Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Food Sci Technol ; 61(11): 2133-2144, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39397834

RESUMEN

The aim of this study was to formulate a Selenium (Se)-bioenriched fermented beverage using selenized lactic acid bacteria (LAB) with desirable sensory attributes and shelf-life. The fruit-origin strains Lactiplantibacillus paraplantarum CRL 2051 and Fructobacillus tropaeoli CRL 2034 were grown in MRS-fructose with 5 mg/L Se before inoculation. Then, the selenized strains were inoculated separately or together in a fruit juice and cowmilk beverage and allowed to ferment at 30 °C for 14 h. During microbial growth, the strains accumulated 62.8-93.5 µg/L of total Se, with 32.7-47.8 µg/L composed of the amino acids selenocysteine (SeCys), and 6.1-12.7 µg/L of selenomethionine (SeMet). The beverages fermented by L. paraplantarum CRL 2051 alone and by the mixed culture showed the highest levels of general acceptance and best sensory attributes. The latter fermented beverage exhibited high microbial resistance to cold storage after 52 days and to gastrointestinal tract conditions as well as an acceptable sensory shelf-life of 42 days. For the first time, microbial selenization previous to food fermentation successfully allowed Se fortification and the formulation of a functional Se-enriched beverage with desirable sensory properties and shelf-life. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05984-4.

2.
J Fluoresc ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320635

RESUMEN

Highly luminescent carbon dots (CDs) derived from fermented beverages-kvass (K-CDs) were synthesized through a one-step hydrothermal method with ethylenediamine (EDA) as a surface passivation reagent. Purified K-CDs with a fluorescent quantum yield of 35.1% were obtained after a dialysis process. The K-CDs were characterized by TEM, FT-IR, XPS, fluorescence and UV-vis spectroscopy. The results indicated that K-CDs possess typical excitation wavelength-dependent blue fluorescence emission, and the strongest excitation and emission wavelengths are 350 nm and 440 nm, respectively. The great spectral overlap between the emission peak (440 nm) of K-CDs and the absorption peak (430 nm) of tartrazine (TAR) leads to an effective fluorescence quenching phenomenon by TAR through inner filter effect (IFE) and the calculated (lg(I0/I)) showed a linear response to TAR concentration in the range of 0.1-70 µM. The detection limit of the developed method is 23 nM for TAR, and the relative standard deviation (RSD) is 3.9% (c = 10 µM, n = 7). The fluorescent sensor for TAR based on K-CDs through the IFE mechanism possesses the characteristics of rapid, sensitive, and high selectivity. It has been successfully applied to detect of trace TAR in foods.

3.
PeerJ ; 12: e18116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346034

RESUMEN

Kombucha is traditionally a non-alcoholic beverage whose production is dependent on culture and the various ingredients used as substrates for fermentation. The goal of our study was to apply hemp leaf and milky mushroom (Calocybe indica) flour as functional ingredients to enhance phytonutrient quality, along with using a microbial consortium highly symbiotic with these ingredients. The study determined the content of phytonutrients (phenolic and flavonoids content), antioxidant activity through percentage inhibition of DPPH radical scavenging activity (%), and microbial communities changes during fermentation. The microbial changes were evaluated by cell viable count (total bacteria, Lactic Acid Bacteria, and Yeast & Mold) and ITS in prepared kombucha (using red tea leaves, pandan leaves, and sucrose) supplemented with functional ingredients: T1 (hemp leaves (control)) and T2 (hemp leaves with milky mushroom flour). The results indicated that microbial consortium changed during fermentation. In the first 7 days, the levels of yeast and mold increased to 6.17 and 6.18 log CFU/mL, respectively. By day 21, the levels of both T1 and T2 continued to rise, reaching 7.78 and 7.82 log CFU/mL, respectively. The viable count of lactic acid bacteria in T1 and T2 gradually increased to 6.79 and 6.70 log CFU/mL, respectively, by day 14. These changes resulted in a marked decrease in pH value, reaching 3.63 and 3.23 in T1 and T2, respectively, by the end of the process (21 days). The total bacterial viable count decreased with an increase in the fermentation time. During fermentation, unique genera of tea fungus observed in T1 and T2 were 64% and 19%, respectively. At the beginning (0 days), the top five genera found in T1 were: g__Setophoma (25.91%), g__Macrocybe (14.88%), g__Cladosporium (7.81%), g__Phaeosphaeria (7.12%), g__Malassezia (6.63%), while the top five genera in T2 were g__Macrocybe (94.55%), g__Setophoma (1.87%), g__Cladosporium (0.77%), g__Phaeosphaeria (0.40%), g__Cordyceps (0.38%). However, on day 21 (end of the process), it was found that g__Dekkera had the highest relative abundance in both T1 and T2. In addition, the supplementation of the two ingredients affected the total phenolic and total flavonoid content of the treatments. At the end of the process, T2 showed values of 155.91 mg GAE/mL for total phenolics and 1.01 mg CE/mL for total flavonoids, compared to T1, which had 129.52 mg GAE/mL and 0.69 mg CE/mL, respectively. Additionally, the DPPH inhibition was higher in T1 (91.95%) compared to T2 (91.03%). The findings suggest that kombucha fermented with these innovative ingredients exhibited enhanced phytonutrients, and served as substrate for LAB and tea fungus fermentation, while limiting the growth of fungal genera and diversity of microbial consortium.


Asunto(s)
Cannabis , Fermentación , Hojas de la Planta , Hojas de la Planta/microbiología , Hojas de la Planta/química , Cannabis/química , Antioxidantes/metabolismo , Antioxidantes/análisis , Té de Kombucha/microbiología , Hongos , Agaricales/química , Flavonoides/análisis , Flavonoides/metabolismo
4.
Int J Food Microbiol ; 425: 110895, 2024 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222566

RESUMEN

Global concerns over folate deficiency, the risks of excessive synthetic folic acid consumption, and food loss implications for environmental sustainability and food security drive needs of innovative approaches that align food by-product valorisation with folate bio-enrichment. This study explored the use of three fruit by-products extracts (grape, passion fruit, and pitaya) and whey to develop a folate bio-enriched fermented whey-based beverage. Three strains (Lacticaseibacillus rhamnosus LGG, Bifidobacterium infantis BB-02, and Streptococcus thermophilus TH-4) were tested for folate production in different fermentation conditions in modified MRS medium and in a whey-based matrix prepared with water extracts of these fruit by-products. B. infantis BB-02 and S. thermophilus TH-4, alone and in co-culture, were the best folate producers. The selection of cultivation conditions, including the presence of different substrates and pH, with grape by-product water extract demonstrating the most substantial effect on folate production among the tested extracts, was crucial for successfully producing a biofortified fermented whey-based beverage (FWBB). The resulting FWBB provided 40.7 µg of folate per 100 mL after 24 h of fermentation at 37 °C, effectively leveraging food by-products. Moreover, the beverage showed no cytotoxicity in mouse fibroblast cells tests. This study highlights the potential for valorising fruit by-products and whey for the design of novel bioenriched foods, promoting health benefits and contributing to reduced environmental impact from improper disposal.


Asunto(s)
Fermentación , Ácido Fólico , Frutas , Suero Lácteo , Animales , Frutas/química , Ratones , Humanos , Suero Lácteo/química , Bebidas/microbiología , Streptococcus thermophilus/metabolismo , Streptococcus thermophilus/crecimiento & desarrollo , Lacticaseibacillus rhamnosus/metabolismo , Lacticaseibacillus rhamnosus/crecimiento & desarrollo , Bifidobacterium/metabolismo , Bifidobacterium/crecimiento & desarrollo , Vitis/química
5.
Arch Microbiol ; 206(9): 366, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098983

RESUMEN

Kombucha, a fermented tea beverage, has seen a significant rise in global popularity. This increase is attributed to its reported health benefits and extensive cultural heritage. The comprehensive review examines kombucha through microbiology, biochemistry, and health sciences, highlighting its therapeutic potential and commercial viability. Central to kombucha production is the symbiotic culture of bacteria and yeasts (SCOBY), which regulates a complex fermentation process, resulting in a bioactive-rich elixir. The study examines the microbial dynamics of SCOBY, emphasizing the roles of various microorganisms. It focuses the contributions of acetic acid bacteria, lactic acid bacteria, and osmophilic yeasts, including genera such as Saccharomyces, Schizosaccharomyces, Zygosaccharomyces, Brettanomyces/Dekkera, and Pichia. These microorganisms play crucial roles in producing bioactive compounds, including organic acids, polyphenols, and vitamins. These bioactive compounds confer therapeutic properties to kombucha. These properties include antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antihypertensive, cancer prevention, hepatoprotective, and detoxifying effects. The review also explores the growing market for kombucha, driven by consumer demand for functional beverages and opportunities for innovative product development. It emphasizes the necessity of standardized production to ensure safety and validate health claims. Identifying research gaps, the review highlights the importance of clinical trials to verify therapeutic benefits. Ultimately, this study integrates traditional knowledge with scientific research, providing directions for future studies and commercial expansion, emphasizing the role of kombucha in health and wellness.


Asunto(s)
Fermentación , Té de Kombucha , Humanos , Té de Kombucha/microbiología , Levaduras/metabolismo , Levaduras/genética , Bacterias/metabolismo , Bacterias/genética
6.
Int J Food Microbiol ; 424: 110857, 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39141973

RESUMEN

Functional foods represent one of the fastest-growing, newer food category, and plant sources with functional properties are increasingly used as analogues of fermented milk-based derivatives. In this study, blended wort-rooibos beverages fermented with probiotic yeasts are proposed for the first time. Benefits of functional, non-conventional Lachancea thermotolerans (Lt101), Kazachstania unispora (Kum3-B3), Meyerozyma guilliermondii (Mg112), Meyerozyma caribbica (Mc58) and Debaryomyces hansenii (Dh36) yeast strains and the content of bioactive metabolites were evaluated. Viability tests on the probiotic yeasts confirmed previous results obtained in other matrices. The functional footprint of probiotic yeasts Lt101, Mg112 and Dh36 was confirmed by a balanced nutritional profile of the final drinks, also supported by aromatic and sensory analyses. In vitro estimated glycaemic index ranged between 77 % and 87 % without any influence on glycaemic response. Strains Dh36, Mc58, Kum3-B3 and Mg112 showed high antioxidant capacity and high total phenolic content, supporting the health promoting effect of the beverages.


Asunto(s)
Antioxidantes , Fermentación , Alimentos Fermentados , Probióticos , Levaduras , Levaduras/metabolismo , Alimentos Fermentados/microbiología , Bebidas/microbiología , Alimentos Funcionales , Microbiología de Alimentos , Humanos , Fenoles/metabolismo , Fenoles/análisis
7.
J Food Sci Technol ; 61(9): 1733-1742, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39049923

RESUMEN

The present work aimed to evaluate the features of yerba mate kombucha during 7 days of fermentation at either 25 ºC or 30 ºC, monitoring physicochemical changes, sensory profile, and sensorial acceptance. The symbiotic microbial culture of active bacteria and yeasts (SCOBY) at the beginning and the end of the bioprocess was also identified. The yerba mate kombuchas fermented at 25 ºC for 5 days or 30 ºC for 4 days were suitable for consumption according to Brazilian standards. Acetic acid, ethanol, and chlorophyll contents were dependent on fermentation time and temperature, unlike the total phenolic content. The main yeast and bacterium in SCOBY were Brettanomyces bruxellensis and Komagataeibacter rhaeticus, respectively, which remained dominant when fermentation was conducted for up to 7 days at both temperatures. Fermentation of yerba mate infusion led to products characterized by sourness, vinegar bitter, and fermented flavors and aromas, making the acceptance of non-fermented Yerba mate preferable to fermented infusions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05951-z.

8.
Food Res Int ; 190: 114568, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945598

RESUMEN

The food industry is increasingly striving to produce probiotics-based food and beverages using sustainable processes. Therefore, the use of by-products in product development has been investigated by several authors. The aim of this work was to investigate the effects of cocoa bean shell infusion in the production of kombucha through microbiological and genetic characterization. Three beverage formulations were prepared, one based on black tea (KBT), one based on cocoa bean shell infusion (KCS) and one containing 50 % black tea and 50 % cocoa shell infusion (KBL). The infusions were prepared with water, filtered, and sucrose was added. They were then homogenized and a portion of finished kombucha and SCOBY (symbiotic culture of bacteria and yeast) were added. Fermentation took place for 13 days and aliquots were collected every three days for physicochemical and microbial count analyses. Samples from the last day of fermentation were sent for DNA sequencing, extraction and quantification. The results were subjected to analysis of variance and compared by using Tukey's test (p < 0.05). The results show that there was a significant decrease in pH over time in all samples, while the titratable acidity increased, indicating an acidification of the beverage due to the production of organic acids. There was an increase in lactic acid bacterial colonies in all the formulations, which have a probiotic nature and are not always found in this type of beverage. Regarding the taxonomic classification of the samples, microorganisms of the kingdoms Fungi and Bacteria, of the families Saccharomycetaceae and Acetobacteraceae, were found in KBT, KCS and KBL, but with different microbiological compositions, with different amounts of yeasts and bacteria. Therefore, the use of by-products such as cocoa bean shell in the production of kombucha can contribute to the reduction of waste in the food industry and, at the same time, accelerate fermentation increasing the presence of lactic acid bacteria when compared to black tea.


Asunto(s)
Cacao , Fermentación , Microbiología de Alimentos , Té de Kombucha , Cacao/microbiología , Cacao/química , Té de Kombucha/microbiología , Té/microbiología , Té/química , Concentración de Iones de Hidrógeno , Manipulación de Alimentos/métodos , Probióticos
9.
J Appl Glycosci (1999) ; 71(2): 47-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863952

RESUMEN

Super Ohtaka®, a fermented beverage of plant extracts, is prepared from approximately 50 kinds of fruits and vegetables. Natural fermentation is mainly performed by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp.). Four water-soluble polysaccharide fractions were obtained from Super Ohtaka® by dialysis, ion exchange chromatography, and gel filtration chromatography; these fractions were designated as OEP1-1, OEP1-2, OEP2, and OEP3. OEP1-1 is a polysaccharide composed solely of glucose. The other fractions contained polysaccharides composed of glucose, galactose, mannose, and a small amount of arabinose. OEP2 and OEP3 contained phosphorus, which was not detected in OEP1-1 and OEP1-2. Furthermore, the immunomodulatory activity of the polysaccharides was investigated in murine macrophage cell lines. OEP2 and OEP3 significantly induced nitric oxide (NO) secretion by macrophages in a dose-dependent manner (concentration range of 4 to 100 µg/mL). When the concentration of OEP3 was 100 µg/mL, NO production was almost identical to lipopolysaccharide (LPS; 10 ng/mL) used as a positive control. Notably, OEP3 induced NO secretion more strongly than OEP2. This trend was also observed for TNF-α, IL-1ß, IL-6, and IL-12 p40 secretion. Overall, our in vitro studies on polysaccharides isolated from Super Ohtaka® suggest that the fermented beverage stimulates macrophages and activates the immune system.

10.
Food Res Int ; 174(Pt 1): 113569, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986521

RESUMEN

Kombuchas are a trend in the fermented beverage field and the effect of fermentation time on their characteristics is necessary to better understand the process, mainly concerning volatile compounds, which are scarce information in the current literature. Thus, the present work aimed to evaluate the features of green tea kombucha during fermentation, monitoring the changes in pH, acidity, turbidity, polyphenols, ethanol, acetic acid, volatile compounds, and sensory profile and acceptance up to 14 days of fermentation. Kombuchas' pH and acidity decreased through time as expected, but after 4 days of fermentation, the beverage exceeded the Brazilian legal limits of acidity (130 mEq/L) and produced more than 0.5% AVB, which labels the beverage as alcoholic. Total polyphenols and condensed tannins content enhanced until the seventh day of fermentation and remained constant. Fermentation highly impacted the aroma of the infusion with a high formation of volatile acids, such as alcohols, esters, and ketones. Aldehydes were degraded during the bioprocess. Sensory characterization of kombucha showed that fermentation of 4 days increased perceived turbidity; vinegar, citric fruit, acid, and alcoholic aroma; and produced the beverage with sour, bitter, and vinegar flavor. Thus, the fermentation time of kombuchas must be controlled as they rapidly change and impact on the physicochemical parameters and sensory profile of the beverage can be negative.


Asunto(s)
Ácido Acético , , Ácido Acético/análisis , Fermentación , Bebidas/análisis , Etanol/análisis , Polifenoles/análisis
11.
Foods ; 12(19)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37835198

RESUMEN

The kombucha market is diverse, and competitors constantly test new components and flavours to satisfy customers' expectations. Replacing the original brewing base, adding flavours, or using "backslopping" influence the composition of the symbiotic starter culture of bacteria and yeast (SCOBY). Yet, deep characterisation of microbial and chemical changes in kombucha consortia in coffee and orange juice during backslopping has not been implemented. This study aimed to develop new kombucha beverages in less-conventional matrices and characterise their microbiota. We studied the chemical properties and microbial growth dynamics of lactic-acid-bacteria-tailored (LAB-tailored) kombucha culture by 16S rRNA next-generation sequencing in coffee and orange juice during a backslopping process that spanned five cycles, each lasting two to four days. The backslopping changed the culture composition and accelerated the fermentation. This study gives an overview of the pros and cons of backslopping technology for the production of kombucha-based beverages. Based on research conducted using two different media, this work provides valuable information regarding the aspects to consider when using the backslopping method to produce novel kombucha drinks, as well as identifying the main drawbacks that need to be addressed.

12.
Foods ; 12(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835217

RESUMEN

Shaoxing rice wine is a notable exemplar of Chinese rice wine. Its superior quality is strongly correlated with the indigenous natural environment. The results indicated that Firmicutes (75%), Actinobacteria (15%), Proteobacteria (5%), and Bacteroidetes (3%) comprised the prevailing bacterial groups. Among the main bacterial genera, Lactobacillus was the most abundant, accounting for 49.4%, followed by Lactococcus (11.9%), Saccharopolyspora (13.1%), Leuconostoc (4.1%), and Thermoactinomyces (1.1%). The dominant fungal phyla were Ascomycota and Zygomycota. Among the dominant genera, Saccharomyces (59.3%) prevailed as the most abundant, followed by Saccharomycopsis (10.7%), Aspergillus (7.1%), Thermomyces (6.2%), Rhizopus (4.9%), Rhizomucor (2.2%), and Mucor (1.3%). The findings demonstrate that the structure of the bacterial and fungal communities remains stable in the environment, with their diversity strongly influenced by climatic conditions. The continuous fluctuations in environmental factors, such as temperature, air pressure, humidity, rainfall, and light, significantly impact the composition and diversity of microbial populations, particularly the dominant bacterial community.

13.
mSystems ; 8(6): e0074523, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37882544

RESUMEN

IMPORTANCE: Our study investigated how a traditional drink called Apong, made from fermented rice, affects the gut and health of the Mishing community in India. We compared two groups of people who drink Apong to a group of people who do not drink it. To accomplish this, we studied the gut bacteria, fecal metabolites, and blood samples of the participants. It was found that the people who drank Apong had higher blood pressure but lower blood sugar and protein levels than people who did not drink it. We also found that the gut microbiome composition of people who drank Apong was different from those who did not drink it. Moreover, people who drank Apong had lower levels of isovaleric acid in their feces. Overall, this study shows that a traditional drink like Apong can affect the gut bacteria of a community.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Humanos , Bacterias , Bebidas Fermentadas , Heces/microbiología
14.
Foods ; 12(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37761077

RESUMEN

The purpose of this work was to evaluate the selected physicochemical, rheological, and sensory properties of a new whey-enriched carrot juice beverage (carrot juice: whey ratios of 100:0; 95:5; 85:15; 75:25; 65:35) fermented with milk or water kefir starter cultures over a storage period of 21 days (at 4 ± 1 °C). In general, for all tested samples, the values of total soluble solids, pH, and density decreased with increasing storage time. In contrast, the values of ethanol, degree of fermentation, and total dissolved solids increased with the prolongation of the storage time. Furthermore, it was found that all the model samples exhibited pseudoplastic behavior. Based on the sensory analysis performed, samples containing 25% (w/w) whey were evaluated as the most acceptable. Last but not least, the present study can serve as a basis for optimizing the manufacturing technology of a novel fermented vegetable beverage enriched with whey.

15.
Food Sci Nutr ; 11(5): 2197-2210, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181300

RESUMEN

The present study aimed to optimize the formulation of buckwheat/lentil gluten-free beverages fermented with Lactobacillus plantarum and Bifidobacterium bifidum. Physicochemical parameters of 14 different beverages, such as pH, acidity, total solids, ash, total phenol content, antioxidant activity, and sensory test, were assessed after 24 h of fermentation. The results showed that the numbers of viable cells of lactobacilli and bifidobacteria on the first day of the experiment were 9.9 and 9.6 log (CFU ml-1), respectively, which were over 9 log (CFU ml-1). During 24 h from the fermentation, the number of viable cells for all beverages decreased, which reached an average probiotic count of 8.81 log (CFU ml-1) that was statistically significantly different from the probiotic count before fermentation (p < .05). Cell viability was evaluated and shelf life was estimated during 15-day refrigerated storage. At the end of the storage (15th day), the beverages contained an average of 8.4 log (CFU ml-1) of live lactobacilli cells and 7.8 log (CFU ml-1) of viable bifidobacterial cells. The optimized levels of independent factors for sprouted buckwheat and lentil flours were 51.96% and 48.04%, respectively. The optimized probiotic beverage was contained 0.25 (% lactic acid) acidity, 5.7 pH, 7.9% total solids, 0.4% ash, 41.02% DPPH, 26.96 (mg GAE/ml) phenol compounds, and 8.65 log (CFU ml-1) probiotic count. The optimized beverage had distinct organoleptic properties on day 15 of refrigerated storage. This study showed that Bifidobacterium bifidum can be used for the development of potentially probiotic beverage with sprouted buckwheat and lentil.

16.
Chin Herb Med ; 15(1): 27-32, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36875441

RESUMEN

Traditional herbal medicine (THM) is a significant division of traditional Chinese medicine (TCM) that plays an important role in maintaining health and disease prevention. WHO has consistently highlighted the significance of traditional, complementary, and alternative medicine in human healthcare. Most people in Eastern Asia will start their day with a cup of tea. The tea provides a nourishing effect, and it has become an inevitable part of life. There are several types of tea, like black tea, green tea, oolong tea, white tea, and herbal tea. Besides the refreshments, it is important to consume beverages that benefit health. One such alternative is a healthy probiotic drink called kombucha, a fermented tea. Kombucha tea is aerobically fermented by infusing sweetened tea with a cellulose mat/ pellicle called SCOBY (symbiotic culture of bacteria and yeast). Kombucha is a source of bioactive compounds that include organic acids and amino acids, vitamins, probiotics, sugars, polyphenols, and antioxidants. Currently, studies on kombucha tea and SCOBY are gaining attention for their remarkable properties and applications in the food and health industries. The review gives an overview of the production, fermentation, microbial diversity, and metabolic products of kombucha. The possible implications for human health are also discussed.

17.
Foods ; 12(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36673335

RESUMEN

Fermentation is an important tool in producing functional beverages through agro-industrial wastes, and medicinal and aromatic plants due to the specific content of bioactive molecules. Therefore, this study evaluated the contribution of Matricaria recutita (chamomile), Cymbopogon citratus (lemongrass), or Mentha piperita (peppermint) extracts to the phytochemical profile and potential biological effects of a functional fermented orange beverage in vitro and in silico. The concentrations of aromatic herbal extracts that yielded the best sensory performance for fermented beverages were selected for analyses that involved characterizing the fermented beverages. The beverages that received the extracts (2%) had the highest phenolic and flavonoid content and antioxidant potential compared to the control. Hesperidin (124-130 mg L-1), narirutin (66-70 mg L-1), chlorogenic (11-16 mg L-1), caffeic (5.3-5.5 mg L-1), and ferulic (1-1.7 mg L-1) acids were found in the different formulations. The in silico analysis suggested that the evaluated compounds do not present a toxicity risk (mutagenicity, carcinogenicity, hepatotoxicity, and ability to penetrate the blood-brain barrier). Additionally, they can contribute to the biological effects of therapeutic importance, such as antioxidant, gastroprotective, and anti-ulcerative properties, and the Mentha piperita L. extract presented the greatest potential among the evaluated herbs for use in functional fermented beverages.

18.
Food Chem ; 412: 135556, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36708672

RESUMEN

In this study, arabic coffee infusion was used to produce a fermented beverage known as kombucha. The physicochemical, antioxidant and antimicrobial activities, as well as in vivo toxicity were evaluate throughout 21 days of fermentation. Reduction in pH and sugar levels were observed throughout the fermentation period. There was no significant difference in the content of total phenolic compounds between the unfermented and fermented beverage, nor between the fermentation times, as well as in the antioxidant activity. The 5-caffeoylquinic acid was identified at all fermentation times evaluated, and no significant difference was observed regarding its concentration. It showed antibacterial and antifungal activity against all strains tested. No toxic effect of the beverages was observed in the in vivo model (Galleria mellonella) studied. These results demonstrated that coffee infusion is a possible alternative for kombucha production since the physicochemical changes prove the metabolic activity of Symbiotic Culture of Bacteria and Yeast.


Asunto(s)
Bebidas , Café , Café/metabolismo , Fermentación , Bebidas/análisis , Bacterias/genética , Bacterias/metabolismo , Antioxidantes/análisis , Saccharomyces cerevisiae/metabolismo
19.
Food Chem ; 409: 135284, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36586265

RESUMEN

To investigate the effects of mixed fermentation with T. delbrueckii on aroma profiles of blueberry fermented beverage, five fermentations were conducted: monoculture of T. delbrueckii and S. cerevisiae, respectively; co-inoculation of two strains; sequential inoculation of two strains at time intervals of 24 h and 48 h, respectively. Compared with pure S. cerevisiae fermentation, ethanol level was decreased by up to 1.1% vol., while total anthocyanins were increased by 27.7%-85.0% in mixed fermentations. Marker aroma compounds in different fermentations with relative odor activity values higher than 1were identified. T. delbrueckii significantly decreased volatile acid content (especially acetic acid) by 22.2%-83.3%. Ethyl 3-methylbutanoate, ethyl hexanoate and ethyl octanoate, in pure T. delbrueckii fermentation were significantly decreased, while their concentrations were increased by 1.6-4.4 folds in sequential fermentations. Besides, linalool, rose oxide, benzeneacetaldehyde were significantly increased by sequential fermentation, which was associated with the enhancement of fruity and sweet notes.


Asunto(s)
Arándanos Azules (Planta) , Torulaspora , Vino , Saccharomyces cerevisiae/metabolismo , Torulaspora/metabolismo , Vino/análisis , Arándanos Azules (Planta)/metabolismo , Antocianinas/metabolismo , Fermentación , Ácido Acético
20.
Probiotics Antimicrob Proteins ; 15(2): 300-311, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34453308

RESUMEN

In this work, two Peruvian beverages "Masato de Yuca," typical of the Amazonian communities made from cassava (Manihot esculenta), and "Chicha de Siete Semillas," made from different cereal, pseudo-cereal, and legume flours, were explored for the isolation of lactic acid bacteria after obtaining the permission of local authorities following Nagoya protocol. From an initial number of 33 isolates, 16 strains with different RAPD- and REP-PCR genetic profiles were obtained. In Chicha, all strains were Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), whereas in Masato, in addition to this species, Limosilactobacillus fermentum (formerly Lactobacillus fermentum), Pediococcus acidilactici, and Weissella confusa were also identified. Correlation analysis carried out with their carbohydrate fermentation patterns and enzymatic profiles allowed a clustering of the lactobacilli separated from the other genera. Finally, the 16 strains were submitted to a static in vitro digestion (INFOGEST model) that simulated the gastrointestinal transit. Besides, their ability to adhere to the human epithelial intestinal cell line HT29 was also determined. Following both procedures, the best probiotic candidate was Lac. plantarum Ch13, a robust strain able to better face the challenging conditions of the gastrointestinal tract and showing higher adhesion ability to the intestinal epithelium in comparison with the commercial probiotic strain 299v. In order to characterize its benefit for human health, this Ch13 strain will be deeply studied in further works.


Asunto(s)
Limosilactobacillus fermentum , Manihot , Probióticos , Humanos , Verduras , Perú , Técnica del ADN Polimorfo Amplificado Aleatorio , Lactobacillus , Bebidas Fermentadas , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...