Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 954
Filtrar
1.
Int J Biol Macromol ; 277(Pt 3): 134370, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094864

RESUMEN

Ulcerative Colitis (UC) is a chronic inflammatory disease of the intestinal tract with unknown definitive etiology. Polysaccharides are among the most important active components of Abelmoschi Corolla, exhibitings various pharmacological activities such as antioxidation and immunomodulation. However, no studies have yet reported the application of Abelmoschi Corolla Polysaccharides (ACP) in treating UC. This study aims to highlight the therapeutic efficacy of ACP in UC and reveal the underlying mechanism. The potential therapeutic effect is initially verified using a dextran sodium sulfate (DSS)-induced colitis model. 16S rRNA sequencing is performed using feces samples and untargeted metabolomics using serum samples to further reveal that ACP reprograms the dysbiosis triggered by UC progression, increases the abundance of Bacteroides spp., Blautia spp., and Parabacteroides spp. at the genus level and enriches the serum concentration of 7-ketodeoxycholic acid (7-KDA). Furthermore, using the FXR-/- mouse model, it is revealed that Farnesoid X Receptor (FXR) is a key target for ACP and the metabolite 7-KDA to block STAT3 phosphorylation by repairing the intestinal barrier to attenuate UC. Taken together, this work highlights the therapeutic potential of ACP against UC, mainly exerting its effects via modulating gut microbiota and regulating the FXR/STAT3 signaling pathway.

2.
Poult Sci ; 103(10): 104075, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39094501

RESUMEN

Betaine has been shown to enhance growth performance and increase breast muscle yield in ducks and broilers through various mechanisms, including the modification of DNA methylation. However, the impact of in ovo betaine injection on muscle growth in newly hatched goslings remains unclear. In this study, fifty eggs were injected with saline or betaine at 7.5 mg/egg prior to incubation, and the subsequent effects on breast muscle growth in the newly hatched goslings were investigated. Betaine significantly increased (P < 0.05) the hatch weight, breast muscle weight, and breast muscle index, accompanied by an augmentation in muscle bundle cross-sectional area. Concurrently, betaine significantly upregulated (P < 0.05) the expression levels of myogenic regulatory factors, including myogenin (MyoG) and paired box 7 (Pax7) both mRNA and protein, while downregulating (P < 0.05) the mRNA and protein levels of myostatin (MSTN). Histological analysis revealed a higher abundance of proliferating cell nuclear antigen (PCNA) and Pax7 immune-positive cells in the breast muscle of the betaine group, consistent with elevated PCNA and Pax7 mRNA and protein levels. Additionally, significantly increased (P < 0.05) contents of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) were observed in the breast muscle of the betaine group, so was mRNA expression of IGF-1, IGF-2, and insulin-like growth factor 1 receptor (IGF-1R). Betaine also significantly in8creased (P < 0.05) global DNA methylation of the breast muscle, accompanied by enhanced mRNA and protein levels of methionine cycle and DNA methylation-related enzymes, Interestingly, the promoter regions of IGF-1, IGF-2, and IGF-1R genes were significantly hypomethylated (P < 0.05). Moreover, in ovo betaine injection significantly upregulated (P < 0.05) the protein level of farnesoid X receptor (FXR) in breast muscle and FXR binding to the promoter of IGF-2 gene. These findings suggest that in ovo betaine injection promotes breast muscle growth during embryonic development in goslings through the FXR-mediated IGF-2 pathway, ultimately improving hatch weight and breast muscle weight.

3.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3804-3817, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099354

RESUMEN

The chemical composition of Ganoderma lucidum ethanol extracts was systematically analyzed and identified by ultra-high performance liquid chromatography-quadrupole electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Orbitrap-HRMS). The fragmentation pattern of the representative chemical compounds was summarized, and the potential anti-liver fibrosis active compounds of G. lucidum acting on the farnesoid X receptor(FXR) target were studied to elucidate its pharmacodynamic substance basis. Preliminarily, 95 chemical constituents of G. lucidum ethanol extracts were identified, including 24 ganoderic acids, 9 ganoderenic acids, 13 lucidenic acids, 3 ganolucidic acids, 1 ganoderma lactone, 40 other triterpenoids, 4 fatty acids, and 1 other constituent. In addition, the fragmentation patterns of the representative compounds were also analyzed. The structural characteristics of ganoderic acids and ganoderenic acids were the C30 skeleton, containing free-COOH and-OH groups, which could easily lose H_2O and CO_2 to form fragment ions. The D-ring was mostly a five-membered ring, which was prone to breakage. Lucidenic acids were the lanosterolane-type of the C27 skeleton, and the side-chain structure became shorter and contained the same free-COOH and-OH compared with ganoderic acids, which had been reduced from 8 to 5 cartons and prone to lose H_2O and CO_2. Then, six reported FXR receptor agonists were selected to form a training set for establishing a pharmacophore model based on FXR ligands. The 95 identified chemical constituents of G. lucidum were matched with the pharmacophore, and the optimal pharmacophore model 02(sensitivity=0.750 00, specificity=0.555 56, ROC=0.750) was selected for the virtual screening of the G. lucidum compound library through the validation of the test set. Finally, 31 potential G. lucidum active constituents were screened and chosen to activate the FXRs. The ADMET results showed that ganoderic acid H and lucidenic acid J had less than 90% plasma protein binding rate and no hepatotoxicity, which could be used as FXR activators for developing clinical drugs for the treatment of liver fibrosis, either alone or in combination.


Asunto(s)
Medicamentos Herbarios Chinos , Cirrosis Hepática , Receptores Citoplasmáticos y Nucleares , Reishi , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Humanos , Reishi/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Espectrometría de Masas/métodos , Estructura Molecular , Simulación del Acoplamiento Molecular
4.
Microbiol Res ; 287: 127865, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121702

RESUMEN

The gut microbiota, mainly resides in the colon, possesses a remarkable ability to metabolize different substrates to create bioactive substances, including short-chain fatty acids, indole-3-propionic acid, and secondary bile acids. In the liver, bile acids are synthesized from cholesterol and then undergo modification by the gut microbiota. Beyond those reclaimed by the enterohepatic circulation, small percentage of bile acids escaped reabsorption, entering the systemic circulation to bind to several receptors, such as farnesoid X receptor (FXR), thereby exert their biological effects. Gut microbiota interplays with bile acids by affecting their synthesis and determining the production of secondary bile acids. Reciprocally, bile acids shape out the structure of gut microbiota. The interplay of bile acids and FXR is involved in the development of multisystemic conditions, encompassing metabolic diseases, hepatobiliary diseases, immune associated disorders. In the review, we aim to provide a thorough review of the intricate crosstalk between the gut microbiota and bile acids, the physiological roles of bile acids and FXR in mammals' health and disease, and the clinical translational considerations of gut microbiota-bile acids-FXR in the treatment of the diseases.

5.
Comput Biol Med ; 180: 108991, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39126787

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a growing global health concern due to its potential to progress into severe liver diseases. Targeting the bile acid receptor FXR has emerged as a promising strategy for managing NAFLD. Building upon our previous research on FXR partial agonism, the present study investigates a series of 1,3,4-trisubstituted-pyrazol amide derivatives as FXR antagonists, aiming to delineate the structural features for antagonism. By means of 2D-QSAR (quantitative structure-activity relationships) modelling techniques, we elucidated the key structural elements responsible for the antagonistic properties of these derivatives. We then employed QPhAR, an open-access software, to identify key molecular features within the compounds that enhance their antagonistic activity. Additionally, 3D-QSAR modelling allowed us to analyse the steric and electrostatic fields of aligned 3D structures, further refining our understanding of structure-activity relationships. Subsequent molecular dynamics simulations provided insights into the binding mode interactions between the compounds and FXR, with varying potencies, confirming and complementing the findings from 2D-QSAR, pharmacophore, and 3D-QSAR modelling. Particularly, our study highlighted the significance of hydrophobic interactions in conferring potent antagonism by the 1,3,4-trisubstituted-pyrazol amide derivatives against FXR. Overall, this work underscores the potential of 1,3,4-trisubstituted-pyrazol amides as FXR antagonists for NAFLD treatment. Notably, our reliance on open-access software fosters reproducibility and broadens the accessibility of our findings.

6.
Gastro Hep Adv ; 3(3): 344-352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131134

RESUMEN

Farnesoid X receptor (FXR) agonists have emerged as a promising therapeutic strategy for the management of various gastrointestinal (GI) diseases, including primary biliary cholangitis, nonalcoholic fatty liver disease, inflammatory bowel disease, alcohol-related liver disease, and primary sclerosing cholangitis. In this review, we discuss the mechanisms of action of FXR agonists, including their metabolic and immunomodulatory effects, and provide an overview of the clinical evidence supporting their use in the treatment of GI diseases. We also highlight the safety, adverse effects, and potential drug interactions associated with FXR agonists. While these agents have demonstrated efficacy in improving liver function, reducing hepatic steatosis, and improving histological endpoints in primary biliary cholangitis and nonalcoholic fatty liver disease, further research is needed to determine their long-term safety and effectiveness in other GI diseases, such as inflammatory bowel disease, alcohol-related liver disease, and primary sclerosing cholangitis. Additionally, the development of next-generation FXR agonists with improved potency and reduced side effects could further enhance their therapeutic potential.

7.
Cell Tissue Res ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155323

RESUMEN

FMR1 autosomal homolog 1 (FXR1) is an RNA-binding protein that belongs to the Fragile X-related protein (FXR) family. FXR1 is critical for development, as its loss of function is intolerant in humans and results in neonatal death in mice. Although FXR1 is expressed widely including the brain, functional studies on FXR1 have been mostly performed in cancer cells. Limited studies have demonstrated the importance of FXR1 in the brain. In this review, we will focus on the roles of FXR1 in brain development and pathogenesis of brain disorders. We will summarize the current knowledge in FXR1 in the context of neural biology, including structural features, isoform diversity and nomenclature, expression patterns, post-translational modifications, regulatory mechanisms, and molecular functions. Overall, FXR1 emerges as an important regulator of RNA metabolism in the brain, with strong implications in neurodevelopmental and psychiatric disorders.

8.
Clin Res Hepatol Gastroenterol ; : 102448, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159828

RESUMEN

OBJECTIVE: Vascular hyporeactivity increases with the incidence of obstructive jaundice (OJ). Evidence suggests that OJ activates the farnesoid X receptor (FXR) as well as the large-conductance Ca2+-activated K+ (BKCa or MaxiK) channel. This study was designed to explore the role of the FXR in vascular hyporesponsiveness induced by cholestasis. METHODS: The OJ model rats were constructed by bile duct ligation (BDL) and treated with an FXR agonist or antagonist. Vasoconstriction of the mesenteric arteries (MAs) was assessed in vitro. Whole-cell patch clamp recordings were used to investigate BKCa channel function. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect mRNA and protein levels. RESULTS: A significant increase in vascular tone and responsiveness to norepinephrine (NE) was observed after the MaxiK channel blocker (IbTX) was administered. This effect was pronounced in BDL animals and can be mimicked by the FXR agonist GW4064 and inhibited by the FXR antagonist Z-guggulsterone (Z-Gu). GW4064 has a similar effect as cholestasis in promoting MaxiK currents in isolated arterial smooth muscle cells (ASMCs), while Z-Gu blunted this effect. The mRNA and protein expression of FXR and MaxiK-ß1, but not MaxiK-α, were significantly increased in the BDL group in comparison to the sham. Furthermore, activation or inhibition of FXR promoted or inhibited the mRNA and protein expression of the MaxiK-ß1 subunit, respectively. CONCLUSION: Activation of FXR enhances the capability of the MaxiK channel to regulate vascular tone and leads to vascular hyporesponsiveness in the MAs of BDL rats, which may be mediated by the nonparallel upregulation of MaxiK-α and MaxiK-ß1 subunit expression.

9.
Lipids ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077818

RESUMEN

Plant sterols are known for their hypocholesterolemic action, and the molecular mechanisms behind this within the gut have been extensively discussed and demonstrated to the point that there is a degree of consensus. However, recent studies show that these molecules exert an additional umbrella of therapeutic effects in other tissues, which are related to immune function, lipid metabolism, and glucose metabolism. A strong hypothesis to explain these effects is the structural relationship between plant sterols and the ligands of a group of nuclear receptors. This review delves into the molecular aspects of therapeutic effects related with lipid and energy metabolism that have been observed and demonstrated for plant sterols, and turns the perspective to explore the involvement of nuclear receptors as part of these mechanisms.

10.
Front Pediatr ; 12: 1418963, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005507

RESUMEN

Background: 3ß-hydroxy-Δ5-C27-steroid-oxidoreductase (3ß-HSD) deficiency is a bile acid synthesis disorder that leads to the absence of normal primary bile acids and the accumulation of abnormal bile acids. This results in cholestatic jaundice, fat-soluble vitamin deficiency, acholic or fatty stools and failure to thrive. Bile acid supplementation is used to treat 3ß-HSD-deficiency and its symptoms. Methods: This report details the case of a 28-year-old woman diagnosed with 3ß-HSD-deficiency, who was treated with glycine-conjugated deoxycholic acid (gDCA). Results: gDCA treatment successfully restored normal bile acid levels, improved body weight by reducing fat malabsorption, and was well-tolerated with no observed liver problems or side effects. Conclusions: As a potent FXR ligand, gDCA might exert its action through FXR activation leading to bile acid synthesis regulation.

11.
Nutrients ; 16(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39064715

RESUMEN

Iron is a vital trace element for our bodies and its imbalance can lead to various diseases. The progression of metabolic-associated fatty liver disease (MAFLD) is often accompanied by disturbances in iron metabolism. Alisma orientale extract (AOE) has been reported to alleviate MAFLD. However, research on its specific lipid metabolism targets and its potential impact on iron metabolism during the progression of MAFLD remains limited. To establish a model of MAFLD, mice were fed either a standard diet (CON) or a high-fat diet (HFD) for 9 weeks. The mice nourished on the HFD were then randomly assigned to the HF group and the HFA group, with the HFA group receiving AOE by gavage on a daily basis for 13 weeks. Supplementation with AOE remarkably reduced overabundant lipid accumulation in the liver and restored the iron content of the liver. AOE partially but significantly reversed dysregulated lipid metabolizing genes (SCD1, PPAR γ, and CD36) and iron metabolism genes (TFR1, FPN, and HAMP) induced by HFD. Chromatin immunoprecipitation assays indicated that the reduced enrichment of FXR on the promoters of SCD1 and FPN genes induced by HFD was significantly reversed by AOE. These findings suggest that AOE may alleviate HFD-induced disturbances in liver lipid and iron metabolism through FXR-mediated gene repression.


Asunto(s)
Dieta Alta en Grasa , Hierro , Metabolismo de los Lípidos , Hígado , Extractos Vegetales , Receptores Citoplasmáticos y Nucleares , Animales , Extractos Vegetales/farmacología , Hígado/metabolismo , Hígado/efectos de los fármacos , Hierro/metabolismo , Ratones , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Dieta Alta en Grasa/efectos adversos , Alisma/química , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo
12.
Sci Rep ; 14(1): 17597, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079973

RESUMEN

The farnesoid X receptor (FXR) is a crucial therapeutic target for treating non-alcoholic steatohepatitis (NASH). Although obeticholic acid (OCA) as a FXR agonist presents good efficacy, the safety data such as severe pruritus should be carefully considered. To discover new medications, we screen and choose the optimal compounds from ZINC15 database that may agonistically interact with FXR. We utilized the DS19 software to assist us in conducting the computer-aided structure based virtual screening to discover potential FXR agonists. After LibDock scores were determined by screening, their absorption, distribution, metabolism, excretion and toxicity predictions were examined. To determine the binding affinity between the chosen drugs and FXR, molecule docking was utilized. Molecular dynamics simulation was utilized to evaluate the stabilization of the ligand-FXR complex in its native environment. Higher binding affinity and stability with FXR were observed for ZINC000013374322 and ZINC000006036327, as two novel natural compounds, with lower rodent carcinogenicity, Ames mutagenicity, no hepatotoxicity and non-inhibitors of CYP2D6. They could stably exist in the environment, possess favorable potential energy and exert pharmacological effects at lower doses. Furthermore, ZINC000006036327 had lower skin irritancy and sensitization potential compared to OCA, also suggest the possibility of improved skin itching occurrence. ZINC000013374322 and ZINC000006036327 were found to be the best leading compounds to be FXR agonists. They are chosen as safe candidates for FXR target medicine, which play comparable pharmacological effects at lower doses.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptores Citoplasmáticos y Nucleares , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/metabolismo , Humanos , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Ácido Quenodesoxicólico/química , Ligandos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Unión Proteica , Animales
13.
Clin Nutr ; 43(9): 1952-1971, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39032247

RESUMEN

Parenteral nutrition (PN) is a life-saving procedure conducted to maintain a proper nutritional state in patients with severe intestinal failure who cannot be fed orally. A serious complication of PN therapy is liver failure, known as intestinal failure-associated liver disease (IFALD). The pathogenesis of IFALD is multifactorial and includes inhibition of the farnesoid X receptor (FXR) by PN components, bacteria translocation from impaired intestines, and intravenous line-associated bloodstream infection. Currently, the most frequently researched therapeutic option for IFALD is using lipid emulsions based on soy or fish oil and, therefore, free from phytosterols known as FXR antagonists. Nevertheless, the potential side effects of the lack of soybean oil delivery seem to outweigh the benefits, especially in the pediatric population. PN admixture provides all the necessary nutrients; however, it is deprived of exogenous natural bioactive compounds (NBCs) of plant origin, such as polyphenols, characterized by health-promoting properties. Among them, many substances have already been known to demonstrate the hepatoprotective effect in various liver diseases. Therefore, searching for new therapeutic options for IFALD among NBCs seems reasonable and potentially successful. This review summarizes the recent research on polyphenols and their use in treating various liver diseases, especially metabolic dysfunction-associated steatotic liver diseases (MASLD). Furthermore, based on scientific reports, we have described the molecular mechanism of action of selected NBCs that exert hepatoprotective properties. We also summarized the current knowledge on IFALD pathogenesis, described therapeutic options undergoing clinical trials, and presented the future perspective of the potential use of NBCs in PN therapy.

14.
J Appl Toxicol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030772

RESUMEN

Oleanolic acid (OA) is a naturally occurring pentacyclic triterpene compound that has been reported to cause cholestatic liver injury. However, the regulation and pathogenic role of bile acids in OA-induced development of cholestatic liver injury remains largely unclear. Farnesoid X receptor (FXR) is a metabolic nuclear receptor that plays an important role in bile acid homeostasis in the liver by regulating efflux transporters bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2). The aim of this study was to investigate the effect of OA on hepatocyte tight junction function and determine the role of FXR, BSEP, and MRP2 in the mechanism of impairment of transport of bile acids induced by OA. Both in vivo and in vitro models were used to characterize the OA-induced liver injury. The liquid chromatography-tandem mass spectrometry (LC-MS) was employed to characterize the efflux function of the transporters, and the results showed that OA caused a blockage of bile acids efflux. OA treatment resulted in decreased expression levels of the tight junction proteins zonula occludens-1 and occludin. Immunofluorescence results showed that OA treatment significantly reduced the number of bile ducts and the immunofluorescence intensity. Pretreatment with agonists of FXR and MRP2, respectively, in animal experiments attenuated OA-induced liver injury, while pretreatment with inhibitors of BSEP and MRP2 further aggravated OA-induced liver injury. These results suggest that OA inhibits FXR-mediated BSEP and MRP2, leading to impaired bile acid efflux and disruption of tight junctions between liver cells, resulting in liver damage.

15.
J Steroid Biochem Mol Biol ; 244: 106589, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053701

RESUMEN

Hepatic oxidative injury induced by free fatty acids (FFA) and metabolic disorders of bile acids (BA) increase the risk of metabolic diseases in dairy cows during perinatal period. However, the effects of FFA on BA metabolism remained poorly understood. In present study, high concentrations of FFA caused cell impairment, oxidative stress and BA overproduction. FFA treatment increased the expression of BA synthesis-related genes [cholesterol 7a-hydroxylase (CYP7A1), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7, sterol 12α-hydroxylase, sterol 27-hydroxylase and oxysterol 7α-hydroxylase], whereas reduced BA exportation gene (ATP binding cassette subfamily C member 1) and inhibited farnesoid X receptor/small heterodimer partner (FXR/SHP) pathway in bovine hepatocytes. Knockdown of nuclear receptor subfamily 1 group H member 4 (NR1H4) worsened FFA-caused oxidative damage and BA production, whereas overexpression NR1H4 ameliorated FFA-induced BA production and cell oxidative damage. Besides, reducing BA synthesis through knockdown of CYP7A1 can alleviate oxidative stress and hepatocytes impairment caused by FFA. In summary, these data demonstrated that regulation of FXR/SHP-mediated BA metabolism may be a promising target in improving hepatic oxidative injury of dairy cows during high levels of FFA challenges.

16.
Acta Pharmacol Sin ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992119

RESUMEN

The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.

17.
Front Pharmacol ; 15: 1399829, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974033

RESUMEN

Ethnopharmacological relevance: Pulsatilla decoction (PD) is a classical prescription for the treatment of ulcerative colitis. Previous studies have demonstrated that the therapeutic efficacy of PD is closely associated with the activation of Farnesoid X receptor (FXR). The activity of FXR is regulated by apical sodium-dependent bile acid transporter (ASBT), and the FXR-ASBT cascade reaction, centered around bile acid receptor FXR, plays a pivotal role in maintaining bile acid metabolic homeostasis to prevent the occurrence and progression of ulcerative colitis (UC). Aim of the study: To elucidate the underlying mechanism by which PD exerts its proteactive effects against Dextran Sulfate Sodium Salt (DSS)-induced ulcerative colitis, focusing on the modulation of FXR and ASBT. Materials and methods: To establish a model of acute ulcerative colitis, BALB/C mice were administered 3.5% DSS in their drinking water for consecutive 7 days. The disease activity index (DAI) was employed to evaluate the clinical symptoms exhibited by each group of mice. Goblet cell expression in colon tissue was assessed using glycogen schiff periodic acid-Schiff (PAS) and alcian blue staining techniques. Inflammatory cytokine expression in serum and colonic tissues was examined through enzyme-linked immunosorbent assay (ELISA). A PCR Array chip was utilized to screen 88 differential genes associated with the FXR-ASBT pathway in UC treatment with PD. Western blotting (WB) analysis was performed to detect protein expression levels of differentially expressed genes in mouse colon tissue. Results: The PD treatment effectively reduced the Disease Activity Index (DAI) score and mitigated colon histopathological damage, while also restoring weight and colon length. Furthermore, it significantly alleviated the severity of ulcerative colitis (UC), regulated inflammation, modulated goblet cell numbers, and restored bile acid balance. Additionally, a PCR Array analysis identified 21 differentially expressed genes involved in the FXR-ASBT pathway. Western blot results demonstrated significant restoration of FXR, GPBAR1, CYP7A1, and FGF15 protein expression levels following PD treatment; moreover, there was an observed tendency towards increased expression levels of ABCB11 and RXRα. Conclusion: The therapeutic efficacy of PD in UC mice is notable, potentially attributed to its modulation of bile acid homeostasis, enhancement of gut barrier function, and attenuation of intestinal inflammation.

18.
J Proteome Res ; 23(8): 3332-3341, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38967328

RESUMEN

The prevalence of different metabolic syndromes has grown globally, and the farnesoid X receptor (FXR), a metabolic homeostat for glucose, lipid, and bile acid metabolisms, may serve an important role in the progression of metabolic disorders. Glucose intolerance by FXR deficiency was previously reported and observed in our study, but the underlying biology remained unclear. To investigate the ambiguity, we collected the nontargeted profiles of the fecal metaproteome, serum metabolome, and liver proteome in Fxr-null (Fxr-/-) and wild-type (WT) mice with LC-HRMS. FXR deficiency showed a global impact on the different molecular levels we monitored, suggesting its serious disruption in the gut microbiota, hepatic metabolism, and circulating biomolecules. The network and enrichment analyses of the dysregulated metabolites and proteins suggested the perturbation of carbohydrate and lipid metabolism by FXR deficiency. Fxr-/- mice presented lower levels of hepatic proteins involved in glycogenesis. The impairment of glycogenesis by an FXR deficiency may leave glucose to accumulate in the circulation, which may deteriorate glucose tolerance. Lipid metabolism was dysregulated by FXR deficiency in a structural-dependent manner. Fatty acid ß-oxidations were alleviated, but cholesterol metabolism was promoted by an FXR deficiency. Together, we explored the molecular events associated with glucose intolerance by impaired FXR with integrated novel multiomic data.


Asunto(s)
Intolerancia a la Glucosa , Metabolismo de los Lípidos , Hígado , Ratones Noqueados , Multiómica , Receptores Citoplasmáticos y Nucleares , Animales , Masculino , Ratones , Heces/química , Microbioma Gastrointestinal , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Metaboloma , Multiómica/métodos , Proteoma/metabolismo , Proteómica/métodos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/deficiencia
19.
Sci Rep ; 14(1): 16756, 2024 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033253

RESUMEN

Emodin (EMO) has the effect of anti-cholestasis induced by alpha-naphthylisothiocyanate (ANIT). But its mechanism is still unclear. The farnesoid X receptor (Fxr) is the master bile acid nuclear receptor. Recent studies have reported that Sirtuin 1 (Sirt1) can regulate the activities of Fxr. The purpose of the current study was to investigate the mechanism of EMO against ANIT-induced liver injury based on Sirt1/Fxr signaling pathway. The ANIT-induced cholestatic rats were used with or without EMO treatment. Serum biochemical indicators, as well as liver histopathological changes were examined. The genes expressions of Sirt1, Fxr, Shp, Bsep and Mrp2 were detected. The expressions of Sirt1, Fxr and their downstream related genes were investigated in vitro. The results showed that EMO significantly alleviated ANIT-induced liver injury in rats, and increased Sirt1, Fxr, Shp, Bsep and Mrp2 gene expression in liver, while decreased the expression of Cyp7a1. EMO significantly activated Fxr, while Sirt1 inhibitor and Sirt1 gene silencing significantly reduced Fxr activity in vitro. Collectively, EMO in the right dose has a protective effect on liver injury induced by ANIT, and the mechanism may be through activation of Fxr by Sirt1, thus regulating bile acid metabolism, and reducing bile acid load in hepatocytes.


Asunto(s)
1-Naftilisotiocianato , Colestasis , Emodina , Receptores Citoplasmáticos y Nucleares , Transducción de Señal , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Emodina/farmacología , Emodina/uso terapéutico , Colestasis/metabolismo , Colestasis/tratamiento farmacológico , Colestasis/patología , Ratas , Masculino , 1-Naftilisotiocianato/toxicidad , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/lesiones , Ácidos y Sales Biliares/metabolismo , Humanos , Ratas Sprague-Dawley , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2
20.
Biochem Pharmacol ; 227: 116437, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025410

RESUMEN

The normal liver has an extraordinary capacity of regeneration. However, this capacity is significantly impaired in steatotic livers. Emerging evidence indicates that metabolic dysfunction associated steatotic liver disease (MASLD) and liver regeneration share several key mechanisms. Some classical liver regeneration pathways, such as HGF/c-Met, EGFR, Wnt/ß-catenin and Hippo/YAP-TAZ are affected in MASLD. Some recently established therapeutic targets for MASH such as the Thyroid Hormone (TH) receptors, Glucagon-like protein 1 (GLP1), Farnesoid X receptor (FXR), Peroxisome Proliferator-Activated Receptors (PPARs) as well as Fibroblast Growth Factor 21 (FGF21) are also reported to affect hepatocyte proliferation. With this review we aim to provide insight into common molecular pathways, that may ultimately enable therapeutic strategies that synergistically ameliorate steatohepatitis and improve the regenerating capacity of steatotic livers. With the recent rise of prolonged ex-vivo normothermic liver perfusion prior to organ transplantation such treatment is no longer restricted to patients undergoing major liver resection or transplantation, but may eventually include perfused (steatotic) donor livers or even liver segments, opening hitherto unexplored therapeutic avenues.


Asunto(s)
Hígado Graso , Regeneración Hepática , Humanos , Regeneración Hepática/fisiología , Animales , Hígado Graso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...