathogen capable of infecting numerous plants and crops, causing severe vascular wilt diseases. Functional analysis of the genes associated with bacterial virulence is critical for elucidating the molecular mechanisms that govern the bacterial pathogenicity. To this end, an efficient gene deletion method would be of great help. In this study, we set to develop an efficient and simple markerless gene deletion method by exploiting its natural transformation competence and the FLP/FRT recombination system. We found that natural transformation using PCR products provided much higher transformation frequency than the plasmid-based triparental mating and electroporation. We thus generated the gene deletion fusion PCR fragments by incorporating the upstream and downstream DNA fragments of the target gene and an antibiotic resistance gene flanked by FRT sites, and delivered the PCR products into R. solanacearum cells through natural transformation. Using this method, we knocked out the epsB and phcA genes, which are associated with exopolysaccharide (EPS) biosynthesis and regulation, respectively, in several R. solanacearum strains isolated from different host plants at a frequency from 5 (1E-08) to 45 (1E-08). To remove the antibiotic marker gene, the plasmid expressing the FLP enzyme was introduced into the above knockout mutants, which enabled removal of the marker gene. The effective combination of natural transformation and the FLP/FRT recombination system thus offers a simple and efficient method for functional study of putative virulence genes and for elucidation of R. solanacearum pathogenic mechanisms.

7.
Appl Microbiol Biotechnol ; 106(13-16): 5167-5178, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35851417

RESUMEN

Glaesserella parasuis is an important bacterial pathogen that affects the swine industry worldwide. Research on the pathogenic mechanism and genetically engineered vaccine remains undeveloped because an effective markerless and multiple-gene knockout system is unavailable for G. parasuis yet. To establish a markerless knockout, deleted allelic genes with kanamycin resistance (KanR) cassettes were introduced into the genome of G. parasuis by using natural transformation with suicide plasmids. Then, the KanR cassette was excised with a thermosensitive plasmid pGF conferring a constitutive Flp expression. To realize the markerless and multiple-gene knockout, plasmid pGAF was constructed by placing the Flp gene under the control of an arabinose-inducible promoter. Firstly, pGAF was introduced into G. parasuis by electroporation, and the marked mutants were produced following natural transformation. Finally, the KanR cassette was excised from the genome by the inducible expression of Flp upon arabinose action. Based on the natural transformation and the inducible expression of Flp, the markerless single-gene knockout mutants of ΔhsdR, ΔneuA2, ΔespP2, Δapd, and ΔnanH were constructed. In addition, a five-gene knockout mutant of ΔhsdRΔneuA2ΔespP2ΔapdΔnanH was generated by successive natural transformation with five suicide plasmids. Taken together, a markerless and multiple-gene deletion system was established for G. parasuis in the present study for the first time. This system is simple, efficient, and easy to manipulate for G. parasuis; thus, our technique will substantially aid the understanding of the etiology, pathogenesis, and genetic engineering of G. parasuis and other bacteria that can be naturally transformed in laboratory conditions. KEY POINTS: • Flp recombinase excised the KanR gene flanked by FRT sites in Glaesserella parasuis. • The regulatory expression of Flp enabled a multiple-gene knockout forG. parasuis. • The technique will promote the understanding of Glässer's disease pathogens.


Asunto(s)
Arabinosa , Haemophilus parasuis , Animales , ADN Nucleotidiltransferasas/genética , Técnicas de Inactivación de Genes , Haemophilus parasuis/genética , Haemophilus parasuis/metabolismo , Humanos , Porcinos
8.
Methods Mol Biol ; 2472: 39-48, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35674890

RESUMEN

Mutations of genes encoding key components of the Notch signaling pathways often result in lethality at early developmental stages, making it difficult to decipher how they regulate the formation of specific cell types or organs. Mosaic analysis using the FLP/FRT system allows investigating the roles of essential genes during wing development in Drosophila melanogaster. This chapter describes the practical methods to isolate Notch signaling regulators by somatic mosaic screen. The fly stocks, cross schemes, and screen parameters are summarized. We also explain how to validate the roles of potential Notch signaling regulators.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Alas de Animales
9.
Methods Mol Biol ; 2472: 83-94, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35674894

RESUMEN

Notch signaling regulates an array of developmental decisions and has been implicated in a multitude of diseases, including cancer over the past a few decades. The simplicity and versatility of the Notch pathway in Drosophila make it an ardent system to study Notch biology, its regulation, and functions. In this chapter, we highlight the use of two powerful techniques, namely, FLP/FRT and MARCM in the study of Notch signaling. These mosaic analysis techniques are powerful tools to analyze gene functions in different biological processes. The section briefly explains the principle and the protocols with suitable examples.


Asunto(s)
Fenómenos Biológicos , Proteínas de Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transducción de Señal
10.
Cell Rep Methods ; 2(2): 100168, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35474964

RESUMEN

Genetically encoded calcium indicators (GECIs) are widely used to measure calcium transients in neuronal somata and processes, and their use enables the determination of action potential temporal series in a large population of neurons. Here, we generate a transgenic mouse line expressing a highly sensitive green GECI, G-CaMP9a, in a Flp-dependent manner in excitatory and inhibitory neuronal subpopulations downstream of a strong CAG promoter. Combining this reporter mouse with viral or mouse genetic Flp delivery methods produces a robust and stable G-CaMP9a expression in defined neuronal populations without detectable detrimental effects. In vivo two-photon imaging reveals spontaneous and sensory-evoked calcium transients in excitatory and inhibitory ensembles with cellular resolution. Our results show that this reporter line allows long-term, cell-type-specific investigation of neuronal activity with enhanced resolution in defined populations and facilitates dissecting complex dynamics of neural networks in vivo.


Asunto(s)
Calcio , Neuroimagen , Neuronas , Animales , Ratones , Potenciales de Acción , Calcio/metabolismo , Ratones Transgénicos
11.
Bioresour Technol ; 337: 125366, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34144430

RESUMEN

Penicillium oxalicum has received increasing attention as a potential cellulase-producer. In this study, a copper-controlled flippase recombination enzyme/recognition target (FLP/FRT)-mediated recombination system was constructed in P. oxalicum, to overcome limited availability of antibiotic resistance markers. Using this system, two crucial transcription repressor genes atf1 and cxrC for the production of cellulase and xylanase under solid-state fermentation (SSF) were simultaneously deleted, thereby leading to 2.4- to 29.1-fold higher cellulase and 78.9% to 130.8% higher xylanase production than the parental strain under SSF, respectively. Glucose and xylose released from hydrolysis of pretreated sugarcane bagasse achieved 10.6%-13.5% improvement by using the crude enzymes from the engineered strain Δatf1ΔcxrC::flp under SSF in comparison with that of the parental strain. Consequently, these results provide a feasible strategy for improved cellulase and xylanase production by filamentous fungi.


Asunto(s)
Celulasa , Penicillium , Celulasa/metabolismo , Fermentación , Ingeniería Genética , Penicillium/genética , Penicillium/metabolismo , Recombinación Genética
12.
Genes Cells ; 26(4): 240-245, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33540482

RESUMEN

Site-specific conditional inactivation technologies using Cre-loxP or Flp-FRT systems are becoming increasingly important for the elucidation of gene function and disease mechanism in vivo. A large number of gene knockout mouse models carrying complex conditional alleles have been generated by global community efforts and made available for biomedical researchers. The structures of conditional alleles in these mice are becoming increasingly complex and sophisticated, and so the validation of the genetic quality of these alleles is likewise becoming a laborious task for individual researchers. To ensure the reproducibility of conditional experiments, the researcher should confirm that loxP or FRT is integrated at the correct positions in the genome prior to start of the experiments. We report the successful design of universal PCR primers specific to loxP and FRT for the quick validation of conditional floxed and Flrted alleles. The primer set consists of forward and reverse primers complimentary to the loxP or FRT sequences with partial modifications at the 5' end containing 6-base restriction endonuclease recognition sites. The universal primer set was tested to detect genomic intervals between a pair of cis-integrated loxP or FRT and was useful for quickly validating various floxed or Flrted alleles in conditional mice.


Asunto(s)
Alelos , Animales , Secuencia de Bases , Cartilla de ADN/metabolismo , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados
13.
Methods Mol Biol ; 2238: 231-240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33471335

RESUMEN

Enabling precise gene integration is important for installing traits in the plants. One of the practical methods of achieving precise gene integration is by using the yeast FLP-FRT recombination system that is efficient in directing DNA integration into the "engineered" genomic sites. The critical parameters of this method include the use of the thermostable version of FLP protein and the promoter trap design to select site-specific integration clones. The resulting transgenic plants display stable expression that is transmitted to the progeny. Therefore, FLP-mediated site-specific integration method could be used for trait engineering in the crop plants or testing gene functions in the model plants.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Recombinación Genética , Levaduras/genética , ADN Nucleotidiltransferasas/genética , Marcación de Gen , Vectores Genéticos/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fenotipo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas
14.
Methods Mol Biol ; 2128: 181-205, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180194

RESUMEN

Beta-cell-specific transgenic mice provide an invaluable model for dissecting the direct signaling mechanisms involved in regulating beta-cell structure and function. Furthermore, generating novel transgenic models is now easier and more cost-effective than ever, thanks to exciting novel approaches such as CRISPR.Here, we describe the commonly used approaches for generating and maintaining beta-cell-specific transgenic models and some of the considerations involved in their use. This includes the use of different beta-cell-specific promoters (e.g., pancreatic and duodenal homeobox factor 1 (Pdx1), rat insulin 2 promoter (RIP), and mouse insulin 1 promoter (MIP)) to drive site-specific recombinase technology. Important considerations during selection include level and uniformity of expression in the beta-cell population, ectopic transgene expression, and the use of inducible models.This chapter provides a guide to the procurement, generation, and maintenance of a beta-cell-specific transgene colony from preexisting Cre and loxP mouse strains, providing methods for crossbreeding and genotyping, as well as subsequent maintenance and, in the case of inducible models, transgenic induction.


Asunto(s)
Técnicas de Inactivación de Genes/métodos , Ingeniería Genética/métodos , Técnicas de Genotipaje/métodos , Células Secretoras de Insulina , Integrasas/genética , Animales , Cruzamientos Genéticos , Expresión Génica , Genes Reporteros , Ratones , Ratones Transgénicos , Especificidad de Órganos/genética , Regiones Promotoras Genéticas
15.
Plant Biotechnol J ; 18(3): 845-858, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31495052

RESUMEN

The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Erwinia amylovora/patogenicidad , Edición Génica , Malus/genética , Enfermedades de las Plantas/genética , ADN Bacteriano , Técnicas de Silenciamiento del Gen , Malus/microbiología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/microbiología
16.
Neurochem Res ; 45(3): 663-671, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31782102

RESUMEN

The myelin proteolipid protein gene (PLP1) encodes the most abundant protein in CNS myelin. Expression of the gene must be strictly regulated, as evidenced by human X-linked leukodystrophies resulting from variations in PLP1 copy number, including elevated dosages as well as deletions. Recently, we showed that the wmN1 region in human PLP1 (hPLP1) intron 1 is required to promote high levels of an hPLP1-lacZ transgene in mice, using a Cre-lox approach. The current study tests whether loss of the wmN1 region from a related transgene containing mouse Plp1 (mPlp1) DNA produces similar results. In addition, we investigated the effects of loss of another region (ASE) in mPlp1 intron 1. Previous studies have shown that the ASE is required to promote high levels of mPlp1-lacZ expression by transfection analysis, but had no effect when removed from the native gene in mouse. Whether this is due to compensation by another regulatory element in mPlp1 that was not included in the mPlp1-lacZ constructs, or to differences in methodology, is unclear. Two transgenic mouse lines were generated that harbor mPLP(+)Z/FL. The parental transgene utilizes mPlp1 sequences (proximal 2.3 kb of 5'-flanking DNA to the first 37 bp of exon 2) to drive expression of a lacZ reporter cassette. Here we demonstrate that mPLP(+)Z/FL is expressed in oligodendrocytes, oligodendrocyte precursor cells, olfactory ensheathing cells and neurons in brain, and Schwann cells in sciatic nerve. Loss of the wmN1 region from the parental transgene abolished expression, whereas removal of the ASE had no effect.


Asunto(s)
Sistema Nervioso Central/metabolismo , Elementos de Facilitación Genéticos , Operón Lac , Proteína Proteolipídica de la Mielina/metabolismo , Sistema Nervioso Periférico/metabolismo , Transgenes/fisiología , Animales , Ratones , Ratones Transgénicos , Proteína Proteolipídica de la Mielina/genética
17.
Bio Protoc ; 9(3)2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31179351

RESUMEN

Mosaic analysis in Drosophila, an important tool to assess cellular phenotypes of mutants in an otherwise heterozygous background, relies on mitosis. Hence, it cannot be used to inactivate gene function in mitotically inactive, terminally differentiated cells such as neurons. To address this issue, we developed "Flip-flop", a novel, Flippase-dependent in vivo cassette-inversion method that functions independent of mitosis, and therefore can be used for gene inactivation in both mitotic as well as postmitotic cells. This method allows tagging protein-coding genes with EGFP and generates mutant cells that are marked with mCherry upon cassette inversion. Here, we describe protocols for generation and validation of fly lines that can be used for conditional gene inactivation in mitotic as well as post-mitotic cells. We provide typical examples of Flip-flop mediated mosaic analysis in SNF4Aγ and Trim9. Use of Flip-flop mediated functional analysis will permit a detailed investigation of the role of genes previously recalcitrant to mosaic analysis.

18.
Kidney Int ; 96(3): 597-611, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31200942

RESUMEN

Podocytes are differentiated post-mitotic cells that cannot replace themselves after injury. Glomerular parietal epithelial cells are proposed to be podocyte progenitors. To test whether a subset of parietal epithelial cells transdifferentiate to a podocyte fate, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice, named PEC-PODO, were generated. Doxycycline administration permanently labeled parietal epithelial cells with tdTomato reporter (red), and upon doxycycline removal, the parietal epithelial cells (PECs) cannot label further. Despite the presence or absence of doxycycline, podocytes cannot label with tdTomato, but are constitutively labeled with an enhanced green fluorescent protein (EGFP) reporter (green). Only activation of the Nphs1-FLPo transgene by labeled parietal epithelial cells can generate a yellow color. At day 28 of experimental focal segmental glomerulosclerosis, podocyte density was 20% lower in 20% of glomeruli. At day 56 of experimental focal segmental glomerulosclerosis, podocyte density was 18% lower in 17% of glomeruli. TdTomato+ parietal epithelial cells were restricted to Bowman's capsule in healthy mice. However, by days 28 and 56 of experimental disease, two-thirds of tdTomato+ parietal epithelial cells within glomerular tufts were yellow in color. These cells co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of endothelial (ERG) or mesangial (Perlecan) cells. Expansion microscopy showed primary, secondary and minor processes in tdTomato+EGFP+ cells in glomerular tufts. Thus, our studies provide strong evidence that parietal epithelial cells serve as a source of new podocytes in adult mice.


Asunto(s)
Transdiferenciación Celular , Células Epiteliales/fisiología , Glomeruloesclerosis Focal y Segmentaria/patología , Podocitos/fisiología , Animales , Modelos Animales de Enfermedad , Genes Reporteros/genética , Glomeruloesclerosis Focal y Segmentaria/terapia , Humanos , Microscopía Intravital , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Proteína Fluorescente Roja
19.
Sheng Wu Gong Cheng Xue Bao ; 35(3): 458-471, 2019 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-30912354

RESUMEN

Few tools of gene editing have been developed in Bacillus licheniformis at present. In order to enrich the tools, an FLP/FRT gene editing system that can repeatedly use a single selectable marker was constructed in Bacillus licheniformis, and the system was verified by knocking out an alpha amylase gene (amyL), an protease gene (aprE) and knocking in an exogenous Vitreoscilla hemoglobin gene (vgb). First, knock-out plasmids pNZTT-AFKF of amyL and pNZTT-EFKF of aprE were constructed using thermosensitive plasmid pNZT1 as a carrier. The two knock-out plasmids contained respective homology arms, resistance genes and FRT sites. Then the knock-out plasmids were transformed into Bacillus licheniformis and the target genes were replaced by respective deletion cassette via twice homologous exchange. Finally, an expression plasmid containing FLP recombinase reading frane was introduced and mediated the excision of resistance marker. In order to expand the practicability of the system, knock-in plasmid pNZTK-PFTF-vgb was constructed, with which knock-in of vgb at pflB site was carried out successfully. The results showed that amyL and aprE were successfully knocked out and the marker kanamycin cassette exactly excised. The activities of amylase and protease of deletion mutants were reduced by 95.3% and 80.4% respectively. vgb was successfully knocked in at pflB site and the marker tetracycline cassette excised. The expression of integrated vgb was verified via real-time PCR. It is the first time to construct an FLP/FRT system for gene editing in Bacillus licheniformis, which could provide an effective technical means for genetic modification.


Asunto(s)
Bacillus licheniformis , Edición Génica , Plásmidos , Eliminación de Secuencia
20.
Plant Biotechnol J ; 17(8): 1636-1645, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30706638

RESUMEN

An efficient Agrobacterium-mediated site-specific integration (SSI) technology using the flipase/flipase recognition target (FLP/FRT) system in elite maize inbred lines is described. The system allows precise integration of a single copy of a donor DNA flanked by heterologous FRT sites into a predefined recombinant target line (RTL) containing the corresponding heterologous FRT sites. A promoter-trap system consisting of a pre-integrated promoter followed by an FRT site enables efficient selection of events. The efficiency of this system is dependent on several factors including Agrobacterium tumefaciens strain, expression of morphogenic genes Babyboom (Bbm) and Wuschel2 (Wus2) and choice of heterologous FRT pairs. Of the Agrobacterium strains tested, strain AGL1 resulted in higher transformation frequency than strain LBA4404 THY- (0.27% vs. 0.05%; per cent of infected embryos producing events). The addition of morphogenic genes increased transformation frequency (2.65% in AGL1; 0.65% in LBA4404 THY-). Following further optimization, including the choice of FRT pairs, a method was developed that achieved 19%-22.5% transformation frequency. Importantly, >50% of T0 transformants contain the desired full-length site-specific insertion. The frequencies reported here establish a new benchmark for generating targeted quality events compatible with commercial product development.


Asunto(s)
Agrobacterium tumefaciens , Recombinación Genética , Zea mays/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...