Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 28(6): 3566-3577, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34121900

RESUMEN

Ripe date fruits contain phenolic compounds which possess a high antioxidant activity. The current review was carried out to evaluate total phenolic content in ripe date fruits. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) was followed during the review process. Relevant studies published from inception up to March 2019 were retrieved from three databases. Study selection was performed based on specific inclusion criteria. A total of twenty-two articles were selected and included in the present review. Data collected from these studies were organized, pooled, and analyzed using descriptive statistics. Total phenolic content means and medians have been reported for the collected ripe date fruit samples for each included study and pooled data. The results suggested that ripe date fruits contain a potent total phenolic content that can contribute mainly to their antioxidant properties.

2.
Saudi J Biol Sci ; 28(4): 2510-2517, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33911962

RESUMEN

In the era of climate change, decreased precipitation and increased evapo-transpiration hampers the yield of several cereal crops along with the soil salinity and poor ground water resource. Wheat being the moderately tolerant crop face many challenges in the arid and semi-arid regions under irrigated agriculture. In view of this, the study was planned to explore the potential of durum wheat genotypes under salinity on the basis of physiological traits. Experiment was designed as RBD in three replications to evaluate 15 wheat genotypes with moderate saline irrigation (ECiw - 6 dS m-1) and extreme saline irrigation (ECiw - 10 dS m-1) along with one set of control (Best available water). Different physiological traits such as water potential (ψp), osmotic potential (ψs), relative water content (RWC), Na+ and K+ content were recorded in roots as well as shoots at the reproductive stage whereas photosynthetic rate and chlorophyll content were measured in the flag leaves. A significant variability (p < 0.001) was noted among the genotypes under different stress environments and it was observed that durum genotype HI 8728 and HI 8737 showed less reduction in plant water traits (RWC, ψp and ψs) than the salinity tolerant checks of bread wheat KRL 99 and KRL 3-4. HD 4728 and HI 8708 maintained higher photosynthetic rate as well as higher chlorophyll content under the extreme salinity level of ECiw - 10 dSm-1. No significant differences were found in root Na+ in genotypes KRL 99 (3.17g), KRL 3-4 (3.34g) and HI 8737 (3.41g) while in shoots, lowest accumulation was seen in KRL 99, MACS 3949 and KRL 3-4 at ECiw - 10 dSm-1. The mean range of K+ content was 7.60-9.74% in roots and 4.21-6.61% in shoots under control environment which decreased to 50.77% in roots and 46.05% in shoots under extreme salinity condition of ECiw - 10 dSm-1. At ECiw - 10 dSm-1, KRL 99 maintained highest K+/Na+ in both root and shoot followed by KRL 3-4, HI 8737, MACS 3949, HD 4728 in roots and MACS 3949, KRL 3-4, MACS 4020, HD 4758, MACS 3972 and HI 8713 in shoots. The differential response of durum wheat genotypes under salinity particularly for physiological traits, confer their adaptability towards stress environments and exhibit their potential as genetic sources in breeding programs for improving salt stress tolerance.

3.
Saudi J Biol Sci ; 28(1): 825-832, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424372

RESUMEN

In the current study, we investigated the impact of inoculation with a selected indigenous arbuscular mycorrhizal fungi (AMF) complex on the growth and physiology of carob plants at increasing levels of watering (25, 50, 75 and 100% field capacity). The following growth and stress parameters were monitored in carob seedlings after 6 months of growth and 2 months of applied drought stress: fresh and dry weight, root and shoot lengths, leaf surface area, relative water content, stomatal conductance and membrane stability. Chlorophyll a and b, total soluble sugars, proline and protein contents were also determined along with the activities of stress enzymes: Catalase, Peroxidase and Superoxide dismutase. The obtained results indicate that inoculation with the indigenous AMF complex has a positive impact on the plant's growth as all the assessed parameters were significantly improved in the mycorrhizal plants. Additionally, our results show that mycorrhization contributes to the minimization of the impact of drought stress on the carob plants and allows a better adaptation to dry conditions.

4.
Plant Divers ; 42(5): 351-355, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33134618

RESUMEN

Phytoremediation techniques to clean heavy metal pollution soil depend on identifying plant species that can act as phytoremediators. One important approach to screening potential phytoremediators is to evaluate characteristics of heavy metal accumulation. In this study, we performed firsthand analysis of Cd tolerance and accumulation characteristics of three Sansevieria trifasciata cultivars by pot experiment. Plant growth results showed that all three S. trifasciata cultivars can tolerate 50 mg kg-1 soil Cd concentration. After growth under 50 mg kg-1 soil Cd concentration for 4 months, the Cd bioconcentration factors in the shoots of S. 'Trifasciata', S. trifasciata 'Laurentii', and S. trifasciata 'Silver Hahnii' were 1.26, 1.30, and 1.19, while those in the roots were 12.53, 11.43, and 5.45, respectively. This result reveals the considerably low translocation factors of 0.10, 0.12, and 0.22 for S. 'Trifasciata', S. trifasciata 'Laurentii', and S. trifasciata 'Silver Hahnii', respectively. These results suggest that all three S. trifasciata cultivars had high Cd absorption capacities but low Cd translocation capacities. In combination with total Cd accumulation distribution and plant growth characteristics, S. trifasciata can be designed as a phytostabilizer in Cd-contaminated soils in its cultivation regions. Meanwhile, the mechanism of high Cd tolerance and accumulation characteristics in the roots of S. trifasciata should be explored. This study provides new resources for dealing with Cd-contaminated soils and exploring Cd tolerance and accumulation mechanisms in plants.

5.
Biotechnol Rep (Amst) ; 27: e00519, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32874946

RESUMEN

Plant cell suspension culture of T. peruviana is a feasible biotechnological platform for the production of secondary metabolites with anti-proliferative/cytotoxic activity, as phenolic compounds (PC); however, different in in vitro growth conditions may affect the production, demanding strategies to increase the metabolite biosynthesis, as well as the development of sensitive and rapid analytical methods for metabolite monitoring. The Fourier transform near-infrared (FT-NIR) spectroscopy and Reversed-phase high-performance liquid chromatography (RP-HPLC) combined with Multivariate analysis (MVA) were used to detect significant differences in the PC production in cultures treated with two elicitors. The results suggest that the FT-NIR-MVA is useful for discriminating samples according to the treatment, showed significant influence of the PC signal. RP-HPLC-MVA showed that the elicitor effect occurs at 72 h post-elicitation. Detection of dihydroquercetin (maximum concentration = 12.59 mg/L), a flavonoid with anti-cancer properties, is highlighted. Future studies will be aimed at scaling this culture to increase the productivity of dihydroquercetin.

6.
Saudi J Biol Sci ; 27(8): 2010-2017, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32714025

RESUMEN

Plant growth is often affected with hampered physiological and cellular functioning due to salinity and drought stress. To assess the effectiveness of plant bioregulators (PBRs) in mitigating abiotic stresses, a double spilt plot field study was conducted with three replications at ICAR-CSSRI, research farm, Nain, Panipat. The study comprised of three deficit irrigation regimes viz., 100, 80 and 60% of crop evapo-transpiration (ETc) (I1, I2 and I3), four levels of irrigation water salinity i.e. 2, 4, 8, 12 dS m-1 (S0, S1, S2 and S3) and two PBRs salicylic acid (SA; G1) and thiourea (TU; G2). Irrigations, as per regimes and salinity, were applied at identified critical stages of wheat and if needed in pearl millet. PBRs were applied as seed priming and foliar sprays at two sensitive stages of respective crops. The trend of plant height, and physiological and biochemical traits was similar under different treatments at both stages, but differed significantly only at reproductive stage. Water deficit caused significant reduction in pearl millet (5.1%) and wheat (6.7%) grain yields. The reduction in grain yield under 8 and 12 dS m-1 was 12.90 and 22.43% in pearl millet and 7.68 and 32.93% in wheat, respectively compared to 2 dS m-1. Application of either SA (G1) or TU (G2) significantly enhanced plant height and grain yield, but magnitude of the increment was higher with SA in pearl millet and with TU in wheat. Application of SA and TU increased grain yield by 14.42 and 12.98 in pearl millet, and 12.90 and 17.36% in wheat, respectively. The plant height, RWC, TC, MI, LP, proline, Fv/Fm and Na/K ratio significantly reduced by salinity stress in pearl millet and both water and salinity stress in wheat. Application of both PBRs proved beneficial to mitigate adverse effect of water deficit and salt stress by significantly improving physiological traits, biochemical traits and ultimately grain yield in both crops.

7.
Anim Feed Sci Technol ; 253: 125-134, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31293291

RESUMEN

Selenium (Se) is a non-metallic trace element essential for normal cellular function, which has been linked with reduced risk of cancer, cardiovascular disease, cognitive decline and thyroid disease in humans. Se deficiency in livestock is associated with white muscle disease, retained placenta, ill-thrift and mastitis. Where Se status or bioavailability from the soil for plants is poor, livestock rely on supplemental Se in their diets predominantly as either sodium selenite (inorganic form) or selenised-yeast (organic form). As lactic acid bacteria (LAB) have been shown to incorporate Se as either organic or elemental (Nano-Se) there may be potential to use silage inoculant bacteria to improve the Se status of feed to provide the Se requirements of livestock. We screened twenty-seven LAB in MRS broth in the presence of sodium selenite for growth and uptake of Se as organic (selenocysteine and selenomethionine), inorganic (selenite and selenate) or/and Nano-Se, with the aim to identify potential candidates for a mini-silo study. Sodium selenite addition into the growth medium of LAB reduced growth rates but also resulted in the conversion of the inorganic sodium selenite into predominately Nano-Se and small quantities of organic-Se. Based on a rank analysis of growth and ability to take up (total Se content) and convert inorganic Se (Nano and organic Se content), three LAB were selected for further investigation as silage inoculants: L. brevis DSMZ (A), L. plantarum LF1 (B), and L. plantarum SSL MC15 (C). Each LAB was used as an inoculant within a grass mini-silo trial, either cultured in the presence of sodium selenite before inoculation or sodium selenite added to the inoculum at inoculation versus controls with no Se. The addition of sodium selenite either into the growth media of LAB or applied at inoculation of grass silage did not interfere with the ability of the LAB to act as a silage inoculant with no difference in silage fermentation characteristic between LAB with no Se added. The addition of sodium selenite either to the LAB growth medium or at inoculation resulted in the conversion of sodium selenite into Nano-Se and organic-Se (Nano-Se, ca. 103 higher than organic), as previously shown in the screening trial. There was no difference between the three LAB for incorporation of Se or in silage quality, indicating the potential to develop silage inoculants to increase the bioavailable form of Se (elemental and organic) to livestock through conversion of inorganic forms during ensiling.

8.
Plant Divers ; 40(1): 19-27, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30159537

RESUMEN

The capacity of plants to accumulate cadmium (Cd) is significant for phytoremediation of Cd-polluted soils. Turnips cultivated in China include species featuring high Cd accumulation and some of these plants act as Cd hyperaccumulator landraces. These plants can accumulate over 100 mg Cd kg-1 dry weight in leaves without injury. Hence, studies that explore mechanisms underlying Cd detoxification and transport in turnip plants are essential. In the present study, we compared physiological and biochemical changes in turnip leaves treated with two Cd concentrations to controls. We discovered that Cd stress significantly increased the enzymatic activities or compound contents in the antioxidant system, including members of the glutathione-ascorbic acid cycle, whereas oxidation of reactive oxygen species (ROS) remained stable. Cd treatments also increased the contents of phytochelatins as well as a number of amino acids. Based on these results, we conclude that turnips initiate a series of response processes to manage Cd treatment. First, the antioxidant system maintaining ROS homeostasis and osmotic adjustment is excited to maintain stability of cell osmotic potential. Cd is chelated into its stable form to reduce its toxicity. Cd is possibly transported to vacuoles or non-protoplasts for isolation. Amino acid synthesis may directly and indirectly play an important role in these processes. This study partly revealed physiological and biochemical mechanisms underlying turnip response to Cd stress and provides information on artificially increasing or decreasing Cd accumulation in turnips and other plants.

9.
Biosci Biotechnol Biochem ; 82(3): 507-514, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29436968

RESUMEN

Soybeans (Glycine max (L,) Merr,) contain γ-glutamyl peptides and oligosaccharides, and these components play an important role in imparting the "kokumi" taste to foods. To gain insight into the genetic diversities and molecular mechanisms of accumulation of γ-glutamyl peptides and oligosaccharides in soybean, we measured the contents of these components using the Japan and World mini core collections. Similar to other previously reported traits, wide variations were detected among the accessions in the core collections with respect to the content of γ-glutamyl peptides and oligosaccharides. We found a positive relationship between the content of γ-glutamyl tyrosine and γ-glutamyl phenylalanine and between the content of raffinose and stachyose. Furthermore, there were unique accessions that included high levels of γ-glutamyl peptides and oligosaccharides. These accessions may be helpful in understanding the accumulation mechanism of γ-glutamyl peptides and oligosaccharides and to increase the "kokumi" taste components in soybean by performing a genetic analysis.


Asunto(s)
Ácido Glutámico/química , Glycine max/química , Oligosacáridos/análisis , Péptidos/análisis , Péptidos/química , Semillas/química , Gusto
10.
J Genet Eng Biotechnol ; 13(1): 19-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30647562

RESUMEN

The enormous demand for new rootstock genotypes in Prunus spp. makes us to use micropropagation as an unavoidable propagation method. Therefore, the study on micropropagation of a new semi-dwarf vegetative rootstock namely Tetra (Prunus empyrean 3) was carried out to develop an optimized protocol. Culture establishment using nodal segments was enhanced using WPM (woody plant medium) medium lacking growth regulators. From various shoot multiplication treatments, the highest number of shoots per explant (30.4) was found on ME (Media created specifically) medium supplemented with 0.8 mg l-1 BAP and 0.05 mg l-1 IBA. 100% in vitro rooting was achieved on ½ strength MS medium with 0.5 mg l-1 IBA, 1.6 mg l-1 thiamine and 150 mg l-1 iron sequestrene.

11.
Plant Signal Behav ; 10(1): e973822, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25482780

RESUMEN

Using a cuvette for simultaneous measurement of net photosynthesis in above ground plant organs and root respiration we investigated the effect of reduced leaf glucokinase activity on plant carbon balance. The gin2-1 mutant of Arabidopsis thaliana is characterized by a 50% reduction of glucokinase activity in the shoot, while activity in roots is about fivefold higher and similar to wild type plants. High levels of sucrose accumulating in leaves during the light period correlated with elevated root respiration in gin2-1. Despite substantial respiratory losses in roots, growth retardation was moderate, probably because photosynthetic carbon fixation was simultaneously elevated in gin2-1. Our data indicate that futile cycling of sucrose in shoots exerts a reduction on net CO2 gain, but this is over-compensated by the prevention of exaggerated root respiration resulting from high sucrose concentration in leaf tissue.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Hexoquinasa/metabolismo , Raíces de Plantas/enzimología , Brotes de la Planta/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Hexoquinasa/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Transpiración de Plantas/genética , Transpiración de Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...