Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 63(23): 6182-6195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35075969

RESUMEN

Human beings have consumed soybean as an excellent food source for thousand years due to its rich protein, fatty acids, minerals, and fibers. However, soybeans were recognized as one of the big eight allergens resulting in allergic symptoms and even could lead to death. With the increasing demand for soybean products, the challenges caused by soybean allergy need to be solved urgently. This review detailly described the pathogenesis and clinical characteristics of soybean allergy, and also the advantages and disadvantages of four different diagnostic methods were summarized. The major soybean allergens and their structures were summarized. Three types of soybean allergy including Type I, III, and IV, which could trigger allergic reactions were reported in this review. Summary in four different diagnostic methods showed that double-blind, placebo-controlled food challenge is recognized as a gold standard for diagnosing soybean allergy. Three types of processing techniques in reducing soybean allergy were discussed, and the results concluded that some novel food processing techniques such as ultrasound, cold-plasma treatment, showed potential application in the reduction of soybean allergenicity. Further, some suggestions regarding the management and treatment of food allergies were addressed in this review.


Asunto(s)
Hipersensibilidad a los Alimentos , Glycine max , Humanos , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/etiología , Alérgenos/efectos adversos , Alérgenos/análisis , Alimentos , Manipulación de Alimentos , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Crit Rev Food Sci Nutr ; : 1-29, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36263970

RESUMEN

Despite the increasing popularity of crustacean shellfish among consumers due to their rich nutrients, they can induce a serious allergic response, sometimes even life-threatening. In the past decades, a variety of crustacean allergens have been identified to facilitate the diagnosis and management of crustacean allergies. Although food processing techniques can ease the risk of crustacean shellfish allergy, no available processing methods to tackle crustacean allergies thoroughly. Strict dietary avoidance of crustacean shellfish and its component is the best option for the protection of sensitized individuals, which should rely on the compliance of food labeling and, as such, on their verification by sensitive, reliable, and accurate detection techniques. In this present review, the physiochemical properties, structure aspects, and immunological characteristics of the major crustacean allergens have been described and discussed. Subsequently, the current research progresses on how various processing techniques cause the alterations and modifications in crustacean allergens to produce hypoallergenic crustacean food products were summarized and discussed. Particularly, various analytical methodologies employed in crustacean shellfish allergen detection, and the effect of food processing and matrix on these techniques, are also herein emphasized for the appropriate selection of analytical detection tools to safeguard consumers safety.

3.
Food Chem Toxicol ; 120: 668-680, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30075315

RESUMEN

R-(+)-limonene (d-limonene) is a commonly used flavor additive in food, beverages and fragrances for its pleasant lemon-like odor. Considering its increasing applications, it's necessary to understand toxicological effects and risk associated with its use. R-(+)-limonene is rapidly absorbed in experimental animals and human beings following oral administration. In humans, it gets distributed to liver, kidney, and blood resulting in the formation of metabolites like perillic acid, dihydroperillic acid, limonene-1,8-diol and limonene-1,2 diol. Important toxic effects primarily reported in rodents are severe hyaline droplet nephrotoxicity (only in male rats due to specific protein α2u-globulin; however, this effect isn't valid for humans), hepatotoxicity and neurotoxicity. R-(+)-limonene does not show genotoxic, immunotoxic and carcinogenic effects. Substantial data is available about limonene's stability after treatment with thermal and non-thermal food processing techniques; however, information about toxicity of metabolites formed and their safe scientific limits is not available. In addition, toxicity of limonene degradation products formed during storage of citrus juices isn't known. Based on all available toxicological considerations, R-(+)-limonene can be categorized as low toxic additive. More detailed studies are required to better understand interaction of limonene with modern food processing techniques as well as degradation products generated and toxicity arising from such products.


Asunto(s)
Cosméticos/química , Aditivos Alimentarios/toxicidad , Limoneno/toxicidad , Animales , Citrus/química , Manipulación de Alimentos , Humanos , Limoneno/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...