RESUMEN
Bile acid malabsorption (BAM) is an important disorder of digestive pathophysiology as it generates chronic diarrhoea. This condition originates from intricate pathways involving bile acid synthesis and metabolism in the liver and gut, the composition of gut microbiota, enterohepatic circulation and key receptors as farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and the G-protein bile acid receptor-1 (GPBAR-1). Although symptoms can resemble those related to disorders of gut brain interaction, accurate diagnosis of BAM may greatly benefit the patient. The empiric diagnosis of BAM is primarily based on the clinical response to bile acid sequestrants. Specific tests including the 48-hour fecal bile acid test, serum levels of 7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19), and the 75Selenium HomotauroCholic Acid Test (SeHCAT) are not widely available. Nevertheless, lack of diagnostic standardization of BAM may account for poor recognition and delayed management. Beyond bile acid sequestrants, therapeutic approaches include the use of FXR agonists, FGF19 analogues, glucagon-like peptide-1 (GLP-1) receptor agonists, and microbiota modulation. These novel agents can best make their foray into the therapeutic armamentarium if BAM does not remain a diagnosis of exclusion. Ignoring BAM as a specific condition may continue to contribute to increased healthcare costs and reduced quality of life. Here, we aim to provide a comprehensive review of the pathophysiology, diagnosis, and management of BAM.
Asunto(s)
Ácidos y Sales Biliares , Diarrea , Factores de Crecimiento de Fibroblastos , Síndromes de Malabsorción , Receptores Citoplasmáticos y Nucleares , Humanos , Ácidos y Sales Biliares/metabolismo , Colestenonas/uso terapéutico , Enfermedad Crónica , Diarrea/diagnóstico , Diarrea/etiología , Diarrea/fisiopatología , Diarrea/terapia , Heces/química , Factores de Crecimiento de Fibroblastos/metabolismo , Microbioma Gastrointestinal , Síndromes de Malabsorción/complicaciones , Síndromes de Malabsorción/diagnóstico , Síndromes de Malabsorción/metabolismo , Síndromes de Malabsorción/terapia , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Secuestrantes/uso terapéuticoRESUMEN
BACKGROUND: S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS: Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS: In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.
Asunto(s)
Calgranulina A , Calgranulina B , Factor-23 de Crecimiento de Fibroblastos , Factores de Transcripción NFATC , Regulación hacia Arriba , Animales , Masculino , Ratones , Calcineurina/metabolismo , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/metabolismo , Calgranulina B/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Modelos Animales de Enfermedad , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Transducción de SeñalRESUMEN
Immune-mediated liver injury (ILI) is a condition where an aberrant immune response due to various triggers causes the destruction of hepatocytes. Fibroblast growth factor 4 (FGF4) was recently identified as a hepatoprotective cytokine; however, its role in ILI remains unclear. In patients with autoimmune hepatitis (type of ILI) and mouse models of concanavalin A (ConA)- or S-100-induced ILI, we observed a biphasic pattern in hepatic FGF4 expression, characterized by an initial increase followed by a return to basal levels. Hepatic FGF4 deficiency activated the mitochondria-associated intrinsic apoptotic pathway, aggravating hepatocellular apoptosis. This led to intrahepatic immune hyper-reactivity, inflammation accentuation, and subsequent liver injury in both ILI models. Conversely, administration of recombinant FGF4 reduced hepatocellular apoptosis and rectified immune imbalance, thereby mitigating liver damage. The beneficial effects of FGF4 were mediated by hepatocellular FGF receptor 4, which activated the Ca2+/calmodulin-dependent protein kinasekinase 2 (CaMKKß) and its downstream phosphatase and tensin homologue-induced putative kinase 1 (PINK1)-dependent B-cell lymphoma 2-like protein 1-isoform L (Bcl-XL) signalling axis in the mitochondria. Hence, FGF4 serves as an early response factor and plays a protective role against ILI, suggesting a therapeutic potential of FGF4 and its analogue for treating clinical immune disorder-related liver injuries.
RESUMEN
Bile acid diarrhea (BAD) is a multifaceted intestinal disorder involving intricate molecular mechanisms, including farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and Takeda G protein-coupled receptor 5 (TGR5). Current diagnostic methods encompass bile acid sequestrants (BAS), 48-h fecal bile acid tests, serum 7α-hydroxy-4-cholesten-3-one (C4), fibroblast growth factor 19 (FGF19) testing, and 75Selenium HomotauroCholic acid test (75SeHCAT). Treatment primarily involves BAS and FXR agonists. However, due to the limited sensitivity and specificity of current diagnostic methods, as well as suboptimal treatment efficacy and the presence of side effects, there is an urgent need to establish new diagnostic and treatment methods. While prior literature has summarized various diagnostic and treatment methods and the pathogenesis of BAD, no previous work has linked the two. This review offers a molecular perspective on the clinical diagnosis and treatment of BAD, with a focus on FXR, FGFR4, and TGR5, emphasizing the potential for identifying additional molecular mechanisms as treatment targets and bridging the gap between diagnostic and treatment methods and molecular mechanisms for a novel approach to the clinical management of BAD.
Asunto(s)
Ácidos y Sales Biliares , Medicina de Precisión , Humanos , Medicina de Precisión/efectos adversos , Diarrea/diagnóstico , Diarrea/tratamiento farmacológico , Factores de Crecimiento de Fibroblastos/metabolismo , Hipolipemiantes/uso terapéuticoRESUMEN
Cell membrane coating strategies have been increasingly researched due to their unique capabilities of biomimicry and biointerfacing, which can mimic the functionality of the original source cells in vivo but fail to provide customized nanoparticle surfaces with new or enhanced capabilities beyond natural cells. However, the field of drug lead discovery necessitates the acquisition of sufficient surface density of specific target membrane receptors, presenting a heightened demand for this technology. In this study, we developed a novel approach to fabricate high density of fibroblast growth factor receptor 4 (FGFR4) cell membrane-coated nanoparticles through covalent site-specific immobilization between genetically engineered FGFR4 with HaloTag anchor on cell membrane and chloroalkane-functionalized magnetic nanoparticles. This technique enables efficient screening of tyrosine kinase inhibitors from natural products. And the enhanced density of FGFR4 on the surface of nanoparticles were successfully confirmed by Western blot assay and confocal laser scanning microscopy. Further, the customized nanoparticles demonstrated exceptional sensitivity (limit of detection = 0.3 × 10-3 µg mL-1). Overall, the proposed design of a high density of membrane receptors, achieved through covalent site-specific immobilization with a HaloTag anchor, demonstrates a promising strategy for the development of cell membrane surface engineering. This approach highlights the potential of cell membrane coating technology for facilitating the advanced extraction of small molecules for drug discovery.
RESUMEN
Aberrant FGFR4 signaling has been implicated in the development of several cancers, making FGFR4 a promising target for cancer therapy. Several FGFR4-selective inhibitors have been developed, yet none of them have been approved. Herein, we report a novel series of 1,6-naphthyridine-2-one derivatives as potent and selective inhibitors targeting FGFR4 kinase. Preliminary structure-activity relationship analysis was conducted. The screening cascades revealed that 19g was the preferred compound among the prepared series. 19g demonstrated excellent kinase selectivity and substantial cytotoxic effect against all tested colorectal cancer cell lines. 19g induced significant tumor inhibition in a HCT116 xenograft mouse model without any apparent toxicity. Notably, 19g exhibited excellent potency in disrupting the phosphorylation of FGFR4 and downstream signaling proteins mediated by FGF18 and FGF19. Compound 19g might be a potential antitumor drug candidate for the treatment of colorectal cancer.
Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Animales , Ratones , Transducción de Señal , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular , Neoplasias Colorrectales/tratamiento farmacológico , Naftiridinas/farmacología , Naftiridinas/uso terapéutico , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Hepáticas/tratamiento farmacológicoRESUMEN
Aberrant FGF19/FGFR4 signaling has been demonstrated to be an oncogenic driver of growth and survival in human hepatocellular carcinoma (HCC). At present, the development of FGFR4-specific drugs has become a hotspot in tumor-targeted therapy research. However, no selective FGFR4 inhibitors have been approved by FDA so far. Currently, most of the reported FGFR4 inhibitors that use a covalent targeting strategy to be selective are typical type I inhibitors with a single type. Here, based on Ponatinib, we designed and synthesized a series of arylurea derivatives as novel type II irreversible covalent inhibitors of FGFR4. Among them, the representative compound 6v exhibited an IC50 value of 74 nM against FGFR4 and antiproliferative potency of 0.25 µM and 0.22 µM against Huh7 and Hep3B cell lines. Western blotting results showed that compound 6v significantly inhibited the phosphorylation of FGFR4 and its downstream signaling factors AKT and ERK in a dose-dependent manner in Hep3B cell. These results showed that this series of compounds, as type II irreversible FGFR4 inhibitors, are worthy of further research and structural optimization.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismoRESUMEN
Background: Patients with chronic kidney disease (CKD) have a high risk of left ventricular hypertrophy (LVH). Fibroblast growth factor 23 (FGF23) and indoxyl sulfate (IS) are associated with LVH in patients with CKD, but the interactions between these molecules remain unknown. We investigated whether IS contributes to LVH associated with FGF23 in cultured cardiomyocytes and CKD mice. Methods and results: In cultured rat cardiac myoblast H9c2 cells incubated with IS, mRNA levels of the LVH markers atrial natriuretic factor, brain natriuretic peptide, and ß-myosin heavy chain were significantly upregulated. Levels of mRNA of the polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), which regulates FGF23 O-glycosylation, and FGF23 were also upregulated in H9c2 cells. Intact FGF23 protein expression and fibroblast growth factor receptor 4 (FGFR4) phosphorylation were increased in cell lysates by IS administration. In C57BL/6J mice with heminephrectomy, IS promoted LVH, whereas the inhibition of FGFR4 significantly reduced heart weight and left ventricular wall thickness in IS-treated groups. While there was no significant difference in serum FGF23 concentrations, cardiac FGF23 protein expression was markedly increased in IS-injected mice. GALNT3, hypoxia-inducible factor 1 alpha, and FGF23 protein expression was induced in H9c2 cells by IS treatment and suppressed by the inhibition of Aryl hydrocarbon receptor which is the receptor for IS. Conclusion: This study suggests that IS increases FGF23 protein expression via an increase in GALNT3 and hypoxia-inducible factor 1 alpha expression, and activates FGF23-FGFR4 signaling in cardiomyocytes, leading to LVH.
RESUMEN
Background: Metastasis accounts for the high lethality of colorectal cancer (CRC) patients. Unfortunately, the molecular mechanism manipulating metastasis in CRC is still elusive. Here, we investigated the function of E74-like factor 4 (ELF4), an ETS family member, in facilitating CRC progression. Methods: The expression of ELF4 in human CRC samples and CRC cell lines was determined by quantitative real-time PCR, immunohistochemistry and immunoblotting. The migratory and invasive phenotypes of CRC cells were evaluated by in vitro transwell assays and in vivo metastatic models. The RNA sequencing was used to explore the downstream targets of ELF4. The luciferase reporter assays and chromatin immunoprecipitation assays were used to ascertain the transcriptional regulation related to ELF4. Results: We found elevated ELF4 was positively correlated with distant metastasis, advanced AJCC stages, and dismal outcomes in CRC patients. ELF4 expression was also an independent predictor of poor prognosis. Overexpression of ELF4 boosted CRC metastasis via transactivating its downstream target genes, fibroblast growth factor receptor 4 (FGFR4) and SRC proto-oncogene, non-receptor tyrosine kinase, SRC. Fibroblast growth factor 19 (FGF19) upregulated ELF4 expression through the ERK1/2/SP1 axis. Clinically, ELF4 expression had a positive correlation with FGF19, FGFR4 and SRC, and CRC patients who positively coexpressed FGF19/ELF4, ELF4/FGFR4, or ELF4/SRC exhibited the worst clinical outcomes. Furthermore, the combination of the FGFR4 inhibitor BLU-554 and the SRC inhibitor KX2-391 dramatically suppressed ELF4-mediated CRC metastasis. Conclusions: We demonstrated the essentiality of ELF4 in the metastatic process of CRC, and targeting the ELF4-relevant positive feedback circuit might represent a novel therapeutic strategy.
Asunto(s)
Neoplasias Colorrectales , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Humanos , Línea Celular Tumoral , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Metástasis de la Neoplasia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismoRESUMEN
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increased risk in patients with metabolic syndrome. There are no FDA-approved treatments, but FXR agonists have shown promising results in clinical studies for NAFLD management. In addition to FXR, fibroblast growth factor receptor FGFR4 is a key mediator of hepatic bile acid synthesis. Using N-acetylgalactosamine-conjugated siRNA, we knocked down FGFR4 specifically in the liver of mice on chow or high-fat diet and in mouse primary hepatocytes to determine the role of FGFR4 in metabolic processes and hepatic steatosis. Liver-specific FGFR4 silencing increased bile acid production and lowered serum cholesterol. Additionally, we found that high-fat diet-induced liver steatosis and insulin resistance improved following FGFR4 knockdown. These improvements were associated with activation of the FXR-FGF15 axis in intestinal cells, but not in hepatocytes. We conclude that targeting FGFR4 in the liver to activate the intestinal FXR-FGF15 axis may be a promising strategy for the treatment of NAFLD and metabolic dysfunction.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismoRESUMEN
Bronchopulmonary dysplasia (BPD) is a common complication of prematurity with a multifactorial etiology, influenced by both genetic susceptibility and environmental factors on the immature lung. Fibroblast growth factor receptor-3 and -4 (FGFR-3 and FGFR-4) are abundantly expressed in both the epithelium and mesenchyme in the developing mammalian lung. FGFR-4 may play a role in developing BPD as it is associated with airway inflammation and remodeling; studies showed a link between BPD and a polymorphism in the FGFR-4 gene. The aim of this study was to study the significance of FGFR-4 in developing BPD and to investigate the correlation between its serum level and its genetic polymorphism in relation to development of BPD in preterms. This case-control study was performed on 80 preterm neonates (<32 weeks) divided into two groups: group I included 50 preterms with respiratory distress syndrome (RDS) who developed BPD and group II included 30 preterms with RDS only. The mean serum level of FGFR-4 was significantly lower in group I than in group II ( p -value < 0.05). There was no significant correlation between the serum levels of FGFR-4 and the degree of severity of BPD. Allele variation in the FGFR-4 gene was similar in both groups. The serum level of FGFR-4 was significantly lower in preterms with BPD, although the gene polymorphism was not significantly different in the studied groups.
RESUMEN
BACKGROUND & AIMS: Through FXR and TGR5 signaling, bile acids (BAs) modulate lipid and glucose metabolism, inflammation and fibrosis. Hence, BAs returning to the liver after enteric secretion, modification and reabsorption may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). Herein, we characterized the enterohepatic profile and signaling of BAs in preclinical models of NASH, and explored the consequences of experimental manipulation of BA composition. METHODS: We used high-fat diet (HFD)-fed foz/foz and high-fructose western diet-fed C57BL/6J mice, and compared them to their respective controls. Mice received a diet supplemented with deoxycholic acid (DCA) to modulate BA composition. RESULTS: Compared to controls, mice with NASH had lower concentrations of BAs in their portal blood and bile, while systemic BA concentrations were not significantly altered. Notably, the concentrations of secondary BAs, and especially of DCA, and the ratio of secondary to primary BAs were strikingly lower in bile and portal blood of mice with NASH. Hence, portal blood was poor in FXR and TGR5 ligands, and conferred poor anti-inflammatory protection in mice with NASH. Enhanced primary BAs synthesis and conversion of secondary to primary BAs in NASH livers contributed to the depletion in secondary BAs. Dietary DCA supplementation in HFD-fed foz/foz mice restored the BA concentrations in portal blood, increased TGR5 and FXR signaling, improved the dysmetabolic status, protected from steatosis and hepatocellular ballooning, and reduced macrophage infiltration. CONCLUSIONS: BA composition in the enterohepatic cycle, but not in systemic circulation, is profoundly altered in preclinical models of NASH, with specific depletion in secondary BAs. Dietary correction of the BA profile protected from NASH, supporting a role for enterohepatic BAs in the pathogenesis of NASH. LAY SUMMARY: This study clearly demonstrates that the alterations of enterohepatic bile acids significantly contribute to the development of non-alcoholic steatohepatitis in relevant preclinical models. Indeed, experimental modulation of bile acid composition restored perturbed FXR and TGR5 signaling and prevented non-alcoholic steatohepatitis and associated metabolic disorders.
RESUMEN
Intrahepatic cholestasis of pregnancy (ICP) is characterized by increased serum bile acid levels in the third trimester of pregnancy and resolves quickly after delivery. Here, we present the case of a 29-year-old woman who developed idiopathic liver damage during puberty, and subsequently ICP and severe pruritus during two pregnancies. DNA sequencing revealed a heterozygous deletion (c.393_delG) in the fibroblast growth factor receptor 4 (FGRF4) gene causing a premature stop codon. The resulting FGFR4 haploinsufficiency is likely to impede the enterohepatic feedback repression of hepatic bile acid synthesis via FXR and FGF19. It represents a new genetic etiology of ICP.
Asunto(s)
Colestasis Intrahepática , Complicaciones del Embarazo , Adulto , Ácidos y Sales Biliares , Colestasis Intrahepática/genética , Femenino , Humanos , Embarazo , Complicaciones del Embarazo/genética , Receptor Tipo 4 de Factor de Crecimiento de FibroblastosRESUMEN
BACKGROUND & AIMS: The interorgan crosstalk between the liver and the intestine has been the focus of intense research. Key in this crosstalk are bile acids, which are secreted from the liver into the intestine, interact with the microbiome, and upon absorption reach back to the liver. The bile acid-activated farnesoid X receptor (Fxr) is involved in the gut-to-liver axis. However, liver-to-gut communication and the roles of bile acids and Fxr remain elusive. Herein, we aim to get a better understanding of Fxr-mediated liver-to-gut communication, particularly in colon functioning. METHODS: Fxr floxed/floxed mice were crossed with cre-expressing mice to yield Fxr ablation in the intestine (Fxr-intKO), liver (Fxr-livKO), or total body (Fxr-totKO). The effects on colonic gene expression (RNA sequencing), the microbiome (16S sequencing), and mucus barrier function by ex vivo imaging were analysed. RESULTS: Despite relatively small changes in biliary bile acid concentration and composition, more genes were differentially expressed in the colons of Fxr-livKO mice than in those of Fxr-intKO and Fxr-totKO mice (3272, 731, and 1824, respectively). The colons of Fxr-livKO showed increased expression of antimicrobial genes, Toll-like receptors, inflammasome-related genes and genes belonging to the 'Mucin-type O-glycan biosynthesis' pathway. Fxr-livKO mice have a microbiome profile favourable for the protective capacity of the mucus barrier. The thickness of the inner sterile mucus layer was increased and colitis symptoms reduced in Fxr-livKO mice. CONCLUSIONS: Targeting of FXR is at the forefront in the battle against metabolic diseases. We show that ablation of Fxr in the liver greatly impacts colonic gene expression and increased the colonic mucus barrier. Increasing the mucus barrier is of utmost importance to battle intestinal diseases such as inflammatory bowel disease, and we show that this might be done by antagonising FXR in the liver. LAY SUMMARY: This study shows that the communication of the liver to the intestine is crucial for intestinal health. Bile acids are key players in this liver-to-gut communication, and when Fxr, the master regulator of bile acid homoeostasis, is ablated in the liver, colonic gene expression is largely affected, and the protective capacity of the mucus barrier is increased.
RESUMEN
Oral squamous cell carcinomas (OSCCs) are one of the most prevalent malignancies, with a low five-year survival rate, thus warranting more effective drugs or therapy to improve treatment outcomes. Melatonin has been demonstrated to exhibit oncostatic effects. In this study, we explored the anti-cancer effects of melatonin on OSCCs and the underlying mechanisms. A human tongue squamous cell carcinoma cell line (SCC-15) was treated with 2 mM melatonin, followed by transwell migration and invasion assays. Relative expression levels of Fibroblast Growth Factor 19 (FGF19) was identified by Cytokine Array and further verified by qPCR and Western blot. Overexpression and downregulation of FGF19 were obtained by adding exogenous hFGF19 and FGF19 shRNA lentivirus, respectively. Invasion and migration abilities of SCC-15 cells were suppressed by melatonin, in parallel with the decreased FGF19/FGFR4 expression level. Exogenous hFGF19 eliminated the inhibitory effects of melatonin on SCC-15 cells invasion and migration, while FGF19 knocking-down showed similar inhibitory activities with melatonin. This study proves that melatonin suppresses SCC-15 cells invasion and migration through blocking the FGF19/FGFR4 pathway, which enriches our knowledge on the anticancer effects of melatonin. Blocking the FGF19/FGFR4 pathway by melatonin could be a promising alternative for OSCCs prevention and management, which would facilitate further development of novel strategies to combat OSCCs.
Asunto(s)
Carcinoma de Células Escamosas/patología , Movimiento Celular , Factores de Crecimiento de Fibroblastos/metabolismo , Melatonina/farmacología , Neoplasias de la Boca/patología , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Carcinoma de Células Escamosas/genética , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias de la Boca/genética , Invasividad Neoplásica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/efectos de los fármacosRESUMEN
Fibroblast growth factor (FGF) receptor 4 (FGFR4) and its cognate ligand, FGF19, are implicated in a range of cellular processes, including differentiation, metabolism and proliferation. Indeed, their aberrant activation has been associated with the development of hepatic tumours. Despite great advances in early diagnosis and the development of new therapies, liver cancer is still associated with a high mortality rate, owing primarily to high molecular heterogeneity and unclear molecular targeting. The development of FGFR4 inhibitors is a promising tool in patients with concomitant supraphysiological levels of FGF19 and several clinical trials are testing these treatments for patients with advanced hepatocellular carcinoma (HCC). Conversely, using FGF19 analogues to activate FGFR4-KLOTHO ß represents a novel therapeutic strategy in patients presenting with cholestatic liver disorders and non-alcoholic steatohepatitis, which could potentially prevent the development of metabolic HCC. Herein, we provide an overview of the currently available therapeutic options for targeting FGFR4 in HCC and other liver diseases, highlighting the need to carefully stratify patients and personalise therapeutic strategies.
Asunto(s)
Hígado/efectos de los fármacos , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/fisiopatología , Diferenciación Celular/efectos de los fármacos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/fisiopatologíaRESUMEN
Colorectal cancer (CRC) is a multifactorial malignancy, and its high incidence and mortality rate remain a global public health burden. Fibroblast growth factor receptor 4 (FGFR4) is a receptor tyrosine kinase that has been shown to play a key role in cancer development and prognosis via the activation of its downstream oncogenic signaling pathways. The present study aimed to explore the impact of FGFR4 gene polymorphisms on the risk and progression of CRC. Three FGFR4 single-nucleotide polymorphisms (SNPs), including rs1966265, rs351855, and rs7708357, were evaluated in 413 CRC cases and 413 gender- and age-matched cancer-free controls. We did not observe any significant association of three individual SNPs with the risk of CRC between the case and control group. However, while assessing the clinicopathological parameters, patients of rectal cancer possessing at least one minor allele of rs1966265 (AG and GG; AOR, 0.236; p = 0.046) or rs351855 (GA and AA; AOR, 0.191; p = 0.022) were found to develop less metastasis as compared to those who are homozygous for the major allele. Further analyses using the datasets from the Genotype-Tissue Expression (GTEx) Portal and The Cancer Genome Atlas (TCGA) revealed that rs351855 regulated FGFR4 expression in many human tissues, and increased FGFR4 levels were associated with the occurrence, advanced stage, and distal metastasis of colon adenocarcinoma. These data suggest that the amino acid change in combination with altered expression levels of FGFR4 due to genetic polymorphisms may affect CRC progression.
RESUMEN
Fibroblast growth factor receptor 4 (FGFR4) is a member of the fibroblast growth factor receptor family, which is closely related to the occurrence and development of hepatocellular carcinoma (HCC). In this article, a series of indazole derivatives were designed and synthesized by using computer-aided drug design (CADD) and structure-based design strategies, and then they were evaluated for their inhibition of FGFR4 kinase and antitumor activity. F-30 was subtly selective for FGFR4 compared to FGFR1; it affected cell growth and migration by inhibiting FGFR4 pathways in HCC cell lines in a dose-dependent manner.
Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Diseño de Fármacos , Indazoles/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indazoles/síntesis química , Indazoles/química , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Relación Estructura-ActividadRESUMEN
Fibroblast growth factor receptor (FGFR) 4 has been shown to mediate pro-inflammatory signaling in the liver and airway epithelium in chronic obstructive pulmonary disease. In past reports, FGFR4 knockout (Fgfr4 -/- ) mice did not show any lung phenotype developmentally or at birth, unless FGFR3 deficiency was present simultaneously. Therefore, we wanted to know whether the loss of FGFR4 had any effect on the adult murine lung. Our results indicate that adult Fgfr4 -/- mice demonstrate a lung phenotype consisting of widened airway spaces, increased airway inflammation, bronchial obstruction, and right ventricular hypertrophy consistent with emphysema. Despite downregulation of FGF23 serum levels, interleukin (IL) 1ß and IL-6 in the Fgfr4 -/- lung, and abrogation of p38 signaling, primary murine Fgfr4 -/- airway cells showed increased expression of IL-1ß and augmented secretion of IL-6, which correlated with decreased airway surface liquid depth as assessed by micro-optical coherence tomography. These findings were paralleled by increased ERK phosphorylation in Fgfr4 -/- airway cells when compared with their control wild-type cells. Analysis of a murine model with constitutive activation of FGFR4 showed attenuation of pro-inflammatory mediators in the lung and airway epithelium. In conclusion, we are the first to show an inflammatory and obstructive airway phenotype in the adult healthy murine Fgfr4 -/- lung, which might be due to the upregulation of ERK phosphorylation in the Fgfr4 -/- airway epithelium.
RESUMEN
Fat metabolism is an important and complex biochemical reaction in vivo and is regulated by many factors. Recently, the findings on high expression of fibroblast growth factor-16 (FGF16) in brown adipose tissue have led to an interest in exploring its role in lipogenesis and lipid metabolism. The study cloned the goat's FGF16 gene 624 bp long, including the complete open reading frame that encodes 207 amino acids. We found that FGF16 expression is highest in goat kidneys and hearts, followed by subcutaneous fat and triceps. Moreover, the expression of FGF16 reached its peak on the 2nd day of adipocyte differentiation (P < 0.01) and then decreased significantly. We used overexpression and interference to study the function of FGF16 gene in goat intramuscular preadipocytes. Silencing of FGF16 decreased adipocytes lipid droplet aggregation and triglyceride synthesis. This is in contrast to the situation where FGF16 is overexpressed. Furthermore, knockdown of FGF16 also caused down-regulated expression of genes associated with adipocyte differentiation including CCAAT enhancer-binding protein beta (P < 0.01), fatty acid-binding protein-2 (P < 0.01) and sterol regulatory element binding protein-1 (P < 0.05), but the preadipocyte factor-1 was up-regulated. At the same time, the genes adipose triglyceride lipase (P < 0.01) and hormone-sensitive lipase (P < 0.05) associated with triglyceride breakdown were highly expressed. Next, we locked the fibroblast growth factor receptor-4 (FGFR4) through the protein interaction network and interfering with FGF16 to significantly reduce FGFR4 expression. It was found that the expression profile of FGFR4 in adipocyte differentiation was highly similar to that of FGF16. Overexpression and interference methods confirmed that FGFR4 and FGF16 have the same promoting function in adipocyte differentiation. Finally, using co-transfection technology, pc-FGF16 and siRNA-FGFR4, siRNA2-FGF16 and siRNA-FGFR4 were combined to treat adipocytes separately. It was found that in the case of overexpression of FGF16, cell lipid secretion and triglyceride synthesis showed a trend of first increase and then decrease with increasing interference concentration. In the case of interference with FGF16, lipid secretion and triglyceride synthesis showed a downward trend with the increase of interference concentration. These findings illustrated that FGF16 mediates adipocyte differentiation via receptor FGFR4 expression and contributed to further study of the functional role of FGF16 in goat fat formation.