Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 214: 111525, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39332269

RESUMEN

FLUKA Monte-Carlo transport code was employed to evaluate the secondary neutron spectra emerging from spherical sandwich shielding configurations composed of concrete and soil, similar to that used at the particle therapy facility MedAustron. This study provides a comparative analysis of neutron spectra attenuated by a concrete-soil-concrete (CSC) sandwich wall shielding configuration versus a full concrete wall design (CCC). Furthermore, we enhanced the shielding performance of the CSC configuration by adding an additional concrete layer (CCSC) to achieve results comparable to the CCC shielding. Two scenarios were tested for shielding performance: (1) primary protons at 100 MeV, and (2) primary carbon ions (C-ions) at 190 MeV/u. Our simulations with primary protons of 100 MeV showed that adding additional internal concrete wall to the CSC configuration, therefore designing the CCSC configuration, the RP performance becomes slightly improved - the HE-peak drops from (1.43 ± 0.11)10-11 to (5.62 ± 0.3)10-12, about 2.5 times. Still, the HE-peak of the exiting neutron spectrum from CCC -(6.29 ± 1.87) 10-13 is about 9 times lower than that exiting CCSC - (5.62 ± 0.3) 10-12. Our simulations with primary C-ions showed that by placing an additional internal concrete wall to the CSC configuration (CCSC) the RP performance becomes slightly improved - the exiting HE peak can be further attenuated from (6.92 ± 0.40)10-9 for CSC to (3.79 ± 0.15)10-9, becoming comparable to the one exiting the CCC configuration, (0.92 ± 0.04)10-9, only 4 times higher. Future research should be focused on improvements of the RP performance of the CCSC, by increasing the soil layer thickness and taking into consideration the humidity (water content) in the soil and concrete and also improve the number of primaries to 109 or even 1010 for better statistical outcome.

2.
Appl Radiat Isot ; 214: 111534, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39342765

RESUMEN

This study investigates how gamma rays, neutrons, and electrons interact with five commonly found indoor plants: Spathiphyllum wallisii (SW), Ficus elastica (FE), Dieffenbachia camilla (DC), Schefflera arboricola (SA), and Ficus benjamina (FB). Utilizing experimental measurements (with HPGe detector), Monte Carlo simulations (GEANT4 and FLUKA), and theoretical calculations (ESTAR and WinXCOM), some radiation interaction parameters for gamma rays, fast neutrons, thermal neutrons, and electrons were determined. Secondary particle generation was also analyzed to provide a comprehensive assessment. The determined linear attenuation coefficients with the help of the WinXCOM are 0.1376, 0.1662, 0.1385, 0.1651 and 0.1698 cm-1 for SW, FE, DC, SA and FB, respectively. The calculated total macroscopic cross sections for indoor plants in the same sample order are 2.0290, 2.0350, 2.0285, 2.0363 and 2.0362 cm-1. Among the investigated plants, FB exhibited the highest gamma ray interaction, while SA and FB showed superior interaction against fast neutrons compared to SW and DC. The findings reveal significant variations in interaction effectiveness and secondary radiation production across these plants, offering valuable insights for radiation safety and environmental health evaluations.

3.
Appl Radiat Isot ; 212: 111468, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116503

RESUMEN

Fusion energy heralds the potential of a transformative era, offering a significant solution to global challenges such as climate change, ozone depletion and environmental pollution. Despite its promising prospects, the commercialization of fusion faces several challenges, including high temperature, pressure, plasma stability, fuel supply, costs, etc. It is important to effectively analyze material behavior under plasma conditions, especially in environments where fusion reactions produce high-energy particles such as neutrons. This study investigates the angle-dependent neutron production mechanisms of proton-induced reactions involving the isotopes 90Zr, 91Zr and 115In, which are widely used in fusion reactor materials. Using the Monte Carlo codes PHITS 3.32 and FLUKA, as well as the TALYS 1.96 code, double differential cross-section calculations for neutron emission were performed considering various angles. The research contributes to a broader understanding of fusion processes by providing insights into the behavior of these isotopes under proton-induced reactions.

4.
Sci Rep ; 14(1): 10548, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719844

RESUMEN

This study not only provides an innovative technique for producing rigid polyurethane foam (RPUF) composites, but it also offers a way to reuse metallurgical solid waste. Rigid polyurethane (RPUF) composite samples have been prepared with different proportions of iron slag as additives, with a range of 0-25% mass by weight. The process of grinding iron slag microparticles into iron slag nanoparticles powder was accomplished with the use of a high-energy ball mill. The synthesized samples have been characterized using Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscope. Then, their radiation shielding properties were measured by using A hyper-pure germanium detector using point sources 241Am, 133 BA, 152 EU, 137Cs, and 60Co, with an energy range of 0.059-1.408 MeV. Then using Fluka simulation code to validate the results in the energy range of photon energies of 0.0001-100 MeV. The linear attenuation coefficient, mass attenuation coefficient, mean free path, half-value layer and tenth-value layer, were calculated to determine the radiation shielding characteristics of the composite samples. The calculated values are in good agreement with the calculated values. The results of this study showed that the gamma-ray and neutron attenuation parameters of the studied polyurethane composite samples have improved. Moreover, the effect of iron slag not only increases the gamma-ray attenuation shielding properties but also enhances compressive strength and the thermal stability. Which encourages us to use polyurethane iron-slag composite foam in sandwich panel manufacturing as walls to provide protection from radiation and also heat insulation.

5.
Life Sci Space Res (Amst) ; 41: 119-126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670638

RESUMEN

The risk posed by prolonged exposure to space radiation represents a significant obstacle to long-duration human space exploration. Of the ion species present in the galactic cosmic ray spectrum, relativistic protons are the most abundant and as such are a relevant point of interest with regard to the radiation protection of space crews involved in future long-term missions to the Moon, Mars, and beyond. This work compared the shielding effectiveness of a number of standard and composite materials relevant to the design and development of future spacecraft or planetary surface habitats. Absorbed dose was measured using Al2O3:C optically stimulated luminescence dosimeters behind shielding targets of varying composition and depth using the 1 GeV nominal energy proton beam available at the NASA Space Radiation Laboratory at the Brookhaven National Laboratory in New York. Absorbed dose scored from computer simulations performed using the multi-purpose Monte Carlo radiation transport code FLUKA agrees well with measurements obtained via the shielding experiments. All shielding materials tested and modeled in this study were unable to reduce absorbed dose below that measured by the (unshielded) front detector, even after depths as large as 30 g/cm2. These results could be noteworthy given the broad range of proton energies present in the galactic cosmic ray spectrum, and the potential health and safety hazard such space radiation could represent to future human space exploration.


Asunto(s)
Radiación Cósmica , Método de Montecarlo , Protones , Protección Radiológica , Vuelo Espacial , Protección Radiológica/instrumentación , Protección Radiológica/métodos , Humanos , Radiación Cósmica/efectos adversos , Dosis de Radiación , Nave Espacial , Simulación por Computador
6.
Phys Med ; 120: 103329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492331

RESUMEN

GOAL: In-beam Positron Emission Tomography (PET) is a technique for in-vivo non-invasive treatment monitoring for proton therapy. To detect anatomical changes in patients with PET, various analysis methods exist, but their clinical interpretation is problematic. The goal of this work is to investigate whether the gamma-index analysis, widely used for dose comparisons, is an appropriate tool for comparing in-beam PET distributions. Focusing on a head-and-neck patient, we investigate whether the gamma-index map and the passing rate are sensitive to progressive anatomical changes. METHODS/MATERIALS: We simulated a treatment course of a proton therapy patient using FLUKA Monte Carlo simulations. Gradual emptying of the sinonasal cavity was modeled through a series of artificially modified CT scans. The in-beam PET activity distributions from three fields were evaluated, simulating a planar dual head geometry. We applied the 3D-gamma evaluation method to compare the PET images with a reference image without changes. Various tolerance criteria and parameters were tested, and results were compared to the CT-scans. RESULTS: Based on 210 MC simulations we identified appropriate parameters for the gamma-index analysis. Tolerance values of 3 mm/3% and 2 mm/2% were suited for comparison of simulated in-beam PET distributions. The gamma passing rate decreased with increasing volume change for all fields. CONCLUSION: The gamma-index analysis was found to be a useful tool for comparing simulated in-beam PET images, sensitive to sinonasal cavity emptying. Monitoring the gamma passing rate behavior over the treatment course is useful to detect anatomical changes occurring during the treatment course.


Asunto(s)
Terapia de Protones , Humanos , Terapia de Protones/métodos , Método de Montecarlo , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Simulación por Computador , Etopósido , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
7.
Appl Radiat Isot ; 206: 111242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394812

RESUMEN

Double differential cross-section calculations were performed for proton-induced reactions with 58Ni and 52Cr isotopes using Monte Carlo code PHITS 3.32 and TALYS 1.96. Comparative analyses with experimental data from the EXFOR library demonstrated the effectiveness of the CTFGM and BSFGM models in conjunction with the TALYS nuclear code program for (p,xn) reactions across all angular values. While the GSM model exhibited consistency regardless of the angle, FLUKA and PHITS showed some discrepancies depending on the angle, particularly at small angle values.

8.
Polymers (Basel) ; 15(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38006140

RESUMEN

In this work, the effect of adding Pb nano/microparticles in polyurethane foams to improve thermo-physical and mechanical properties were investigated. Moreover, an attempt has been made to modify the micron-sized lead metal powder into nanostructured Pb powder using a high-energy ball mill. Two types of fillers were used, the first is Pb in micro scale and the second is Pb in nano scale. A lead/polyurethane nanocomposite is made using the in-situ polymerization process. The different characterization techniques describe the state of the dispersion of fillers in foam. The effects of these additions in the foam were evaluated, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) have all been used to analyze the morphology and dispersion of lead in polyurethane. The findings demonstrate that lead is uniformly distributed throughout the polyurethane matrix. The compression test demonstrates that the inclusion of lead weakens the compression strength of the nanocomposites in comparison to that of pure polyurethane. The TGA study shows that the enhanced thermal stability is a result of the inclusion of fillers, especially nanofillers. The shielding efficiency has been studied, MAC, LAC, HVL, MFP and Zeff were determined either experimentally or by Monte Carlo calculations. The nuclear radiation shielding properties were simulated by the FLUKA code for the photon energy range of 0.0001-100 MeV.

9.
Phys Med Biol ; 68(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37939402

RESUMEN

Objective.To investigate the influence of different versions of the Monte Carlo codesgeant4 andflukaon the calculation of overall response functionsfQof air-filled ionization chambers in clinical proton beams.Approach. fQfactors were calculated for six plane-parallel and four cylindrical ionization chambers withgeant4 andfluka. These factors were compared to already published values that were derived using older versions of these codes.Main results.Differences infQfactors calculated with different versions of the same Monte Carlo code can be up to ∼1%. Especially forgeant4, the updated version leads to a more pronounced dependence offQon proton energy and to smallerfQfactors for high energies.Significance.Different versions of the same Monte Carlo code can lead to differences in the calculation offQfactors of up to ∼1% without changing the simulation setup, transport parameters, ionization chamber geometry modeling, or employed physics lists. These findings support the statement that the dominant contributor to the overall uncertainty of Monte Carlo calculatedfQfactors are type-B uncertainties.


Asunto(s)
Protones , Radiactividad , Radiometría/métodos , Simulación por Computador , Método de Montecarlo
10.
J Radiol Prot ; 43(4)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37857280

RESUMEN

Age-specific dose coefficients are required to assess internal exposure to the general public. This study utilizes reference age-specific biokinetic models of iodine to estimate the total number of nuclear disintegrations ã(rS,τ) occurring in source regions (rS) during the commitment time (τ). Age-specific S values are estimated for 35 target regions due to131I present in 22rSusing data from 10 paediatric reference computational phantoms (representing five ages for both sexes) published recently by the International Commission of Radiation Protection (ICRP). Monte Carlo transport simulations are performed in FLUKA code. The estimated ã(rS,τ) and S values are then used to compute the committed tissue equivalent dose HT(τ) for 27 radiosensitive tissues and dose coefficients e(τ) for all five ages due to inhalation and ingestion of131I. The derived ã(rS,τ) values in the thyroid source are observed to increase with age due to the increased retention of iodine in the thyroid. S values are found to decrease with age, mainly due to an increase in target masses. Generally, HT(τ) values are observed to decrease with age, indicating the predominant behaviour of S values over ã(rS,τ). On average, ingestion dose coefficients are 63% higher than for inhalation in all ages. The maximum contribution to dose coefficients is from the thyroid, accounting for 96% in the case of newborns and 98%-99% for all other ages. Furthermore, the estimated e(τ) values for the reference population are observed to be lower than previously published reference values from the ICRP. The estimated S, HT(τ) and e(τ) values can be used to improve estimations of internal doses to organs/whole body for members of the public in cases of131I exposure. The estimated dose coefficients can also be interpolated for other ages to accurately evaluate the doses received by the general public during131I therapy or during a radiological emergency.


Asunto(s)
Radioisótopos de Yodo , Yodo , Masculino , Femenino , Humanos , Niño , Recién Nacido , Dosis de Radiación , Radioisótopos de Yodo/análisis , Fantasmas de Imagen , Método de Montecarlo , Factores de Edad , Radiometría
11.
Phys Med Biol ; 68(22)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37797651

RESUMEN

Ultra-short electron beams are used as ultra-fast radiation source for radiobiology experiments aiming at very high energy electron beams (VHEE) radiotherapy with very high dose rates. Laser plasma accelerators are capable of producing electron beams as short as 1 fs and with tunable energy from few MeV up to multi-GeV with compact footprint. This makes them an attractive source for applications in different fields, where the ultra-short (fs) duration plays an important role. The time dynamics of the dose deposited by electron beams with energies in the range 50-250 MeV have been studied and the results are presented here. The results set a quantitative limit to the maximum dose rate at which the electron beams can impart dose.


Asunto(s)
Electrones , Aceleradores de Partículas , Método de Montecarlo , Rayos Láser , Radioterapia de Alta Energía , Dosificación Radioterapéutica , Radiometría/métodos
12.
Phys Med Biol ; 68(19)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37673077

RESUMEN

Objective. The objective of this study is to develop a multi-scale modeling approach that accurately predicts radiation-induced DNA damage and survival fraction in specific cell lines.Approach. A Monte Carlo based simulation framework was employed to make the predictions. The FLUKA Monte Carlo code was utilized to estimate absorbed doses and fluence energy spectra, which were then used in the Monte Carlo Damage Simulation code to compute DNA damage yields in Chinese hamster V79 cell lines. The outputs were converted into cell survival fractions using a previously published theoretical model. To reduce the uncertainties of the predictions, new values for the parameters of the theoretical model were computed, expanding the database of experimental points considered in the previous estimation. Simulated results were validated against experimental data, confirming the applicability of the framework for proton beams up to 230 MeV. Additionally, the impact of secondary particles on cell survival was estimated.Main results. The simulated survival fraction versus depth in a glycerol phantom is reported for eighteen different configurations. Two proton spread out Bragg peaks at several doses were simulated and compared with experimental data. In all cases, the simulations follow the experimental trends, demonstrating the accuracy of the predictions up to 230 MeV.Significance. This study holds significant importance as it contributes to the advancement of models for predicting biological responses to radiation, ultimately contributing to more effective cancer treatment in proton therapy.


Asunto(s)
Terapia de Protones , Protones , Animales , Cricetinae , Método de Montecarlo , Supervivencia Celular , Terapia de Protones/métodos , Simulación por Computador
13.
Phys Med Biol ; 68(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37549670

RESUMEN

Objective. Non-primary radiation doses to normal tissues from proton therapy may be associated with an increased risk of secondary malignancies, particularly in long-term survivors. Thus, a systematic method to evaluate if the dose level of non-primary radiation meets the IEC standard requirements is needed.Approach. Different from the traditional photon radiation therapy system, proton therapy systems are composed of several subsystems in a thick bunker. These subsystems are all possible sources of non-primary radiation threatening the patient. As a case study, 7 sources in the P-Cure synchrotron-based proton therapy system are modeled in Monte Carlo (MC) code: tandem injector, injection, synchrotron ring, extraction, beam transport line, scanning nozzle and concrete reflection/scattering. To accurately evaluate the synchrotron beam loss and non-primary dose, a new model called the torus source model is developed. Its parametric equations define the position and direction of the off-orbit particle bombardment on the torus pipe shell in the Cartesian coordinate system. Non-primary doses are finally calculated by several FLUKA simulations.Main results. The ratios of summarized non-primary doses from different sources to the planned dose of 2 Gy are all much smaller than the IEC requirements in both the 15-50 cm and 50-200 cm regions. Thus, the P-Cure synchrotron-based proton therapy system is clean and patient-friendly, and there is no need an inner shielding concrete between the accelerator and patient.Significance. Non-primary radiation dose level is a very important indicator to evaluate the quality of a PT system. This manuscript provides a feasible MC procedure for synchrotron-based proton therapy with new beam loss model. Which could help people figure out precisely whether this level complies with the IEC standard before the system put into clinical treatment. What' more, the torus source model could be widely used for bending magnets in gantries and synchrotrons to evaluate non-primary doses or other radiation doses.


Asunto(s)
Terapia de Protones , Humanos , Dosis de Radiación , Terapia de Protones/efectos adversos , Terapia de Protones/métodos , Sincrotrones , Método de Montecarlo , Dosificación Radioterapéutica
14.
Appl Radiat Isot ; 200: 110951, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37487427

RESUMEN

Cancer treatment with protons and carbon ions relies on the property of the accelerated charged particles to deposit most of their energy in the vicinity of their range (around the Bragg peak). The level of hydration in a cancer patient's body may vary within hours. Some patients may be heavy to moderately dehydrated, and some may be well and even excessively hydrated. In this research, we aim to estimate the uncertainty of the protons and C-ion ranges because of the different hydration levels of the human body. For the study of the impact of body hydration level on the particle's ranges, we have designed a new phantom model - a homogeneous mixture of an Average HUuman BOdy constituting elements (AHUBO) in three states of hydration: normal (n), dehydrated (d), and excessively hydrated (e) by applying corresponding recalibration in the "atomic-stoichiometry model" due to the water sufficiency/deficiency. The purpose of the study is to estimate the shift in the ranges depending on the hydration level, possibly suggest particle beam energy adjustments to overcome the range uncertainties, to deliver the prescribed dose to the tumour while sparing the healthy tissue. Herein we present the results of the FLUKA-Flair simulations of the therapeutic range of energies of protons (50-105 MeV) and C-ions (30-210 MeV) respectively, into an AHUBO head phantom model at three levels of hydration (normal, dehydrated, and excessively hydrated). The range uncertainty was estimated via the shifts of the Bragg-peaks position for the three different hydration levels. The estimations showed that the range uncertainty (ΔR) due to body hydration for the maximum energy in the range for protons at 105 MeV is about 0.04 mm and for C-ions at 190 MeV/u is about 0.06 mm.


Asunto(s)
Terapia de Protones , Protones , Humanos , Radiometría/métodos , Incertidumbre , Cuerpo Humano , Iones , Método de Montecarlo
15.
Appl Radiat Isot ; 197: 110803, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37054662

RESUMEN

Ferrites are ceramic oxide materials consisting of mainly iron oxide and they have become massively important materials commercially and technologically, having a multitude of uses and applications. The protection against neutron-gamma mixed radiation is crucial in several nuclear applications. From this standpoint, mass attenuation coefficient, radiation protection efficiency and transmission factor of some ferrites namely barium, strontium, manganese, copper and cadmium ferrite has been computed using Geant4 and FLUKA simulations. Based on the simulated mass attenuation coefficient, other significant parameters such as linear attenuation coefficient, effective atomic and electron number, conductivity, half value layer, and mean free path were calculated for the selected ferrite materials. The validation of Monte Carlo geometry has been provided by comparing the mass attenuation coefficient results with standard WinXCom data. Gamma ray exposure buildup factors were computed using geometric progression fitting formula for the chosen ferrites in the energy range 0.015-15 MeV at penetration depths up to 40 mfp. The findings of the present work reveal that among the studied ferrites, barium ferrite and copper ferrite possess superior gamma ray and fast neutron attenuation capability, respectively. The present work provides a comprehensive investigation of the selected iron oxides in the field of neutron and gamma ray.

16.
Phys Med ; 107: 102554, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36907030

RESUMEN

PURPOSE: In-vivo range verification has been a hot topic in particle therapy since two decades. Many efforts have been done for proton therapy, while fewer studies were conducted considering a beam of carbon ions. In the present work, a simulation study was performed to show whether it is possible to measure the prompt-gamma fall-off inside the high neutron background typical of carbon-ion irradiation, using a knife-edge slit camera. In addition to this, we wanted to estimate the uncertainty in retrieving the particle range in the case of a pencil beam of C-ions at clinically relevant energy of 150 MeVu. METHODS: For these purposes, the Monte Carlo code FLUKA was adopted for simulations and three different analytical methods were implemented to get the accuracy in the range retrieval of the simulated set-up. RESULTS: The analysis of simulation data has brought to the promising and desired precision of about 4 mm in the determination of the dose profile fall-off in case of a spill irradiation, for which all the three cited methods were coherent in their predictions. CONCLUSIONS: The Prompt Gamma Imaging technique should be further studied as a tool to reduce range uncertainties affecting carbon ion radiation therapy.


Asunto(s)
Radioterapia de Iones Pesados , Terapia de Protones , Terapia de Protones/métodos , Método de Montecarlo , Iones , Carbono/uso terapéutico
17.
Appl Radiat Isot ; 194: 110728, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36806036

RESUMEN

The radiation characteristics of spallation products are important references for evaluating the materials used as spallation targets. Therefore, it is necessary to study the radiation characteristics of spallation products. In this study, the spallation products of tungsten-iron-nickel target and lead-bismuth target were calculated and analyzed based on the radionuclide distributions and decay photon shielding of the spallation products. The radionuclide distributions of the spallation products were calculated using FLUKA, and the shielding of decay photons was calculated with OpenMC. In addition, the variance reduction function with an importance card was added to the OpenMC code to allow its use for calculating deep penetration problems.

18.
Environ Technol ; 44(11): 1592-1599, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34787063

RESUMEN

The significance and novelty of the present work are the preparation of the non-lead ceramic by the general formula of (1-x) K0.5Na0.5NbO3-xLa Mn0.5Ni0.5O3 (KNN-LMN) with different x (0(HVL)x=0.04>(HVL)x=0.07>…>(HVL)x=0.25 is reported for half-value layer values against gamma photon. From the attained results, it can be concluded that increaisng the rate of x results in the better shielding proficiency in terms of neutron and gamma photon for chosen KNN-LMN-based lead-free ceramics.


Asunto(s)
Cerámica , Redes Neurales de la Computación , Simulación por Computador , Neutrones
19.
Phys Med Biol ; 68(2)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36580679

RESUMEN

Spatially fractionated radiation therapy (SFRT or GRID) is an approach to deliver high local radiation doses in an 'on-off' pattern. To better appraise the radiobiological effects from GRID, a framework to link local radiation dose to clonogenic survival needs to be developed. A549 lung cancer cells were irradiated in T25 cm2flasks using 220 kV x-rays with an open field or through a tungsten GRID collimator with periodical 5 mm openings and 10 mm blockings. Delivered nominal doses were 2, 5, and 10 Gy. A novel approach for image segmentation was used to locate the centroid of surviving colonies in scanned images of the cell flasks. GafchromicTMfilm dosimetry (GFD) and FLUKA Monte Carlo (MC) simulations were employed to map the dose at each surviving colony centroid. Fitting the linear-quadratic (LQ) function to clonogenic survival data for open field irradiation, the expected survival level at a given dose level was calculated. The expected survival levels were then mapped together with the observed levels in the GRID-irradiated flasks. GFD and FLUKA MC gave similar dose distributions, with a mean peak-to-valley dose ratio of about 5. LQ-parameters for open field irradiation gaveα=0.24±0.02Gy-1andß=0.019±0.002Gy-2. The mean relative percentage deviation between observed and predicted survival in the (peak; valley) dose regions was (4.6; 3.1) %, (26.6; -1.0) %, and (129.8; -2.3) % for 2, 5 and 10 Gy, respectively. In conclusion, a framework for mapping of surviving colonies following GRID irradiation together with predicted survival levels from homogeneous irradiation was presented. For the given cell line, our findings indicate that GRID irradiation causes reduced survival in the peak regions compared to an open field configuration.


Asunto(s)
Neoplasias Pulmonares , Radiometría , Humanos , Radiometría/métodos , Rayos X , Radiobiología , Dosis de Radiación , Método de Montecarlo
20.
Phys Med ; 103: 59-65, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36242927

RESUMEN

PURPOSE: 225Ac is the most promising alpha emitter for radiopharmaceutical therapy. Labeling PSMA, it showed to be effective in the treatment of prostate cancer and research is undergoing in order to improve its production capacity. Currently, there are still few data published concerning operational radiation protection in its use, both in clinics and in radiopharmacy, and even some basic data are not readily available. This papers aims to estimate the emission gamma-ray constant of 225Ac when at equilibrium with its descendants, and the transmission factors for a broad beam of the gamma-rays emitted by 225Ac and its descendants. MATERIALS & METHODS: Monte Carlo simulations were performed using FLUKA 4.2, considering firstly the source in air, in absence of any shielding, and secondly by adding an increasing thicknesses of Lead, Concrete or Tungsten. In order to obtain statistically meaningful results, high-statistics simulations were performed by sampling up to 1010 primary decay events. As the shielding thickness increased, an appropriate variance reduction technique (importance biasing) was applied. RESULTS: The specific gamma ray emission constant for 225Ac at equilibrium with descendants resulted (3.26 ± 0.03) × 10-5 mSv/h per 1 MBq at a distance of 100 cm. The transmission factors are presented in detail and data have been appropriately interpolated and fitting parameters are reported. CONCLUSIONS: The attenuation curves show a clear bi-exponential trend: performing shielding calculations by adopting a simple approach based on a single value of Half Value Layer (HVL) or Tenth Value Layer (TVL) cannot provide adequate results. In conclusion, our results may be useful in the design of shielded hot cells or accessories necessary for operational radiation protection.


Asunto(s)
Protección Radiológica , Masculino , Humanos , Protección Radiológica/métodos , Método de Montecarlo , Rayos gamma , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...