Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; : e202400744, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136414

RESUMEN

Ferrocene is an accidentally discovered organometallic compound that serves as a crucial redox probe in investigating electrochemical charge transfer dynamics. Besides solution phase studies, ferrocene derivatives are well-explored in molecular thin films, including self-assembled monolayers on various electrodes for understanding on-surface redox behavior, molecular electronics, and charge storage applications. Heterogeneous charge transfer is an imperative parameter for efficient charge transport in spin-dependent electrochemistry, photoelectrochemistry, and molecular electronic devices. In this work, we aim to study the electrochemical charge transfer of ferrocene on various electrodes such as commercially obtained glassy carbon, graphite rod, indium tin oxide (ITO), and as-prepared gold, and nickel to determine the impact of the nature of the working electrode on the electron transfer rate, diffusion coefficient, and reversibility of the redox process. Both the direct current and alternating current-based electrochemical experiments are performed, followed by digitization of the experimental results. The kinetics of electron transfer and electrochemical reversibility reveal a strong dependence on the nature of the working electrode, as the electrochemically driven oxidation and reduction of the material of interest are directly related to the Fermi energy and electronic structure of the working electrode.

2.
ChemSusChem ; 17(14): e202301493, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38411370

RESUMEN

Due to its negligible capacity with respect to sodium intercalation, graphite is not suited as anode material for sodium ion batteries. Hard carbon materials, on the other hand, provide reasonably high capacities at low insertion potential, making them a promising anode materials for sodium (and potassium) ion batteries. The particular nanostructure of these functionalized carbon-based materials has been found to be crucially linked to the material performance. However, there is still a lack of understanding with respect to the functional role of structural units, such as defects, for intercalation and storage. To overcome these problems, the intercalation of Li, Na, and K in graphitic model structures with distinct defect configurations has been investigated by density functional theory. The calculations confirm that defects are able to stabilize intercalation of larger alkali metal contents. At the same time, it is shown that a combination of phonon and band structure calculations are able to explain characteristic Raman features typically observed for alkali metal intercalation in hard carbon, furthermore allowing for the quantification of the alkali metal intercalation inbetween the layers of hard carbon anodes.

3.
Chemosphere ; 346: 140596, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918537

RESUMEN

Constructed heterojunction has been considered an efficient strategy to enhance the migration and transfer of photoinduced charge carriers. Herein, a Z-scheme Cu2O/BiOBr heterojunction with 0D/2D structure was fabricated by microwave hydrothermal method. It was found that the optimal composites photocatalyst showed excellent activity for sulfamethoxazole (SMZ) illumination, and the removal rate reached 90.7%, which was higher than pristine Cu2O (53.0%) and BiOBr (60.0%). Subsequently, the operational parameters such as catalyst dosage, concentrations of pollutants, and pH of solution were investigated. According to the ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRs), Mott-Schottky curve, and density functional theory (DFT) analysis, the Z-scheme degradation mechanism of Cu2O/BiOBr heterostructure was proposed. Among them, the interface structure of 0-dimensions/2-dimensions (0D/2D) can significantly increase the number of heterojunctions in the composite catalyst, and Z-scheme heterostructures can accelerate the generation and migration of photoinduced charge carriers, which has a facilitation effect on improving the decomposition activity of the photocatalyst. Moreover, three possible pathways for SMZ degradation were inferred. This study provides a promising strategy for constructing novel heterojunctions with high photocatalytic performance.


Asunto(s)
Contaminantes Ambientales , Teoría Funcional de la Densidad , Iluminación , Sulfametoxazol
4.
ACS Appl Mater Interfaces ; 14(11): 13653-13664, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35276048

RESUMEN

A giant enhancement of nearly 100 times is seen in triethylamine response through Ti-Zr-Cr-V-Ni high-entropy alloy nanoparticle (HEA NP)-induced fermi energy control of two-dimensional molybdenum disulfide (MoS2) nanosheets. These Laves-phase HEA NP-decorated MoS2 samples are synthesized using cryomilling followed by 30 h of sonication. The prolonged sonication results in well-exfoliated MoS2 with fairly small (∼10-20 nm) HEA NPs anchored due to cryomilling confirmed by extensive microscopic and spectroscopic examinations. The presence of HEA NPs leads to reduction in edge oxidation of MoS2 as seen from X-ray photoelectron spectroscopy. Moreover, this edge state reduction causes strong Fermi level pinning, which is commonly observed in layered MoS2 with bulk metal electrodes. This leads to target gas-specific carrier-type response and selective oxidation of TEA vapors due to highly catalytically active metals. The resulting composite (MoS2 + NPs) exhibits high response (380% for 2000 ppm TEA vapors) along with selectivity toward TEA at 50 °C. The cross-sensitivity of the composite to other volatile organic compounds and NH3, CO, and H2 has been very minimal. Thus, the highly selective catalytic activity of metal alloy NPs and their Fermi energy control has been proposed as the prime factors for observed large sensitivity and selective response of MoS2 + NP nanocomposites.

5.
J Mol Graph Model ; 111: 108099, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34871980

RESUMEN

This paper examines the alterations in the properties of II-VI Quantum Dots (QDs) when these are coated with a shell made of another material of the same family and investigates the structural, electronic and magnetic properties of doped CdS/ZnS core/shell QDs. The core/shell QDs have been constructed by building the shell over the bare core QD and it is found that this construction of a shell over the bare QD can bring about dramatic changes in its optical properties. On changing the shell by varying either the cation or the anion, substantial variations are brought about in the band gap and electrophilicity. The trend of Fermi energies is more negative for core/shell QDs than for the QDs without a shell, and the value is almost the same for core/shell QDs with the same core. Swapping of the core and the shell materials brings greater stability in the case of shells of the wider band gap materials. Binding energy data demonstrates that the CdS/ZnS, CdSe/ZnSe, CdSe/CdS core/shell systems are more stable than ZnS/CdS, ZnSe/CdSe, CdS/CdSe core/shell systems, respectively. An augmentation in the properties is found on doping the QD with transition metal ions. The binding energies are found to be functions of the kind of dopant as well as the spin multiplicity and account for the stability of one spin state over the other at a specific site of the QD. The most fascinating property that plays a decisive role in the extant work is the introduction of magnetism in core/shell QDs as a result of the entry of unpaired electrons within the CdS/ZnS QDs on doping with transition metal ions. The deviation of the observed magnetic moments from the expected values increases as the dopant is varied from Mn2+ to Fe2+ to Co2+ to Ni2+ to Cu2+. Hirshfeld charge analysis shows that the doped ion accepts negative charge from the sulfide ions in the core, with the smallest charge transfer seen in the case of Hg2+ ions. As we move from Mn2+ to Hg2+, the trend followed for the Hirshfeld charges indicates that the overall charge on the core is lower and that on the shell is higher for all the doped cases in comparison to the undoped CdS/ZnS core/shell QD. The band gap values reveal that the Fe2+ doped CdS/ZnS core/shell structures have the smallest band gaps. Hence, we expect that this paper will help researchers to develop a strategy to produce QDs of the anticipated properties for various applications, and transition metal ions can be successfully employed for modification of various magnetoelectronic properties of the host semiconductor for future applications in nanotechnology.


Asunto(s)
Puntos Cuánticos , Elementos de Transición , Sulfuros , Compuestos de Zinc
6.
Micromachines (Basel) ; 12(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34832732

RESUMEN

In this paper, a tunable absorber composed of asymmetric grating based on a graphene-dielectric-metal structure is proposed. The absorption of the absorber can be modified from 99.99% to 61.73% in the near-infrared by varying the Fermi energy of graphene, and the absorption wavelength can be tuned by varying the grating period. Furthermore, the influence of other geometrical parameters, the incident angle, and polarization are analyzed in detail by a finite-difference time-domain simulation. The graphene absorbers proposed in this paper have potential applications in the fields of stealth, sense, and photoelectric conversion. When the absorber that we propose is used as a gas sensor, the sensitivity of 200 nm/RIU with FOM can reach up to 159 RIU-1.

7.
Nano Lett ; 21(18): 7512-7518, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34491741

RESUMEN

Plasmonic electrochromism, a change in the localized surface plasmon resonance (LSPR) with an applied electric potential, has been attracting increasing attention for the development of spectroscopic tools or optoelectronic systems. There is a consensus on the mechanism of plasmonic electrochromism based on the classical capacitor and the Drude model. However, the electrochromic behaviors of metallic nanoparticles in narrow optical windows have been demonstrated only with small monotonic LSPR shifts, which limits the use of the electrochromism. Here, we observed three distinct electrochromic behaviors of gold nanocubes with a wide potential range through in situ dark-field electrospectroscopy. Interestingly, the nanocubes show a faster frequency shift under the highly negative potential, and this opens the possibility of largely tunable electrochromic LSPR shifts. The reversibility of the electrochemical switching with these cubes are also shown. We attribute this unexpected change beyond classical understandings to the material-specific quantum mechanical electronic structures of the plasmonic materials.

8.
J Phys Condens Matter ; 33(24)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33631723

RESUMEN

We design a tunable plasmonic resonator that may have applications in sensing and plasmon generation-our design uses graphene-based Bragg reflectors of periodically modulated conductivity. Specifically, we explore and utilize the ability to use an array of Gaussian conductivity gratings as fully reflecting mirrors for surface plasmon polaritons (SPPs) propagating along a two-dimensional graphene sheet sandwiched between two dielectric materials. Graphene supports SPPs in the near-infrared to terahertz (THz) regime of the electromagnetic spectrum compared to those observed in metal-dielectric systems. Our resonator is fundamentally different from other similar published resonator designs because the distributed reflectors provide light confinement in both the horizontal and the vertical directions. As a result, the resonator is compact in the vertical-direction as we no longer use traditional mirrors or dielectric assisted gratings. Besides, conventional resonator designs only support a single, fixed resonant frequency, set by the mirror reflectivity and the cavity material's properties. The versatility of graphene is that its Fermi energy can be electrically varied, thus allowing us to change the peak reflectivity of the graphene Bragg-grating without physically changing its physical dimensions. Therefore, by varying the Bragg wavelength, we can shift the resonance frequency of the cavity. One use of our resonator is in plasmonic lasers. We illustrate this use by analyzing the resonator parameters such as the linewidth and the quality factor of the plasmonic resonator.

9.
Adv Colloid Interface Sci ; 247: 305-353, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28847408

RESUMEN

Electron displacements may be considered as a general measure of semiconductor activity as well as of dipolar, acid-base and charge interactions. Electron transfers during reduction and oxidation reactions between dissolved cations and anions correspond to an extreme Lewis acid-base electron displacement. Brϕnsted proton release (protolysis) represents an extremely weakened hydrogen bond. The most common electrostatic (Born, PCM) and chemical (pKa matching) models for electron and proton exchange between dissolved species are reviewed using aluminium species as examples. Dissolution of ions from solids (salts) may be considered as a reversed precipitation reaction. For partly covalent solids dissociation is dependent on electron or vacancy (hole) transfers to the solid which connects oxidation and reduction reactions to electron displacements in semiconductors. The electron exchange is characterized by Femi energy of semiconductors and of electrolytes. The standard reduction potential may thus be converted to Fermi energy of connected electrochemical cells. In disconnected particle suspensions (sols) the electron activity is a more appropriate parameter which may be converted both to standard reduction potential of ions and to Fermi energy of semiconductors. Dissolution of potential determining cations and anions and hydrolysis of surface sites determines the charging (electron transfer to/from surface) of solids. Both electrostatic (MUSIC) and chemical equilibrium constant models are available for Brϕnsted equilibrium of surface hydroxyls. Point of zero charge is a result of positive and negative charge matching and it represents the optimal condition for condensation of polynuclear species by olation and oxolation. The capability of partial charge (PCM) model to predict condensation is evaluated. Acidity (pH), composition and temperature dependence of aluminium species is illustrated by solubility limits of contributing species and by phase diagrams. Influence of ions on macroscopic suspension properties, such as wetting and electrophoretic mobility is evaluated with reference to point of zero charge and to isoelectric point. Restrictions to the use of zeta-potentials are related to the surface potential and particle size - Debye length ratios. Macroscopic settling (particle precipitation) and viscosity of suspensions (sols) are discussed with reference to Deryagin-Landau-Verwey-Overbeek (DLVO) model. The primary dependence on counterion valence is evaluated according to Schulz-Hardy approach. The secondary dependence on counterion hydration (Hofmeister or lyotropic effect) and ion association (Debye-Hückel limiting model) are discussed.

10.
J Nanosci Nanotechnol ; 17(1): 256-9, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-29620339

RESUMEN

In this paper we show that the direct application of Heisenberg's uncertainty principle (HUP) leads to the expression of the electron statistics (ES) under extreme degeneracy and intense electric field in bulk, quantum wells, nano wires and in the presence of quantizing magnetic field in III­V, ternary and quaternary materials on the basis of a newly formulated electron dispersion laws without using the usual density-of-states (DOS) function approach for finding out the ES under different physical lattice matched to InP conditions. It appears taking HD InSb, InAs, Hg1−xCdxTe, In1−xGaxAsyP1−y as examples that the Fermi energy increases with increasing electron concentration and the surface electric field in all the cases. Besides the Fermi energy decreases with increasing alloy composition and film thickness in different manners which depend totally on the values of the energy band constants. The Fermi energy oscillates with inverse quantizing magnetic field due to SdH effect. We have also shown that under certain limiting conditions all our generalized results lead to the well known formulas as given in the literature.

11.
Nano Lett ; 16(4): 2444-9, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26938458

RESUMEN

High-performance electronics requires the fine control of semiconductor conductivity. In atomically thin two-dimensional (2D) materials, traditional doping technique for controlling carrier concentration and carrier type may cause crystal damage and significant mobility reduction. Contact engineering for tuning carrier injection and extraction and carrier type may suffer from strong Fermi-level pinning. Here, using first-principles calculations, we predict that mechanical bending, as a unique attribute of thin 2D materials, can be used to control conductivity and Fermi-level shift. We find that bending can control the charge localization of top valence bands in both MoS2 and phosphorene nanoribbons. The donor-like in-gap edge-states of armchair MoS2 ribbon and their associated Fermi-level pinning can be removed by bending. A bending-controllable new in-gap state and accompanying direct-indirect gap transition are predicted in armchair phosphorene nanoribbon. We demonstrate that such emergent bending effects are realizable. The bending stiffness as well as the effective thickness of 2D materials are also derived from first principles. Our results are of fundamental and technological relevance and open new routes for designing functional 2D materials for applications in which flexuosity is essential.

12.
ACS Appl Mater Interfaces ; 7(16): 8886-93, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25853277

RESUMEN

We introduce dopants in lead sulfide (PbS) quantum dots (QDs) in forming hybrid bulk-heterojunction (BHJ) solar cells. Because an increase in the content of bismuth as dopants in PbS QDs transforms the intrinsic p-type semiconductor into an n-type one, the band alignment between a conjugated polymer and the doped QDs changes upon doping affecting performance of BHJ solar cells. From scanning tunneling spectroscopy (STS) of the doped QDs, we observe a shift in their Fermi energy leading to formation of a type II band alignment in the polymer:doped-QD interface. We also show that the dopants improve electron-conduction process through the QDs. With the dopants controlling both band alignments at the interface and the conduction process, we show that the dopant concentration in QDs influences open-circuit voltage unfavorably and short-circuit current in a beneficial manner. The device performance of hybrid BHJ solar cells is hence maximized at an optimum concentration of bismuth in PbS QDs.

13.
Proc Natl Acad Sci U S A ; 111(46): 16309-13, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25378706

RESUMEN

Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF ~ 1(~0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime.

14.
Sci Technol Adv Mater ; 10(1): 014607, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27877258

RESUMEN

The energy saving resulting from the equalization of Fermi energies of a crystal and its melt is added to the Gibbs free-energy change ΔG2ls associated with a crystal formation in glass-forming melts. This negative contribution being a fraction ε ls(T) of the fusion heat is created by the electrostatic potential energy -U0 resulting from the electron transfer from the crystal to the melt and is maximum at the melting temperature Tm in agreement with a thermodynamics constraint. The homogeneous nucleation critical temperature T2, the nucleation critical barrier ΔG2ls∗/kBT and the critical radius R∗2ls are determined as functions of εls(T). In bulk metallic glass forming melts, εls(T) and T2 only depend on the free-volume disappearance temperature T0l, and εls(Tm) is larger than 1 (T0l>Tm/3); in conventional undercooled melts εls(Tm) is smaller than 1 (T0l>Tm/3). Unmelted intrinsic crystals act as growth nuclei reducing ΔG2ls∗/kBT and the nucleation time. The temperature-time transformation diagrams of Mg65Y10Cu25, Zr41.2Ti13.8Cu12.5Ni10Be22.5, Pd43Cu27 Ni10P20, Fe83B17 and Ni melts are predicted using classic nucleation models including time lags in transient nucleation, by varying the intrinsic nucleus contribution to the reduction of ΔG2ls∗/kBT. The energy-saving coefficient ε nm(T) of an unmelted crystal of radius Rnm is reduced when Rnm ≪R∗2ls; εnm is quantified and corresponds to the first energy level of one s-electron moving in vacuum in the same spherical attractive potential -U0 despite the fact that the charge screening is built by many-body effects.

15.
J Res Natl Inst Stand Technol ; 108(3): 193-7, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-27413605

RESUMEN

The majority electron density as a function of the Fermi energy is calculated in zinc blende, n-type GaSb for donor densities between 10(16) cm(-3) and 10(19) cm(-3). These calculations solve the charge neutrality equation self-consistently for a four-band model (three conduction sub-bands at Γ, L, and X and one equivalent valence band at Γ) of GaSb. Our calculations assume parabolic densities of states and thus do not treat the density-of-states modifications due to high concentrations of dopants, many body effects, and non-parabolicity of the bands. Even with these assumptions, the results are important for interpreting optical measurements such as Raman measurements that are proposed as a nondestructive method for wafer acceptance tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...