Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Proteome Res ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042361

RESUMEN

Collagen from paleontological bones is an important organic material for isotopic measurement, radiocarbon analysis, and paleoproteomic analysis to provide information on diet, dating, taxonomy, and phylogeny. Current paleoproteomic methods are destructive and require from a few milligrams to several tens of milligrams of bone for analysis. In many cultures, bones are raw materials for artifacts that are conserved in museums, which hampers damage to these precious objects during sampling. Here, we describe a low-invasive sampling method that identifies collagen, taxonomy, and post-translational modifications from Holocene and Upper Pleistocene bones dated to 130,000 and 150 BC using dermatological skin tape discs for sampling. The sampled bone micropowders were digested following our highly optimized enhanced filter-aided sample preparation protocol and then analyzed by MALDI FTICR MS and LC-MS/MS for identifying the genus taxa of the bones. We show that this low-invasive sampling does not deteriorate the bones and achieves results similar to those obtained by more destructive sampling. Moreover, this sampling method can be carried out at archeological sites or in museums.

2.
J Hazard Mater ; 473: 134605, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38768537

RESUMEN

Polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and heteroatom-containing analogues, constitute an important environmental contaminant class. For decades, limited numbers of priority PAHs have been routinely targeted in pollution investigations, however, there is growing awareness for the potential occurrence of thousands of PACs in the environment. In this study, untargeted Fourier transform ion cyclotron resonance mass spectrometry was used for the molecular characterisation of PACs in a sediment core from Chiswick Ait, in the River Thames, London, UK. Using complex mixture analysis approaches, including aromaticity index calculations, the number of molecular PAC components was determined for eight core depths, extending back to the 1930s. A maximum of 1676 molecular compositions representing PACs was detected at the depth corresponding to the 1950s, and a decline in PAC numbers was observed up the core. A case linking the PACs to London's coal consumption history is presented, alongside other possible sources, with some data features indicating pyrogenic origins. The overall core profile trend in PAC components, including compounds with oxygen, sulfur, nitrogen, and chlorine atoms, is shown to broadly correspond to the 16 priority PAH concentration profile trend previously determined for this core. These findings have implications for other industry-impacted environments.

3.
J Environ Manage ; 350: 119695, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38035506

RESUMEN

Interactions between dissolved organic matter (DOM) and surrounding environments are highly complex. Understanding DOM at the molecular level can contribute to the management of soil pollution and safeguarding agricultural fields. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has enabled a molecular-level understanding of DOM. Accordingly, in this study, we investigated soil samples from 27 different regions of mainland China with various soil types and climatic characteristics. Based on the geographical features of the four typical climatic zones in mainland China (temperate monsoon, temperate continental, subtropical monsoon, and Qinghai-Tibet Plateau climates), we employed high-resolution mass spectrometry to determine the molecular diversity of DOM under different climatic conditions. The results indicated that lignin and tannin-like substances were the most active categories of DOM in the soils. Collectively, the composition and unsaturation of DOM molecules are influenced by sunlight, precipitation, temperature, and human activity. All climatic regions contained a substantial number of characteristic molecules, with CHO and CHON constituting over 80%, and DOM containing nitrogen and sulfur was relatively more abundant in the monsoon regions. The complex composition of DOM incorporates various active functional groups, such as -NO2 and -ONO2. Furthermore, soil DOM in the monsoon regions showed higher unsaturation and facilitated various (bio) biochemical reactions in the soil.


Asunto(s)
Materia Orgánica Disuelta , Suelo , Granjas , Compuestos Orgánicos/análisis , Suelo/química , China
4.
Environ Sci Technol ; 57(41): 15499-15510, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37795960

RESUMEN

Hyporheic zones (HZs)─zones of groundwater-surface water mixing─are hotspots for dissolved organic matter (DOM) and nutrient cycling that can disproportionately impact aquatic ecosystem functions. However, the mechanisms affecting DOM metabolism through space and time in HZs remain poorly understood. To resolve this gap, we investigate a recently proposed theory describing trade-offs between carbon (C) and nitrogen (N) limitations as a key regulator of HZ metabolism. We propose that throughout the extent of the HZ, a single process like aerobic respiration (AR) can be limited by both DOM thermodynamics and N content due to highly variable C/N ratios over short distances (centimeter scale). To investigate this theory, we used a large flume, continuous optode measurements of dissolved oxygen (DO), and spatially and temporally resolved molecular analysis of DOM. Carbon and N limitations were inferred from changes in the elemental stoichiometric ratio. We show sequential, depth-stratified relationships of DO with DOM thermodynamics and organic N that change across centimeter scales. In the shallow HZ with low C/N, DO was associated with the thermodynamics of DOM, while deeper in the HZ with higher C/N, DO was associated with inferred biochemical reactions involving organic N. Collectively, our results suggest that there are multiple competing processes that limit AR in the HZ. Resolving this spatiotemporal variation could improve predictions from mechanistic models, either via more highly resolved grid cells or by representing AR colimitation by DOM thermodynamics and organic N.


Asunto(s)
Ecosistema , Agua Subterránea , Carbono/metabolismo , Nitrógeno/análisis , Agua Subterránea/química , Materia Orgánica Disuelta , Respiración , Ríos/química
5.
Front Plant Sci ; 14: 1218594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771488

RESUMEN

Introduction: Melilotus officinalis is a Leguminosae with relevant applications in medicine and soil recovery. This study reports the application of Melilotus officinalis plants in soil recovery and as a source of bioactive compounds. Methods: Plants were cultivated in semiarid soil under four different fertilizer treatments, urban waste compost at 10 t/ha and 20 t/ha, inorganic fertilizer and a control (no fertilizer). Agronomic properties of soil (pH, EC, soil respiration, C content, macro- and microelements) were analyzed before and after treatment. Also, germination, biomass, element contents, and physiological response were evaluated. Metabolite composition of plants was analyzed through Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Results and discussion: Results showed a significant enhancement of the soil microbial activity in planted soils amended with compost, though there were no other clear effects on the soil physicochemical and chemical characteristics during the short experimental period. An improvement in M. officinalis germination and growth was observed in soils with compost amendment. Metabolite composition of plants was analyzed through Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Principal Component and Agglomerative Hierarchical Clustering models suggest that there is a clear separation of the metabolome of four groups of plants grown under different soil treatments. The five most important discriminative metabolites (annotated) were oleamide, palmitic acid, stearic acid, 3-hydroxy-cis-5-octenoylcarnitine, and 6-hydroxynon-7- enoylcarnitine. This study provides information on how the metabolome of Melilotus might be altered by fertilizer application in poor soil regions. These metabolome changes might have repercussions for the application of this plant in medicine and pharmacology. The results support the profitability of Melilotus officinalis cultivation for bioactive compounds production in association with soil recovery practices.

6.
Sci Total Environ ; 899: 165590, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37474067

RESUMEN

Aquatic plant-derived dissolved organic matter (DOM) in water bodies is an important source of disinfection byproduct (DBP) precursors. It is therefore very important to investigate DBP formation, and the main DBP precursors that enter drinking water during treatment processes. In this study, Lythrum salicaria root extract (LSRE) and Acorus calamus root extract (ACRE) were analyzed. The LSRE and ACRE were chlorinated and disinfected to generate trihalomethanes, haloacetic acids, haloketones, and haloacetaldehydes. The DBP formation potential of LSRE, dominated by humus, was higher than that of Suwannee River natural organic matter (SRNOM), and trichloroacetic acid was the main DBP. It was calculated that 2.09 % of the increased DOC brought by the surface flow wetland planted with emergent aquatic plants, and the contribution rates of TCMFP, DCAAFP and TCAAFP in effluent were 3.34 %, 3.23 % and 3.05 %, respectively. A total of 706 chlorinated-formula were detected by FTICR-MS, among which mono- and di-chlorinated formulae were the most abundant. Macromolecular hydrophobic organics and tannins were the main precursors for LSRE. Unlike LSRE, the DOM composition of ACRE was dominated by protein or aliphatic compounds; therefore, the risk of DBP formation was not as high as that for LSRE. This study is the first to determine the risk of DBP formation associated with aquatic plant root extracts, and confirmed that tannins in plant-derived DOM are more important DBP precursors than lignins.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Exudados de Plantas , Humedales , Contaminantes Químicos del Agua/análisis , Trihalometanos/análisis , Exudados y Transudados/química , Raíces de Plantas/química , Desinfectantes/química
7.
Phytochem Anal ; 34(8): 1009-1021, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37518673

RESUMEN

INTRODUCTION: Dahlia pinnata Cav. is a flower native to Mexico that has many applications; in particular, its petals have been used for ornamental, food, and medicinal purposes, for example to treat skin rashes and skin cracks. It has been reported that the medicinal properties of plants are generally related to the phytochemical constituents they possess. However, there are few studies on black D. pinnata. OBJECTIVES: The present study was aimed at qualitatively and quantitatively determining the phytochemical profile of petals from black D. pinnata. METHODOLOGY: Phytochemicals from Dahlia petals were extracted by consecutive maceration (hexane, dichloromethane, and methanol); then, the extracts were analyzed through colorimetric assays and UV-Vis spectroscopy for qualitative identification and quantification of phytochemical compounds, respectively. The methanolic extract was analyzed by flow injection analysis-electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (FIA-ESI-FTICR-MS) in negative and positive mode. RESULTS: Quantitative phytochemical profiling of the methanolic extract by UV-Vis spectroscopy indicated high contents of phenolic compounds (34.35 ± 3.59 mg EQ/g plant) and sugars (23.91 ± 1.99 mg EQ/g plant), while the qualitative profiling by FIA-ESI-FTICR-MS allowed the tentative identification of several flavonoids and phenolic acids. Kaempferol-3-rutinoside, pelargonidin-3-(6″-malonylglucoside)-5-glucoside, rutin, kaempferol-3-(2″,3″-diacetyl-4″-p-coumaroylrhamnoside), and myricetin-3-(2‴-galloylrhamnoside) were the main compounds detected. CONCLUSION: The results expand our knowledge of the phytochemical constituents of petals from black D. pinnata.


Asunto(s)
Dahlia , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Quempferoles , Ciclotrones , Análisis de Inyección de Flujo , Análisis de Fourier , Extractos Vegetales/química , Metanol , Fitoquímicos/análisis
8.
J Am Soc Mass Spectrom ; 34(8): 1789-1797, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477530

RESUMEN

In recent years, various alternatives to fossil fuels have been developed. One of them involves the production of bio-oils from lignocellulosic-based biomass through pyrolysis. However, bio-oils present numerous heteroatoms and, in particular, oxygen atoms that need to be removed by an upgrading process. To optimize these processes, it is necessary to have good knowledge of the composition of the bio-oils at the molecular level. This work aims to establish the usefulness of laser desorption ionization (LDI) and matrix-assisted laser desorption/ionization (MALDI) techniques on lignocellulosic biomass-based bio-oils. Using a Fourier transform ion cyclotron mass spectrometer (FTICR MS), we showed that MALDI gives more information than LDI. The selectivity of a series of MALDI matrices was investigated, showing that some matrices are selective toward compound families and others ionize a wider range of compounds. In this study, nine proton-transfer matrices and three electron-transfer matrices were used and compared to results obtained in LDI. Dithranol, acetosyringone, and graphene oxide were the three promising matrices selected from all matrices, giving an overall characterization of oxygenated classes in a bio-oil. They allowed the ionization of many more species covering a wide range of polarity, aromaticity, and mass with a homogeneous relative intensity for all molecular classes such as lignin-derivative species, sugars, and lipid-derivative species.


Asunto(s)
Aceites de Plantas , Pirólisis , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Rayos Láser
9.
Sci Total Environ ; 893: 164944, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37336412

RESUMEN

This study evaluated the ability to remove dissolved organic matter (DOM), particularly dissolved organic nitrogen (DON), at a molecular level using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) in a full-scale reject water treatment project comprising three steps of short-cut nitrification and denitrification, two-stage AO, and ultrafiltration membrane system. The results indicated that short-cut nitrification and denitrification were effective in reducing the DON concentration from an average of about 180 mg/L to 43 mg/L. The average molecular weight of DOM showed a decreasing trend from 238 Da to 160 Da. The percentage of nitrogen-containing organic compounds (CHON-DOM), which is the primary component of reject water DOM, increased from 65.79 % to 72.35 %, while the percentage of CHO-DOM decreased from 20.67 % to 15.24 %. The percentage of CHOS-DOM remained stable at 12.21 %-13.54 %. The percentage of protein-DOM decreased from 50.32 % to 18.40 %, while lignin-DOM increased from 36.16 % to 55.88 % and carbohydrate-DOM increased from 2.68 % to 9.74 %. The short-cut nitrification and denitrification and ultrafiltration membrane system both generated more unsaturated, highly aromatic DOM. This study provides insights into the effects of different wastewater treatment processes on the evolution of DOM/DON, which can be useful for effective DON control.

10.
J Environ Radioact ; 263: 107183, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094504

RESUMEN

Grout materials are commonly used to immobilize low-level radioactive waste. Organic moieties can be unintentionally present in common ingredients used to make these grout waste forms, which may result in the formation of organo-radionuclide species. These species can positively or negatively affect the immobilization efficiency. However, the presence of organic carbon compounds is rarely considered in models or characterized chemically. Here, we quantify the organic pool of grout formulations with and without slag, as well as the individual dry ingredients used to make the grout samples (ordinary Portland cement (OPC), slag and fly ash), including total organic carbon (TOC) and black carbon, followed by aromaticity evaluation and molecular characterization via Electro Spray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICRMS). All dry grout ingredients contained significant amounts of organic carbon, ranging from 550 mg/kg to 6250 mg/kg for the TOC pool, with an averaged abundance of 2933 ± 2537 mg/kg, of which 60 ± 29% was composed of black carbon. The significant abundance of a black carbon pool implies the presence of the aromatic-like compounds, which was further identified by both phosphate buffer-assisted aromaticity evaluation (e.g., >1000 mg-C/kg as aromatic-like carbon in the OPC) and dichloromethane (DCM) extraction with ESI-FTICRMS analysis. Besides aromatic-like compounds, other organic moieties were also detected in the OPC, such as carboxyl-containing aliphatic molecules. While the organic compound only consists of minor fractions of the grout materials investigated, our observations of the presence of various radionuclide-binding organic moieties suggests the potential formation of organo-radionuclides, such as radioiodine, which might be present at lower molar concentrations than TOC. Evaluating the role of organic carbon complexation in controlling the disposed radionuclides, especially for those radionuclides with strong association with organic carbon, has important implications for the long-term immobilization of radioactive waste in grout systems.


Asunto(s)
Monitoreo de Radiación , Residuos Radiactivos , Radioisótopos de Yodo/química , Carbono , Espectrometría de Masas
11.
Plants (Basel) ; 12(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771648

RESUMEN

Prostate cancer (PCa) is one of the most common male malignancies worldwide. In the current study, we evaluated the effects of a natural deep eutectic solvent (NADES) extract of Pueraria lobata roots rich in isoflavones (ISF) and Phaffia rhodozyma extract rich in astaxanthin (ASX) on an N-methyl-N-nitrosourea plus testosterone PCa model in rats. ISF consisted of puerarin, daidzein, genistein, formononetin and other polyphenols, while ASX contained lipids and unsaturated species in addition to astaxanthin. Extracts were administered through a whole promotion period in daily doses shown by our group to successfully inhibit benign prostate hyperplasia (BPH) development - 200 mg/kg for ISF and 25 mg/kg for ASX. Though a similar effect was found for BPH processes accompanying PCa induction, the incidence of PCa in animals treated with placebo, ISF and ASX was 37%, 37% and 41%, respectively, showing no chemopreventive activity of ISF and ASX. PCa development was associated with a decrease in the Ca/Mg ratio in serum and an increase in prostate tissue. Treatment with both extracts produced a normalization effect on Ca balance in serum, which, combined with a decrease in the prostatic index, suggests some positive health effects of ISF and ASX.

12.
Sci Total Environ ; 872: 162217, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36791865

RESUMEN

The peroxymonosulfate (PMS) process may be hindered severely due to natural organic matter (NOM) conversion in the treatment of emerging pollutants from river water, becoming a critical engineering and technical issue. In this study, a Fe(II)-induced river water (RW)/PMS catalytic system was constructed for investigating molecular transformation of NOM and related influence mechanism to sulfamethoxazole (SMX) degradation. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analysis indicated that NOM molecules containing no more than one heteroatom in river may be attacked by hydroxyl radicals (OH) and then polymerized, converting into molecules with two or three heteroatoms during PMS oxidation. Based on the correlation analysis, CHONP-NOM, CHOSP-NOM and CHONSP-NOM showed a significant inhibition against SMX degradation, while CHONS-NOM exhibited a moderate inhibitory effect. Besides, more condensed aromatic structures, carbohydrates and tannins were generated via reactive species (OH and sulfate radicals (SO4-)) oxidation, radical addition and polymerization reactions. Notably, condensed aromatic structures, carbohydrates and tannins presented weak, modest and strong inhibition to SMX degradation, respectively. Based on the current results, the inhibition of target pollutants degradation would be mitigated via regulation of NOM molecules in a Fe(II)-induced PMS activation system, providing valuable information to reduce NOM impact. In addition, this study paves the way to achieve efficient removal of emerging pollutants from river water.

13.
Chemosphere ; 313: 137505, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36509189

RESUMEN

No biodegradation methods are absolute in the treatment of all textile dyes, which leads to structure-dependent degradation. In this study, biodegradation of three azo dyes, reactive black 5 (RB5), acid blue 113 (AB113), and acid orange 7 (AO7), was investigated using an immobilized fungus, Trametes hirsuta D7. The degraded metabolites were identified using UPLC-PDA-FTICR MS and the biodegradation pathway followed was proposed. RB5 (92%) and AB113 (97%) were effectively degraded, whereas only 30% of AO7 was degraded. Molecular docking simulations were performed to determine the reason behind the poor degradation of AO7. Weak binding affinity, deficiency in H-bonding interactions, and the absence of interactions between the azo (-NN-) group and active residues of the model laccase enzyme were responsible for the low degradation efficiency of AO7. Furthermore, cytotoxicity and genotoxicity assays confirmed that the fungus-treated dye produced non-toxic metabolites. The observations of this study will be useful for understanding and further improving enzymatic dye biodegradation.


Asunto(s)
Compuestos Azo , Trametes , Simulación del Acoplamiento Molecular , Biodegradación Ambiental , Compuestos Azo/toxicidad , Compuestos Azo/metabolismo , Colorantes/química , Lacasa/química
14.
J Environ Sci (China) ; 125: 215-222, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375907

RESUMEN

Vacuum ultraviolet (VUV) photolysis is recognized as an environmental-friendly treatment process. Nitrate (NO3-) and natural organic matter (NOM) are widely present in water source. We investigated trichloronitromethane (TCNM) formation during chlorination after VUV photolysis, because TCNM is an unregulated highly toxic disinfection byproduct. In this study: (1) we found reactive nitrogen species that is generated under VUV photolysis of NO3- react with organic matter to form nitrogen-containing compounds and subsequently form TCNM during chlorination; (2) we found the mere presence of 0.1 mmol/L NO3- can result in the formation of up to 63.96 µg/L TCNM; (3) we found the changes in pH (6.0-8.0), chloride (1-4 mmol/L), and bicarbonate (1-4 mmol/L) cannot effectively diminish TCNM formation; and, (4) we established the quantitative structure-activity relationship (QSAR) model, which indicated a linear relationship between TCNM formation and the Hammett constant (σ) of model compounds; and, (5) we characterized TCNM precursors in water matrix after VUV photolysis and found 1161 much more nitrogen-containing compounds with higher aromaticity were generated. Overall, this study indicates more attention should be paid to reducing the formation risk of TCNM when applying VUV photolysis process at scale.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Relación Estructura-Actividad Cuantitativa , Vacio , Contaminantes Químicos del Agua/análisis , Halogenación , Desinfección , Compuestos de Nitrógeno , Agua/química , Nitrógeno/química , Rayos Ultravioleta
15.
Bioresour Technol ; 366: 128227, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36332860

RESUMEN

Sludge hydrolysis is a vital step in anaerobic digestion of sludge. This study compared the efficacy of free versus immobilized enzymes at different concentrations in promoting sludge disintegration. Pretreatment with 1,000 mg/L immobilized enzymes was more efficient in promoting sludge disintegration than free enzymes at the same concentration. Under the optimized conditions, volatile fatty acids (VFAs) were produced at 10.6 g/L, accounting for 85 % of total soluble chemical oxygen demand. Improved VFA production was attributed to the release of large amounts of polysaccharides and proteins from the enzymatically pretreated sludge. Released organic matter are the substrates for VFAs generated by the determined microbial community of Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi. In this study, anaerobic fermentation was used to successfully convert organic matter in sludge into high-value-added VFAs. Therefore, this process can be selected as a strategy to reduce carbon emissions from wastewater treatment plants (WWTPs).


Asunto(s)
Enzimas Inmovilizadas , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Fermentación , Anaerobiosis , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles/metabolismo
16.
Chemosphere ; 307(Pt 1): 135601, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35817191

RESUMEN

Micro/nanoplastics (MNPs) are widespread environmental pollutants that cause high health risks. However, high heterogeneity in particle sizes and chemical compositions of MNPs make their accurate characterization extremely challenging. Herein, we established a matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) strategy for the unambiguous characterization of different types of MNPs with high performance, including polystyrene, polyethylene glycol terephthalate, polyamide, polymethyl methacrylate, acrylonitrile butadiene styrene copolymer, and polycarbonate. The MNP sample preparation and detection conditions were systematically optimized by using response surface methodology, and the MS detection signal-to-noise ratios were improved 1.5 times on average. The ultrahigh mass resolution of FTICR MS is crucial to the unambiguous elucidation of MNP structures. We demonstrate that this MS strategy is highly efficient in the characterization of polymer constitutions of environmental MNPs derived from foam, bottles, cable ties, and compact discs, providing a promising tool for MNP detection and safety evaluation.


Asunto(s)
Acrilonitrilo , Contaminantes Ambientales , Butadienos , Contaminantes Ambientales/análisis , Análisis de Fourier , Microplásticos , Nylons , Polietilenglicoles , Polímeros , Polimetil Metacrilato , Poliestirenos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
17.
Chemosphere ; 303(Pt 2): 135183, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35654233

RESUMEN

Natural organic matter (NOM) refers to the dissolved organic matter in natural water that can pass through 0.45 µm filter membrane. As a pivotal role in the surface water body, it has a significant effect on the efficiency of AOPs. In this study, Excitation emission matrix - parallel factor (EEM-PARAFAC) analysis is used to elucidate the changes of NOM fluorescence peaks after electrochemical oxidation process, two-dimensional correlation spectroscopy (2D-FTIR-COS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) are utilized to clarify the molecular characteristics of NOM in surface water and the effects of electrochemical oxidation on NOM molecules. The results indicate that parts of NOM molecules are mineralized into simple compounds and precursors of refractory organic matters produced by some NOM molecules after AOPs. It is concluded that the precursors of these refractory organic matters may belong to terrestrial humus (C2). Therefore, for the purpose of avoiding more refractory organic pollutants produced by NOM which can reduce the performance of AOPs in the water treatment process, factories should choose water sources with less humus as industrial water supply, or degrade humus by physical or chemical methods before industrial water supply.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Oxidación-Reducción , Suelo , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Abastecimiento de Agua
18.
Sci Total Environ ; 843: 157009, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35772561

RESUMEN

In land-based recirculating aquaculture systems (RAS), the accumulation of dissolved organic matter (DOM) can have detrimental effects on water quality impacting the system performance, microbial community, and consequently fish health and welfare. Ozone is used in the RAS water treatment process to improve water quality and remove DOM. However, little is known about the molecular composition of DOM in RAS and its transformation when exposed to ozone. In this study, we performed a detailed molecular characterization of DOM in RAS and explored its transformation induced by ozonation of RAS waters. Ultra-high resolution (UHR) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) was used to characterize the DOM matrix of RAS waters (pump-sump and tanks) and to evaluate its transformation by ozonation. The analysis of DOM extracted from makeup water and feed samples allowed for the determination of DOM sources in RAS prior to ozonation. The CHO and unsaturated group of compounds were the most abundant class found in water samples. On the contrary, the DOM from feed samples was unique and consisted mainly of CHO, CHON and unsaturated group of compounds. After the ozonation of RAS waters, humic-like and unsaturated compounds [positive oxygen subtracted double bond equivalent per carbon (DBE-O)/C)] were decomposed, particularly the CHO-DOM that contained fewer -CH2- features. Fulvic-like compounds and several hundred saturated compounds [negative (DBE-O)/C)] were formed post ozonation, particularly the CHON and CHONS group of compounds that were associated with fish diets, makeup waters and transformation products from the ozonation of the RAS waters. This study showed that the high accuracy of the ultra-high resolution FTICR MS can be applied to characterize and monitor the changes of DOM at a molecular level in RAS waters. To our knowledge, this is the first study where FTICR MS was incorporated for the characterization of DOM and its sources in RAS.


Asunto(s)
Ozono , Animales , Acuicultura , Ciclotrones , Materia Orgánica Disuelta , Análisis de Fourier , Espectrometría de Masas
19.
Food Chem ; 388: 132998, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35453011

RESUMEN

An in vivo microcapillary sampling (MCS) method coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) analysis was utilized to monitor the real-time bipyridine quaternary ammonium herbicides concentrations and assess their uptake and elimination behaviors in living cabbage plants noninvasively. Under optimized conditions, the proposed method for paraquat (PQ) and diquat (DQ) determination showed wide linear ranges (7.81-500 µg/kg), low limits of detection (0.1-0.9 µg/kg), and good reproducibility. In vivo tracking results demonstrated that different absorption behaviors between PQ and DQ existed in living vegetables and DQ was more easily absorbed. Through decay kinetics model fitting, herbicide half-lives were 1.32 and 1.86 days for PQ and DQ, respectively. To summarize, in vivo MCS method provides valuable information on herbicide risks for agricultural production, which is suitable for temporal, spatial, and longitudinal studies in the same living system and multicompartmental studies in the same organism.


Asunto(s)
Diquat , Herbicidas , Ciclotrones , Diquat/análisis , Análisis de Fourier , Herbicidas/análisis , Rayos Láser , Paraquat/análisis , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Verduras
20.
Front Microbiol ; 13: 803420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250925

RESUMEN

Understanding the mechanisms underlying the assembly of communities has long been the goal of many ecological studies. While several studies have evaluated community wide ecological assembly, fewer have focused on investigating the impacts of individual members within a community or assemblage on ecological assembly. Here, we adapted a previous null model ß-nearest taxon index (ßNTI) to measure the contribution of individual features within an ecological community to overall assembly. This new metric, called feature-level ßNTI (ßNTIfeat), enables researchers to determine whether ecological features (e.g., individual microbial taxa) contribute to divergence, convergence, or have insignificant impacts across spatiotemporally resolved metacommunities or meta-assemblages. Using ßNTIfeat, we revealed that unclassified microbial lineages often contributed to community divergence while diverse groups (e.g., Crenarchaeota, Alphaproteobacteria, and Gammaproteobacteria) contributed to convergence. We also demonstrate that ßNTIfeat can be extended to other ecological assemblages such as organic molecules comprising organic matter (OM) pools. OM had more inconsistent trends compared to the microbial community though CHO-containing molecular formulas often contributed to convergence, while nitrogen and phosphorus-containing formulas contributed to both convergence and divergence. A network analysis was used to relate ßNTIfeat values from the putatively active microbial community and the OM assemblage and examine potentially common contributions to ecological assembly across different communities/assemblages. This analysis revealed that P-containing formulas often contributed to convergence/divergence separately from other ecological features and N-containing formulas often contributed to assembly in coordination with microorganisms. Additionally, members of Family Geobacteraceae were often observed to contribute to convergence/divergence in conjunction with both N- and P-containing formulas, suggesting a coordinated ecological role for family members and the nitrogen/phosphorus cycle. Overall, we show that ßNTIfeat offers opportunities to investigate the community or assemblage members, which shape the phylogenetic or functional landscape, and demonstrate the potential to evaluate potential points of coordination across various community types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...