Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pflugers Arch ; 469(2): 195-212, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27999940

RESUMEN

Nav1.6 and Nav1.6-mediated resurgent currents have been implicated in several pain pathologies. However, our knowledge of how fast resurgent currents are modulated in neurons is limited. Our study explored the potential regulation of Nav1.6-mediated resurgent currents by isoforms of fibroblast growth factor homologous factor 2 (FHF2) in an effort to address the gap in our knowledge. FHF2 isoforms colocalize with Nav1.6 in peripheral sensory neurons. Cell line studies suggest that these proteins differentially regulate inactivation. In particular, FHF2A mediates long-term inactivation, a mechanism proposed to compete with the open-channel blocker mechanism that mediates resurgent currents. On the other hand, FHF2B lacks the ability to mediate long-term inactivation and may delay inactivation favoring open-channel block. Based on these observations, we hypothesized that FHF2A limits resurgent currents, whereas FHF2B enhances resurgent currents. Overall, our results suggest that FHF2A negatively regulates fast resurgent current by enhancing long-term inactivation and delaying recovery. In contrast, FHF2B positively regulated resurgent current and did not alter long-term inactivation. Chimeric constructs of FHF2A and Navß4 (likely the endogenous open channel blocker in sensory neurons) exhibited differential effects on resurgent currents, suggesting that specific regions within FHF2A and Navß4 have important regulatory functions. Our data also indicate that FHFAs and FHF2B isoform expression are differentially regulated in a radicular pain model and that associated neuronal hyperexcitability is substantially attenuated by a FHFA peptide. As such, these findings suggest that FHF2A and FHF2B regulate resurgent current in sensory neurons and may contribute to hyperexcitability associated with some pain pathologies.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Ganglios Espinales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Isoformas de Proteínas/metabolismo , Sodio/metabolismo , Potenciales de Acción/fisiología , Animales , Activación del Canal Iónico/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/metabolismo
2.
Curr Top Membr ; 78: 599-638, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27586296

RESUMEN

Pain is a serious health problem that impacts the lives of many individuals. Hyperexcitability of peripheral sensory neurons contributes to both acute and chronic pain syndromes. Because voltage-gated sodium currents are crucial to the transmission of electrical signals in peripheral sensory neurons, the channels that underlie these currents are attractive targets for pain therapeutics. Sodium currents and channels in peripheral sensory neurons are complex. Multiple-channel isoforms contribute to the macroscopic currents in nociceptive sensory neurons. These different isoforms exhibit substantial variations in their kinetics and pharmacology. Furthermore, sodium current complexity is enhanced by an array of interacting proteins that can substantially modify the properties of voltage-gated sodium channels. Resurgent sodium currents, atypical currents that can enhance recovery from inactivation and neuronal firing, are increasingly being recognized as playing potentially important roles in sensory neuron hyperexcitability and pain sensations. Here we discuss unusual sodium channels and currents that have been identified in nociceptive sensory neurons, describe what is known about the molecular determinants of the complex sodium currents in these neurons. Finally, we provide an overview of therapeutic strategies to target voltage-gated sodium currents in nociceptive neurons.


Asunto(s)
Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción/fisiología , Animales , Humanos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Dolor/patología , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Células Receptoras Sensoriales/metabolismo , Sodio/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Canales de Sodio Activados por Voltaje/química
3.
J Neurosci ; 35(17): 6752-69, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25926453

RESUMEN

Mutations in FGF14, which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia (SCA27). In addition, mice lacking Fgf14 (Fgf14(-/-)) exhibit an ataxia phenotype resembling SCA27, accompanied by marked changes in the excitability of cerebellar granule and Purkinje neurons. It is not known, however, whether these phenotypes result from defects in neuronal development or if they reflect a physiological requirement for iFGF14 in the adult cerebellum. Here, we demonstrate that the acute and selective Fgf14-targeted short hairpin RNA (shRNA)-mediated in vivo "knock-down" of iFGF14 in adult Purkinje neurons attenuates spontaneous and evoked action potential firing without measurably affecting the expression or localization of voltage-gated Na(+) (Nav) channels at Purkinje neuron axon initial segments. The selective shRNA-mediated in vivo "knock-down" of iFGF14 in adult Purkinje neurons also impairs motor coordination and balance. Repetitive firing can be restored in Fgf14-targeted shRNA-expressing Purkinje neurons, as well as in Fgf14(-/-) Purkinje neurons, by prior membrane hyperpolarization, suggesting that the iFGF14-mediated regulation of the excitability of mature Purkinje neurons depends on membrane potential. Further experiments revealed that the loss of iFGF14 results in a marked hyperpolarizing shift in the voltage dependence of steady-state inactivation of the Nav currents in adult Purkinje neurons. We also show here that expressing iFGF14 selectively in adult Fgf14(-/-) Purkinje neurons rescues spontaneous firing and improves motor performance. Together, these results demonstrate that iFGF14 is required for spontaneous and evoked action potential firing in adult Purkinje neurons, thereby controlling the output of these cells and the regulation of motor coordination and balance.


Asunto(s)
Potenciales de Acción/genética , Cerebelo/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Equilibrio Postural/genética , Desempeño Psicomotor/fisiología , Células de Purkinje/fisiología , Potenciales de Acción/fisiología , Animales , Ancirinas/metabolismo , Axones/metabolismo , Línea Celular Transformada , Cricetulus , Femenino , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Células de Purkinje/citología
4.
Heart Rhythm ; 10(12): 1886-94, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24096171

RESUMEN

BACKGROUND: Less than 30% of the cases of Brugada syndrome (BrS) have an identified genetic cause. Of the known BrS-susceptibility genes, loss-of-function mutations in SCN5A or CACNA1C and their auxiliary subunits are most common. On the basis of the recent demonstration that fibroblast growth factor (FGF) homologous factors (FHFs; FGF11-FGF14) regulate cardiac Na(+) and Ca(2+) channel currents, we hypothesized that FHFs are candidate BrS loci. OBJECTIVE: The goal of this study was to test whether FGF12 is a candidate BrS locus. METHODS: We used quantitative polymerase chain reaction to identify the major FHF expressed in the human ventricle and then queried a phenotype-positive, genotype-negative BrS biorepository for FHF mutations associated with BrS. We queried the effects of an identified mutant with biochemical analyses combined with electrophysiological assessment. We designed a novel rat ventricular cardiomyocyte system in which we swapped the endogenous FHF with the identified mutant and defined its effects on multiple ionic currents in their native milieu and on the cardiac action potential. RESULTS: We identified FGF12 as the major FHF expressed in the human ventricle. In 102 individuals in the biorepository, we identified a single missense mutation in FGF12-B (Q7R-FGF12). The mutant reduced binding to the NaV1.5 C terminus, but not to junctophilin-2. In adult rat cardiac myocytes, Q7R-FGF12, but not wild-type FGF12, reduced Na(+) channel current density and availability without affecting Ca(2+) channel function. Furthermore, the mutant, but not wild-type FGF12, reduced action potential amplitude, which is consistent with a mutant-induced loss of Na(+) channel function. CONCLUSIONS: These multilevel investigations strongly suggest that Q7R-FGF12 is a disease-associated BrS mutation. Moreover, these data suggest for the first time that FHF effects on Na(+) and Ca(2+) channels are separable. Most significantly, this study establishes a new method to analyze effects of human arrhythmogenic mutations on cardiac ionic currents.


Asunto(s)
Síndrome de Brugada/genética , ADN/genética , Factores de Crecimiento de Fibroblastos/genética , Mutación Missense , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Síndrome de Brugada/metabolismo , Síndrome de Brugada/patología , Células Cultivadas , Niño , Cromatografía Líquida de Alta Presión , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fenotipo , Ratas , Ratas Sprague-Dawley , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...