Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.734
Filtrar
1.
J Environ Sci (China) ; 147: 414-423, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003059

RESUMEN

The anaerobic acid production experiments were conducted with the pretreated kitchen waste under pH adjustment. The results showed that pH 8 was considered to be the most suitable condition for acid production, especially for the formation of acetic acid and propionic acid. The average value of total volatile fatty acid at pH 8 was 8814 mg COD/L, 1.5 times of that under blank condition. The average yield of acetic acid and propionic acid was 3302 mg COD/L and 2891 mg COD/L, respectively. The activities of key functional enzymes such as phosphotransacetylase, acetokinase, oxaloacetate transcarboxylase and succinyl-coA transferase were all enhanced. To further explore the regulatory mechanisms within the system, the distribution of microorganisms at different levels in the fermentation system was obtained by microbial sequencing, results indicating that the relative abundances of Clostridiales, Bacteroidales, Chloroflexi, Clostridium, Bacteroidetes and Propionibacteriales, which were great contributors for the hydrolysis and acidification, increased rapidly at pH 8 compared with the blank group. Besides, the proportion of genes encoding key enzymes was generally increased, which further verified the mechanism of hydrolytic acidification and acetic acid production of organic matter under pH regulation.


Asunto(s)
Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles/metabolismo , Fermentación , Ácido Acético/metabolismo , Reactores Biológicos
2.
Methods Mol Biol ; 2852: 135-141, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39235741

RESUMEN

When submitted to environmental stresses, bacteria can modulate its fatty acid composition of membrane phospholipids in order to optimize membrane fluidity. Characterization of bacterial membrane fatty acid profiles is thus an interesting indicator of cellular physiological state. The methodology described here aims to improve the recovering of biofilm cells for the characterization of their fatty acid profiles. The saponification reagent is directly applied on the whole biofilm before the removal of cells from the inert surface. In this way, maximum of the cells and their fatty acids can be recovered from the deepest layers of the biofilm.


Asunto(s)
Biopelículas , Membrana Celular , Ácidos Grasos , Biopelículas/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Membrana Celular/metabolismo , Bacterias/metabolismo , Fosfolípidos/metabolismo , Fluidez de la Membrana
3.
Hereditas ; 161(1): 30, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39232799

RESUMEN

BACKGROUND: The lipid-lowering effects of Omega-3 fatty acids have been widely reported, yet their impact on ischemic stroke remains controversial. Reports on the protective effects of unsaturated fatty acids, such as Omega-6 and Omega-7, as well as saturated fatty acids in cardiovascular diseases, including hypertension and ischemic stroke, are less frequent. OBJECTIVES: This study aims to identify fatty acids associated with blood pressure and ischemic stroke through Mendelian randomization. Besides, it seeks to determine whether specific fatty acids can prevent ischemic stroke by managing blood pressure and revealing the specific mechanisms of this action. METHODS: This research involved downloading relevant data from websites and extracting SNPs that met the standard criteria as instrumental variables. Simultaneously, the 'MR-PRESSO' package and 'Mendelian Randomization' package were used to eliminate confounding SNPs that could bias the study results. Then, inverse variance weighting and the weighted median were employed as primary analysis methods, accompanied by sensitivity analysis to assess the validity of the causal relationships. Initially, multivariable Mendelian randomization was used to identify fatty acids linked to blood pressure and the incidence of ischemic stroke. The causal link between certain fatty acids and the initiation of ischemic stroke was then investigated using bidirectional and mediator Mendelian randomization techniques. Stepwise Regression and the Product of Coefficients Method in mediator Mendelian randomization were utilized to ascertain whether specific fatty acids reduce ischemic stroke risk by lowering blood pressure. RESULTS: Multivariable Mendelian randomization analysis indicated a potential inverse correlation between Omega-3 intake and both blood pressure and ischemic stroke. Consequently, Omega-3 was selected as the exposure, with blood pressure and ischemic stroke-related data as outcomes, for further bidirectional and mediation Mendelian Randomization analyses. Bidirectional Mendelian Randomization revealed that Omega-3 significantly influences DBP (P = 1.01e-04) and IS (P = 0.016). It also showed that DBP and SBP significantly affect LAS, SVS, CES, IS, and LS. Mediator Mendelian Randomization identified five established mediating pathways: Omega-3-Diastolic blood pressure-Small vessel stroke, Omega-3-Diastolic blood pressure-Cardioembolic stroke, Omega-3-Diastolic blood pressure-Lacunar stroke, Omega-3-Diastolic blood pressure-Large artery atherosclerosis stroke, and Omega-3-Diastolic blood pressure-Ischemic stroke. Of these, four pathways are complete mediation, and one pathway is partial mediation. CONCLUSIONS: The findings suggest that Omega-3 may indirectly reduce the incidence of ischemic stroke by lowering blood pressure. Thus, blood pressure modulation might be one of the mechanisms through which Omega-3 prevents ischemic stroke. In summary, incorporating an increased intake of Omega-3 in the diet can serve as one of the dietary intervention strategies for patients with hypertension. Additionally, it can act as an adjunctive therapy for the prevention of ischemic strokes and their complications.


Asunto(s)
Presión Sanguínea , Ácidos Grasos Omega-3 , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular , Ácidos Grasos Omega-3/uso terapéutico , Humanos , Accidente Cerebrovascular/prevención & control , Accidente Cerebrovascular/genética , Hipertensión/genética , Factores de Riesgo
4.
Chem Biol Interact ; 403: 111220, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222901

RESUMEN

Long-term hyperuricemia can induce kidney damage, clinically referred to as hyperuricemic nephropathy (HN), which is characterized by renal fibrosis, inflammation, and oxidative stress. However, currently used uric acid-lowering drugs are not capable of protecting the kidneys from damage. Therefore, uric acid-lowering drugs that can also protect the kidneys are urgently needed. In this study, we first discovered that salinomycin, an antibiotic, can regulate uric acid homeostasis and ameliorate kidney damage in mice with HN. Mechanistically, salinomycin inhibited serum and hepatic xanthine oxidase (XOD) activities and downregulated renal urate transporter 1 (URAT1) expression and transport activity, thus exerting uric acid-lowering effects in mice with HN. Furthermore, we found that salinomycin promoted p-NRF2 Ser40 expression, resulting in increased nuclear translocation of NRF2 and activation of NRF2. More importantly, salinomycin affected the gut microbiota and promoted the generation of short-chain fatty acids (SCFAs) in mice with HN. In conclusion, our results revealed that salinomycin maintains uric acid homeostasis and alleviates kidney injury in mice with HN by multiple mechanisms, suggesting that salinomycin might be a desirable candidate for HN treatment in the clinic.

5.
Bioorg Chem ; 153: 107790, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39241582

RESUMEN

Commelina communis L., a functional food and herbal plant in Asia, has been used against obesity, diabetes, and infections for centuries. A growing body of studies has demonstrated that indigestible polysaccharides are significant in obesity management. However, the structures and bioactivities of homogeneous polysaccharides from C. communis remain unclear. This study presented the structural characterization, simulated digestion, and human gut Bacteroides proliferation promotion activity of a novel homogeneous polysaccharide (CCB-3) from C. communis. The results showed that CCB-3 was an arabinoglucuronoxylan, primarily composed of arabinose, galactose, xylose, glucuronic acid (GlcA), and 4-O-methyl GlcA with a molecular weight (Mw) of 58.8 kDa. Following a 6-hour exposure to simulated gastrointestinal fluid, the Mw of CCB-3 remained unchanged, revealing that CCB-3 was an indigestible polysaccharide. Notably, CCB-3 could promote the proliferation of B. thetaiotaomicron, B. ovatus, and B. cellulosilyticus and produce short-chain fatty acids (SCFAs) and 1,2-propanediol. These findings might shed light on the discovery of polysaccharide-based leading compounds from C. communis against obesity.

6.
Gut Microbes ; 16(1): 2393272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224006

RESUMEN

The intestine is the largest organ in terms of surface area in the human body. It is responsible not only for absorbing nutrients but also for protection against the external world. The gut microbiota is essential in maintaining a properly functioning intestinal barrier, primarily through producing its metabolites: short-chain fatty acids, bile acids, and tryptophan derivatives. Ethanol overconsumption poses a significant threat to intestinal health. Not only does it damage the intestinal epithelium, but, maybe foremostly, it changes the gut microbiome. Those ethanol-driven changes shift its metabolome, depriving the host of the protective effect the physiological gut microbiota has. This literature review discusses the impact of ethanol consumption on the gut, the gut microbiota, and its metabolome, providing a comprehensive overview of the mechanisms through which ethanol disrupts intestinal homeostasis and discussing potential avenues for new therapeutic intervention.


Asunto(s)
Etanol , Microbioma Gastrointestinal , Homeostasis , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Etanol/metabolismo , Etanol/farmacología , Animales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Intestinos/microbiología , Intestinos/efectos de los fármacos
7.
J Clin Lipidol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39289125

RESUMEN

BACKGROUND: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation lower triglyceride levels. The impact on epicardial adipose tissue volume (EATV), which is associated with cardiovascular events, is unclear. OBJECTIVE: To determine if triglyceride reduction with EPA+DHA supplementation decreases EATV and whether EATV affects coronary plaque. METHODS: 139 subjects with coronary artery disease on statins were randomized to 3.36 g EPA+DHA daily or none (control) for 30 months. EATV, coronary plaque volumes and coronary artery calcium score were measured with coronary computed tomographic angiography. RESULTS: Change in triglyceride level correlated with change in EATV (r=0.236; p=0.006). Despite a 6.7% triglyceride reduction (p=0.021) with EPA+DHA supplementation compared to no change in control (between group p=0.034); both groups had similar reductions in EATV possibly due to statin treatment. EATV above the median (>115.6 cm3) was the only determinant of baseline coronary fatty plaque volume (ß=2.4, p=0.010). After multivariate adjustment, waist circumference, a surrogate of abdominal visceral adiposity, was the only determinant of baseline EATV (OR:1.093; 95% CI:1.003-1.192, p=0.042). Moreover, increase in waist circumference was the only predictor of an increase in EATV at 30 months (ß=0.320, p=0.018). CONCLUSIONS: EATV is associated with higher coronary fatty plaque volume and is regulated by waist circumference but not EPA+DHA supplementation at 30-month follow-up in CAD patients on statin treatment. The direct correlation between waist circumference and EATV suggests that maintaining a healthy weight may limit EATV and coronary fatty plaque volume, potentially leading to a decrease in cardiovascular events. Two sentence summary Subjects with clinical CAD on statin treatment randomized to EPA+DHA had similar reductions in epicardial adipose tissue volume (EATV) compared to control, despite a significant reduction in triglyceride level in the EPA+DHA group. Higher EATV was linked to greater fatty, rupture-prone plaques, boosting the risk of MI, and change in waist circumference was the only predictor of an increase in EATV at 30-month follow-up.

8.
Cell Rep ; 43(10): 114746, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39302831

RESUMEN

Inhibition of the ceramide synthetic pathway with myriocin or an antisense oligonucleotide (ASO) targeting dihydroceramide desaturase (DES1) both improved hepatic insulin sensitivity in rats fed either a saturated or unsaturated fat diet and was associated with reductions in both hepatic ceramide and plasma membrane (PM)-sn-1,2-diacylglycerol (DAG) content. The insulin sensitizing effects of myriocin and Des1 ASO were abrogated by acute treatment with an ASO against DGAT2, which increased hepatic PM-sn-1,2-DAG but not hepatic C16 ceramide content. Increased PM-sn-1,2-DAG content was associated with protein kinase C (PKC)ε activation, increased insulin receptor (INSR)T1150 phosphorylation leading to reduced insulin-stimulated INSRY1152/AktS473 phosphorylation, and impaired insulin-mediated suppression of endogenous glucose production. These results demonstrate that inhibition of de novo ceramide synthesis by either myriocin treatment or DES1 knockdown protects against lipid-induced hepatic insulin resistance through a C16 ceramide-independent mechanism and that they mediate their effects to protect from lipid-induced hepatic insulin resistance via the PM-sn-1,2-DAG-PKCε-INSRT1150 phosphorylation pathway.

9.
J Agric Food Chem ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303156

RESUMEN

The diet in early life is essential for the growth and intestinal health later in life. However, beneficial effects of a diet enriched in branched short-chain fatty acids (BSCFAs) for infants are ambiguous. This study aimed to develop a novel fermented protein food, enriched with BSCFAs and assess the effects of dry and wet ferment products on young pig development, nutrient absorption, intestinal barrier function, and gut microbiota and metabolites. A total of 18 young pigs were randomly assigned to three groups. The dry corn gluten-wheat bran mixture (DFCGW) and wet corn gluten-wheat bran mixture (WFCGW) were utilized as replacements for 10% soybean meal in the basal diet. Our results exhibited that the WFCGW diet significantly increased the growth performance of young pigs, enhanced the expression of tight junction proteins, and regulated associated cytokines expression in the colonic mucosa. Simultaneously, the WFCGW diet led to elevated levels of colonic isobutyric and isovaleric acid, as well as the activation of GPR41 and GPR109A. Furthermore, more potential probiotics including Lactobacillus, Megasphaera, and Lachnospiraceae_ND3007_group were enriched in the WFCGW group and positively associated with the beneficial metabolites such as 5-hydroxyindole-3-acetic acid. Differential metabolite KEGG pathway analysis suggested that WFCGW might exert gut health benefits by modulating tryptophan metabolism. In addition, the WFCGW diet significantly increased ghrelin concentrations in serum and hypothalamus and promoted the appetite of young pigs by activating hypothalamic NPY/AGRP neurons. This study extends the knowledge of BSCFAs and provides a reference for the fermented food application in the infant diet.

10.
Methods Protoc ; 7(5)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39311375

RESUMEN

This protocol describes a robust method for the extraction of intra and extracellular metabolites of gut bacterial mono and co-cultures. In recent years, the co-culture techniques employed in the field of microbiology have demonstrated significant importance in regard to understanding cell-cell interactions, cross-feeding, and the metabolic interactions between different bacteria, fungi, and microbial consortia which enable the mimicking of complex co-habitant conditions. This protocol highlights a robust reproducible physiologically relevant culture and extraction protocol for the co-culture of gut bacterium. The novel extraction steps are conducted without using quenching and cell disruption through bead-cell methods, freeze-thaw cycles, and sonication, which tend to affect the physical and biochemical properties of intracellular metabolites and secretome. The extraction procedure of inoculated bacterial co-cultures and monocultures use fast vacuum filtration and centrifugation. The extraction methodology is fast, effective, and robust, requiring 4 h to complete.

11.
Heliyon ; 10(18): e37737, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39315231

RESUMEN

Cashew trees (Anacardium occidentale L.) are planted for primarily their nuts, but they also generate apples which are mostly thrown away due to their astringent taste. The current study aimed to explore the possible utilization of cashew apple by-products (CABP) in West Africa as an alternative feedstuff for small ruminants' nutrition. To achieve this aim, five parts of cashew apple by-products (whole, up, down and middle part, and pomace) of two cashew varieties (red and yellow) were collected in two different agroecological zones (Sudanian Zone, SZ and Sudano-Guinea Zone, SZ) to be characterized for the chemical composition, including polyphenols and sugars, and the in vitro fermentation pattern. In general, the results showed that CABP characteristics depend more on sampling area than on variety. The dry matter (DM) in SZ and SGZ varied from 12.76 to 26.10 % and 7.41-22.9 %, respectively. The pomace showed the highest crude protein, lipids, and neutral detergent fiber (NDF) content (SZ: 9.48, 3.94 and 31.66 % DM; SGZ: 14.03, 4.94 and 34.12 % DM, respectively) but the lowest nonstructural carbohydrate (NSC) and sugar for both zones. Regarding the in vitro fermentation, the organic matter degradability (dOM) was higher in the middle part (73.73 %) and whole apple (61.62 %) of SZ and SGZ, respectively. In contrast, the pomace from both zones showed the lowest in vitro fermentation parameters. The total polyphenols were more concentrated in the CABP from SZ (whole: 2736 µg/g DW; pomace: 3813 µg/g DW) compared to those from SGZ (whole: 1755 µg/g DW; pomace: 1374 µg/g DW). Results suggest that CABP should be collected in each cultivation zone regardless of variety, separating pomace from other by-products and may be used as alternative feedstuff for small ruminants during the dry season in the West Africa region.

12.
ACS Chem Neurosci ; 15(18): 3344-3353, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39222387

RESUMEN

Mono- and polyunsaturated fatty acids (FAs) are broadly used as food supplements. However, their effect on the aggregation of amyloidogenic proteins remains unclear. In this study, we investigated the effect of a large number of mono- and polyunsaturated, as well as fully saturated FAs on the aggregation of amyloid ß1-42 (Aß1-42) peptide. A progressive aggregation of this peptide is the expected molecular cause of Alzheimer's disease (AD), one of the most common neurodegenerative pathologies in the world. We found that arachidonic and stearic acids delayed the aggregation of Aß1-42. Using Nano-Infrared spectroscopy, we found that FAs caused very little if any changes in the secondary structure of Aß1-42 oligomers and fibrils formed at different stages of protein aggregation. However, the analyzed mono- and polyunsaturated, as well as fully saturated FAs uniquely altered the toxicity of Aß1-42 fibrils. We found a direct relationship between the degree of FAs unsaturation and toxicity of Aß1-42 fibrils formed in their presence. Specifically, with an increase in the degree of unsaturation, the toxicity Aß1-42/FA fibrils increased. These results indicate that fully saturated or monounsaturated FAs could be used to decrease the toxicity of amyloid aggregates and, consequently, decelerate the development of AD.


Asunto(s)
Péptidos beta-Amiloides , Ácidos Grasos , Fragmentos de Péptidos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/química , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Humanos , Amiloide/metabolismo , Amiloide/química , Estructura Secundaria de Proteína
13.
Bull Exp Biol Med ; 177(4): 423-426, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39264558

RESUMEN

The level of ROS (fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate) and lipid content (fluorescent lipophilic dye Nile Red) in the peripheral blood monocyte fraction from patients with type 1 diabetes mellitus and healthy volunteers were assessed by flow cytofluorimetry. The number of CD36+ monocytes was assessed using specific antibodies. In patients with type 1 diabetes mellitus, the levels of ROS and intracellular lipids in monocytes and the number of cells expressing CD36 fatty acid translocase were elevated. These results indicate metabolic changes in the peripheral blood cells of patients with carbohydrate metabolism disorders and can be considered as possible prognostic markers for the development of type 1 diabetes mellitus complications.


Asunto(s)
Diabetes Mellitus Tipo 1 , Monocitos , Especies Reactivas de Oxígeno , Humanos , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/metabolismo , Monocitos/metabolismo , Masculino , Adulto , Femenino , Especies Reactivas de Oxígeno/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/sangre , Estudios de Casos y Controles , Citometría de Flujo , Adulto Joven , Metabolismo de los Lípidos
14.
Mol Metab ; 89: 102029, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293564

RESUMEN

OBJECTIVE: Obesity continues to be a major problem, despite known treatment strategies such as lifestyle modifications, pharmaceuticals, and surgical options, necessitating the development of novel weight loss approaches. The naturally occurring fatty acid, 10,12 conjugated linoleic acid (10,12 CLA), promotes weight loss by increasing fat oxidation and browning of white adipose tissue, leading to increased energy expenditure in obese mice. Coincident with weight loss, 10,12 CLA also alters the murine gut microbiota by enriching for microbes that produce short chain fatty acids (SCFAs), with concurrent elevations in fecal butyrate and plasma acetate. METHODS: To determine if the observed microbiota changes are required for 10,12 CLA-mediated weight loss, adult male mice with diet-induced obesity were given broad-spectrum antibiotics (ABX) to perturb the microbiota prior to and during 10,12 CLA-mediated weight loss. Conversely, to determine whether gut microbes were sufficient to induce weight loss, conventionally-raised and germ-free mice were transplanted with cecal contents from mice that had undergone weight loss by 10,12 CLA supplementation. RESULTS: While body weight was minimally modulated by ABX-mediated perturbation of gut bacterial populations, adult male mice given ABX were more resistant to the increased energy expenditure and fat loss that are induced by 10,12 CLA supplementation. Transplanting cecal contents from donor mice losing weight due to oral 10,12 CLA consumption into conventional or germ-free mice led to improved glucose metabolism with increased butyrate production. CONCLUSIONS: These data suggest a critical role for the microbiota in diet-modulated changes in energy balance and glucose metabolism, and distinguish the metabolic effects of orally delivered 10,12 CLA from cecal transplantation of the resulting microbiota.

15.
J Nanobiotechnology ; 22(1): 582, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304919

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder that can result in neurotoxicity and an imbalance in gut microbiota. Probiotics have been shown to play an important role in regulating the gut microbiota, but their viability and bioactivity are often compromised as they traverse the gastrointestinal tract, thereby reducing their efficacy and limiting their clinical utility. RESULTS: In this work, layer-by-layer (LbL) encapsulation technology was used to encapsulate Lactiplantibacillus plantarum (LP) to improve the above shortcomings. Studies in APPswe/PS1dE9 (APP/PS1) transgenic mice show that LbL-encapsulated LP ((CS/SP)2-LP) protects LP from gastrointestinal damage while (CS/SP)2-LP treatment It improves brain neuroinflammation and neuronal damage in AD mice, reduces Aß deposition, improves tau protein phosphorylation levels, and restores intestinal barrier damage in AD mice. In addition, post-synaptic density protein 95 (PSD-95) expression increased in AD mice after treatment, indicating enhanced synaptic plasticity. Fecal metabolomic and microbiological analyzes showed that the disordered intestinal microbiota composition of AD mice was restored and short-chain fatty acids (SCFAs) levels were significantly increased after (CS/SP)2-LP treatment. CONCLUSION: Overall, the above evidence suggests that (CS/SP)2-LP can improve AD symptoms by restoring the balance of intestinal microbiota, and (CS/SP)2-LP treatment will provide a new method to improve the symptoms of AD patients.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ratones Transgénicos , Probióticos , Animales , Ratones , Probióticos/farmacología , Masculino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Presenilina-1/genética , Péptidos beta-Amiloides/metabolismo , Lactobacillus plantarum
16.
Mar Pollut Bull ; 208: 116975, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39306964

RESUMEN

With priority given to various-sized samples of market-available Hilsa (Tenualosa ilisha), human health consequences of trace metals along with total essential acids, including the fatty acid (FA) and amino acid (AA) profile were measured and compared to different size groups (G I, G II, and G III) using chemometric approaches. Essential amino acids were lower than nonessential amino acids. The G III contained the highest (97.55%) saturated and unsaturated fatty acids. The highest concentrated metal was found in G1 among the groups and the order of metal (mg/kg) was Zn (205.01) > Mn (37.37) > Fe (69.39) > Cu (1.47) > Cr (1.31) > Ni (0.42) > Pb (0.017) > Cd (0.005). Even though the adult group showed no health hazards for Hilsa consumption, non-carcinogenic risks have been identified for G1 fish consumption by children. Continued monitoring is recommended to overcome the health consequences caused by fish consumption.

17.
Food Chem ; 463(Pt 3): 141223, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39306992

RESUMEN

ω-oxo-fatty acids, also known as aldehydic fatty acids, are major products of fatty acid oxidation and pose potential health risks. When bound to glycerol, ω-oxo-fatty acids (core aldehydes) can be ingested with food. Challenges in GC-MS quantification include the absence of an appropriate internal standard. Additionally, substantial analyte losses during sample preparation, caused by the high volatility of short-chain compounds, alter their pattern based on molecular weight. In this study, among various tested derivatization methods, the formation of ω-dioxane derivatives demonstrated improved recovery rates after three evaporation cycles. For methyl 7-oxo-heptanoate, recovery increased from 43 % to 88 %, while recovery rates for different chain lengths and a novel synthesized internal standard improved from a range of 43 %-76 % to 87 %-92 %. Additionally, ω-dioxane derivatives displayed favorable GC-MS behavior, enabling clear identification and increased sensitivity. Finally, ω-oxo-fatty acids were quantified as their ω-dioxane-derivatives in thermally treated sunflower and rapeseed oil.

18.
Front Immunol ; 15: 1420415, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308867

RESUMEN

Immune nutrition, as an integral component of nutritional support therapy, has garnered significant attention and research in the treatment of gastrointestinal malignancies. Recent advancements in nutritional formulas containing components such as glutamine, omega-3 polyunsaturated fatty acids, and arginine have led to the development of what is now termed immune nutrition or pharmacological nutrition. These formulations go beyond traditional nutritional support, functioning more like nutritional supplements with pharmacological effects. Patients with gastrointestinal malignancies often experience malnutrition and metabolic disturbances, resulting in immune dysfunction, cytokine dysregulation, and endocrine abnormalities. These issues can compromise intestinal mucosal barrier function, affecting the efficacy and prognosis of anticancer therapies. Recent studies indicate that immune nutrition can modulate specific mechanisms involved in various immune and inflammatory pathways, thereby improving patients' immune status and treatment outcomes. While optimal patient selection, dosing, and timing of immune nutrition are still under investigation, its potential applications in oncology are promising. This article aims to analyze the existing evidence regarding the therapeutic benefits of immune nutrition in gastrointestinal malignancies, offering insights into its clinical standardization and application.


Asunto(s)
Neoplasias Gastrointestinales , Humanos , Neoplasias Gastrointestinales/inmunología , Neoplasias Gastrointestinales/terapia , Apoyo Nutricional/métodos , Animales , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-3/administración & dosificación , Suplementos Dietéticos , Glutamina/uso terapéutico , Dieta de Inmunonutrición
19.
Front Physiol ; 15: 1460414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308975

RESUMEN

Background: Long-term heat stress (HS) severely restricts the growth performance of beef cattle and causes various health problems. The gut microbiota plays a crucial role in HS-associated inflammation and immune stress involving lymphocyte function. This study investigated the effects of dietary tea polysaccharide (TPS), a natural acidic glycoprotein, on HS-induced anorexia, inflammation, and gut microbiota dysbiosis in Simmental beef cattle. Methods: The cattle were divided into two groups, receiving either normal chow or normal chow plus TPS (8 g/kg, 0.8%). Transcriptome sequencing analysis was used to analysis the differential signaling pathway of liver tissue. 16S rDNA sequencing was performed to analysis gut microbiota of beef cattle. Serum metabolite components were detected by untargeted metabolomics analysis. Results: Hepatic transcriptomics analysis revealed that differentially expressed genes in TPS-fed cattle were primarily enriched in immune processes and lymphocyte activation. TPS administration significantly reduced the expression of the TLR4/NF-κB inflammatory signaling pathway, alleviating HS-induced hepatic inflammation. Gut microbiota analysis revealed that TPS improved intestinal homeostasis in HS-affected cattle by increasing bacterial diversity and increasing the relative abundances of Akkermansia and Alistipes while decreasing the Firmicutes-to-Bacteroidetes ratio and the abundance of Agathobacter. Liquid chromatography-tandem mass spectrometry (LC‒MS/MS) analysis indicated that TPS significantly increased the levels of long-chain fatty acids, including stearic acid, linolenic acid, arachidonic acid, and adrenic acid, in the serum of cattle. Conclusion: These findings suggest that long-term consumption of tea polysaccharides can ameliorate heat stress-induced hepatic inflammation and gut microbiota dysbiosis in beef cattle, suggesting a possible liver-gut axis mechanism to mitigate heat stress.

20.
Conserv Physiol ; 12(1): coae064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309467

RESUMEN

Reproduction is a physiologically demanding process for sea turtles. Health indicators, including morphometric indices and blood analytes, provide insight into overall health, physiology and organ function for breeding sea turtles as a way to assess population-level effects. The Archie Carr National Wildlife Refuge (ACNWR) on Florida's central eastern coast is critical nesting habitat for loggerhead sea turtles (Caretta caretta), but health variables from this location have not been documented. Objectives of the study were to (1) assess morphometrics and blood analyte data (including haematology, plasma biochemistry, protein electrophoresis, ß-hydroxybutyrate, trace nutrients, vitamins and fatty acid profiles) from loggerheads nesting on or near the beaches of the ACNWR, (2) investigate correlations of body condition index (BCI) with blood analytes and (3) analyse temporal trends in morphometric and blood analyte data throughout the nesting season. Morphometric and/or blood analyte data are reported for 57 nesting loggerheads encountered between 2016 and 2019. Plasma copper and iron positively correlated with BCI. Mass tended to decline across nesting season, whereas BCI did not. Many blood analytes significantly increased or decreased across nesting season, reflecting the catabolic state and haemodynamic variations of nesting turtles. Twenty-three of 34 fatty acids declined across nesting season, which demonstrates the physiological demands of nesting turtles for vitellogenesis and reproductive activities, thus suggesting potential utility of fatty acids for the assessment of foraging status and phases of reproduction. The findings herein are relevant for future spatiotemporal and interspecies comparisons, investigating stressor effects and understanding the physiological demands in nesting sea turtles. This information provides comparative data for individual animals in rescue or managed care settings and for assessment of conservation strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...