Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 16(1): 301, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641117

RESUMEN

BACKGROUND: Anaplasma phagocytophilum is a tick-vectored, obligately intracellular bacterium that infects a diversity of vertebrate hosts. In North America, the Ap-ha variant of A. phagocytophilum can cause dangerous infections in humans, whereas symptomatic human infections in Europe are rare. Conversely, the European host-generalist ecotype of A. phagocytophilum frequently causes illness in domestic ruminants while no comparable infections have been recorded from North America. Despite these differences in pathogenicity, the Ap-ha variant is closely aligned phylogenetically with the European host-generalist ecotype. Furthermore, North American populations of A. phagocytophilum are less genetically diverse than those in Europe. Taken together, these observations suggest that the North American Ap-ha variant may represent an introduced population of this bacterium. METHODS: Data from publicly available whole genomes of A. phagocytophilum were used to compare phylogeographic patterns and the extent of genetic divergence between the North American Ap-ha variant and the European host-generalist ecotype. RESULTS: The results confirm that North American Ap-ha samples are phylogenetically nested within the diversity of the European host-generalist ecotype, and that Ap-ha likely radiated within the last 100 years. As expected, the Ap-ha variant also exhibited relatively low genetic diversity levels compared to the European host-generalist ecotype. Finally, North American Ap-ha harbored significantly more derived alleles than the European host-generalist A. phagocytophilum population. CONCLUSIONS: Collectively, these results support the hypothesis that the Ap-ha variant was recently introduced to North America from Europe and underwent a strong genetic bottleneck during this process (i.e. a 'founder event'). Adaptation to novel vectors may have also played a role in shaping genetic diversity and divergence patterns in these pathogenic bacteria. These findings have implications for future studies aimed at understanding evolutionary patterns and pathogenicity variation within A. phagocytophilum.


Asunto(s)
Anaplasma phagocytophilum , Humanos , Anaplasma phagocytophilum/genética , Genómica , Europa (Continente) , Bacterias , América del Norte
2.
Cell ; 185(25): 4703-4716.e16, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36455558

RESUMEN

We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.


Asunto(s)
Judíos , Población Blanca , Humanos , Judíos/genética , Genética de Población , Genoma Humano
3.
Genes (Basel) ; 13(11)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36360305

RESUMEN

The Roma are a group of populations with a common origin that share the Romani identity and cultural heritage. Their genetic history has been inferred through multiple studies based on uniparental and autosomal markers, and current genomic data have provided novel insights into their genetic background. This review was prompted by two factors: (i) new developments to estimate the genetic structure of the Roma at a fine-scale resolution have precisely identified the ancestral components and traced migrations that were previously documented only in historical sources, clarifying and solving debates on the origins and the diaspora of the Roma; (ii) while there has been an effort to review the health determinants of the Roma, the increasing literature on their population genetics has not been subjected to a dedicated review in the last two decades. We believe that a summary on the state of the art will benefit both the public and scholars that are approaching the subject.


Asunto(s)
Romaní , Humanos , Romaní/genética , Haplotipos , Genética de Población , Migración Humana
4.
Am J Hum Genet ; 109(11): 2080-2087, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36288729

RESUMEN

Genetic epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant familial epilepsy syndrome characterized by distinctive phenotypic heterogeneity within families. The SCN1B c.363C>G (p.Cys121Trp) variant has been identified in independent, multi-generational families with GEFS+. Although the variant is present in population databases (at very low frequency), there is strong clinical, genetic, and functional evidence to support pathogenicity. Recurrent variants may be due to a founder event in which the variant has been inherited from a common ancestor. Here, we report evidence of a single founder event giving rise to the SCN1B c.363C>G variant in 14 independent families with epilepsy. A common haplotype was observed in all families, and the age of the most recent common ancestor was estimated to be approximately 800 years ago. Analysis of UK Biobank whole-exome-sequencing data identified 74 individuals with the same variant. All individuals carried haplotypes matching the epilepsy-affected families, suggesting all instances of the variant derive from a single mutational event. This unusual finding of a variant causing an autosomal dominant, early-onset disease in an outbred population that has persisted over many generations can be attributed to the relatively mild phenotype in most carriers and incomplete penetrance. Founder events are well established in autosomal recessive and late-onset disorders but are rarely observed in early-onset, autosomal dominant diseases. These findings suggest variants present in the population at low frequencies should be considered potentially pathogenic in mild phenotypes with incomplete penetrance and may be more important contributors to the genetic landscape than previously thought.


Asunto(s)
Epilepsia , Convulsiones Febriles , Niño , Humanos , Linaje , Electroencefalografía , Convulsiones Febriles/genética , Fenotipo , Epilepsia/genética
5.
J Biogeogr ; 47(2): 527-537, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33041434

RESUMEN

AIM: Islands provide opportunities for isolation and speciation. Many landmasses in the Indo-Australian Archipelago (IAA) are oceanic islands, and founder-event speciation is expected to be the predominant form of speciation of volant taxa on these islands. We studied the biogeographic history of flying foxes, a group with many endemic species and a predilection for islands, to test this hypothesis and infer the biogeographic origin of the group. LOCATION: Australasia, Indo-Australian Archipelago, Madagascar, Pacific Islands. TAXON: Pteropus (Pteropodidae). METHODS: To infer the biogeographic history of Pteropus, we sequenced up to 6169 bp of genetic data from 10 markers and reconstructed a multilocus species tree of 34 currently recognized Pteropus species and subspecies with 3 Acerodon outgroups using BEAST and subsequently estimated ancestral areas using models implemented in BioGeoBEARS. RESULTS: Species-level resolution was occasionally low because of slow rates of molecular evolution and/or recent divergences. Older divergences, however, were more strongly supported and allow the evolutionary history of the group to be inferred. The genus diverged in Wallacea from its common ancestor with Acerodon; founder-event speciation out of Wallacea was a common inference. Pteropus species in Micronesia and the western Indian Ocean were also inferred to result from founder-event speciation. MAIN CONCLUSIONS: Dispersal between regions of the IAA and the islands found therein fostered diversification of Pteropus throughout the IAA and beyond. Dispersal in Pteropus is far higher than in most other volant taxa studied to date, highlighting the importance of inter-island movement in the biogeographic history of this large clade of large bats.

6.
Ecol Evol ; 10(9): 3844-3855, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489615

RESUMEN

Lionfish (Pterois volitans) have rapidly invaded the tropical Atlantic and spread across the wider Caribbean in a relatively short period of time. Because of its high invasion capacity, we used it as a model to identify the connectivity among nine marine protected areas (MPAs) situated in four countries in the Gulf of Mexico and the Caribbean Sea. This study provides evidence of local genetic differentiation of P. volitans in the Gulf of Mexico and the Caribbean Sea. A total of 475 lionfish samples were characterized with 12 microsatellites, with 6-20 alleles per locus. Departures from Hardy-Weinberg equilibrium (HWE) were found in 10 of the 12 loci, all caused by heterozygous excess. Moderate genetic differentiation was observed between Chiriviche, Venezuela and Xcalak, México localities (F ST = 0.012), and between the Los Roques and the Veracruz (F ST = 0.074) sites. STRUCTURE analysis found that four genetic entities best fit our data. A unique genetic group in the Gulf of Mexico may imply that the lionfish invasion unfolded both in a counterclockwise manner in the Gulf of Mexico. In spite of the notable dispersion of P. volitans, our results show some genetic structure, as do other noninvasive Caribbean fish species, suggesting that the connectivity in some MPAs analyzed in the Caribbean is limited and caused by only a few source individuals with subsequent genetic drift leading to local genetic differentiation. This indicates that P. volitans dispersion could be caused by mesoscale phenomena, which produce stochastic connectivity pulses. Due to the isolation of some MPAs from others, these findings may hold a promise for local short-term control of by means of intensive fishing, even in MPAs, and may have regional long-term effects.

7.
J Hered ; 108(3): 299-307, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28199659

RESUMEN

Dyckia brevifolia is an endemic rheophyte bromeliad that occurs exclusively in patches on rocky banks of the Itajaí-Açu River in southern Brazil. The genetic diversity of all known populations was carried out using allozyme markers and the total numbers of rosettes, reproductive rosettes, and clumps per population were characterized. The mating system was also investigated. Most rosettes were aggregated in groups, and the populations differed significantly in number of rosettes and reproductive rosettes per population. The outcrossing rate obtained was 8.2%, with predominant selfing. The populations presented an average of 1.4 alleles per locus and 27% of polymorphisms. The mean expected genetic diversity was 0.067. Downstream populations showed the highest genetic diversity which could be attributed to hydrochory (unidirectional river flow). Most genetic diversity is distributed among populations (F^ST = 0.402). Natural habitats of D. brevifolia are not recommended for the construction of hydroelectric plants given that it would seriously complicate in situ conservation of this species. Based on the results of this study, it can be concluded that between 35 and 161 reproductive rosettes must be collected for effective ex situ conservation, depending on the targeted population, or seeds collected from 157 seed-rosettes per population.


Asunto(s)
Bromeliaceae , Variación Genética , Reproducción , Bromeliaceae/genética , Especies en Peligro de Extinción
8.
Mol Phylogenet Evol ; 108: 61-69, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28189619

RESUMEN

We investigate the biogeographic processes related to the origin and current patterns of distribution of the extant species of the genus Pteronotus. This clade of insectivorous bats is widely distributed in the Neotropical Region and has recently gone through a taxonomic update which increased more than twice its diversity. Using six molecular markers of 15 Pteronotus lineages ranging from Mexico to Central Brazil, we reconstruct a time-calibrated tree and infer molecular evolutionary rates for this bat genus. In addition, estimates of range evolution across phylogeny were obtained through statistical model testing among six different biogeographic models. The origin of the genus Pteronotus occurred approximately 16million years ago (Ma), with initial cladogenesis events being evenly distributed across the phylogeny. Divergence between most closely related species is recent, falling in the Pleistocene period less than 2.6Ma. Mainland lineages present congruent patterns of north versus south continent splitting while insular clades differ in their time of arrival in the Caribbean Islands. Temporal and geographic range estimates for early nodes of Pteronotus phylogeny suggest a central role of Neogene tectonic reorganizations of Central America in the group diversification process. Also, South American colonization by Pteronotus occurred early in the genus history. Founder-event speciation was an important mode of lineage splitting in Pteronotus, with two independent dispersal jumps having occurred to the Greater Antilles. Finally, Pleistocenic sea-level variation and climatic oscillations are possibly associated with divergence between sister-species and recent ages of MRCA for Pteronotus species.


Asunto(s)
Quirópteros/clasificación , Quirópteros/genética , Variación Genética , Clima Tropical , Animales , Sitios Genéticos , Funciones de Verosimilitud , Filogenia , Filogeografía , Factores de Tiempo
9.
Ecol Evol ; 4(17): 3420-34, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25535558

RESUMEN

Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea 'mainland' and two the 'aquatic islands' composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control-region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post-colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.

10.
Syst Biol ; 63(6): 951-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25123369

RESUMEN

Founder-event speciation, where a rare jump dispersal event founds a new genetically isolated lineage, has long been considered crucial by many historical biogeographers, but its importance is disputed within the vicariance school. Probabilistic modeling of geographic range evolution creates the potential to test different biogeographical models against data using standard statistical model choice procedures, as long as multiple models are available. I re-implement the Dispersal-Extinction-Cladogenesis (DEC) model of LAGRANGE in the R package BioGeoBEARS, and modify it to create a new model, DEC + J, which adds founder-event speciation, the importance of which is governed by a new free parameter, [Formula: see text]. The identifiability of DEC and DEC + J is tested on data sets simulated under a wide range of macroevolutionary models where geography evolves jointly with lineage birth/death events. The results confirm that DEC and DEC + J are identifiable even though these models ignore the fact that molecular phylogenies are missing many cladogenesis and extinction events. The simulations also indicate that DEC will have substantially increased errors in ancestral range estimation and parameter inference when the true model includes + J. DEC and DEC + J are compared on 13 empirical data sets drawn from studies of island clades. Likelihood-ratio tests indicate that all clades reject DEC, and AICc model weights show large to overwhelming support for DEC + J, for the first time verifying the importance of founder-event speciation in island clades via statistical model choice. Under DEC + J, ancestral nodes are usually estimated to have ranges occupying only one island, rather than the widespread ancestors often favored by DEC. These results indicate that the assumptions of historical biogeography models can have large impacts on inference and require testing and comparison with statistical methods.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Filogenia , Filogeografía/métodos , Efecto Fundador , Especiación Genética , Psychotria/clasificación , Reproducibilidad de los Resultados
11.
Proc Biol Sci ; 281(1779): 20133078, 2014 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-24478305

RESUMEN

Genetic diversity provides the raw material for populations to respond to changing environmental conditions. The evolution of diversity within populations is based on the accumulation of mutations and their retention or loss through selection and genetic drift, while migration can also introduce new variation. However, the extent to which population growth and sustained large population size can lead to rapid and significant increases in diversity has not been widely investigated. Here, we assess this empirically by applying approximate Bayesian computation to a novel ancient DNA dataset that spans the life of a southern elephant seal (Mirounga leonina) population, from initial founding approximately 7000 years ago to eventual extinction within the past millennium. We find that rapid population growth and sustained large population size can explain substantial increases in population genetic diversity over a period of several hundred generations, subsequently lost when the population went to extinction. Results suggest that the impact of diversity introduced through migration was relatively minor. We thus demonstrate, by examining genetic diversity across the life of a population, that environmental change could generate the raw material for adaptive evolution over a very short evolutionary time scale through rapid establishment of a large, stable population.


Asunto(s)
Efecto Fundador , Phocidae/genética , Adaptación Biológica/genética , Animales , Teorema de Bayes , Evolución Biológica , Extinción Biológica , Femenino , Flujo Genético , Dinámica Poblacional
12.
Proc Biol Sci ; 280(1764): 20131070, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23782887

RESUMEN

Numerous plant species are shifting their range polewards in response to ongoing climate change. Range shifts typically involve the repeated establishment and growth of leading-edge populations well ahead of the main species range. How these populations recover from founder events and associated diversity loss remains poorly understood. To help fill this gap, we exhaustively investigated a newly established population of holm oak (Quercus ilex) growing more than 30 km ahead of the nearest larger stands. Pedigree reconstructions showed that plants belong to two non-overlapping generations and that the whole population originates from only two founder trees. The four first-generation trees that have reached maturity showed disparate mating patterns despite being full-sibs. Long-distance pollen immigration was notable despite the strong isolation of the stand: 6 per cent gene flow events in acorns collected on the trees (n = 255), and as much as 27 per cent among their established offspring (n = 33). Our results show that isolated leading-edge populations of wind-pollinated forest trees can rapidly restore their genetic diversity through the interacting effects of efficient long-distance pollen flow and purging of inbred individuals during recruitment. They imply that range expansions of these species are primarily constrained by initial propagule arrival rather than by subsequent gene flow.


Asunto(s)
Efecto Fundador , Genética de Población , Quercus/genética , Francia , Flujo Génico , Frecuencia de los Genes , Variación Genética , Repeticiones de Microsatélite , Polen/genética , Polinización , Semillas/genética , Viento
13.
Evolution ; 52(6): 1697-1704, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28565309

RESUMEN

We determined allozyme variability of 34 populations of the pitcher-plant mosquito, Wyeomyia smithii, from Florida (30°N) to northern Manitoba (54°N) and compared allozyme variability with the additive genetic variance for preadult development time and photoperiodic response determined previously for six populations over a similar range (30-50°N). Phylogenetic analysis of allozymes shows a well-defined split between Gulf Coast and lowland North Carolina populations, similar to previously observed phylogeographic patterns in a wide variety of taxa. A deeper split in the phylogeny of W. smithii coincides with the location of the maximum extent of the Laurentide Ice Sheet. Furthermore, both average heterozygosity and patterns of isolation-by-distance decline in populations north of the former glacial border. It is likely that northern populations are the result of a range expansion that occurred subsequent to the late-Wisconsin retreat of the Laurentide Ice Sheet and that these populations have not yet reached a drift-migration equilibrium. The northern decline in allozyme heterozygosity contrasts sharply with the northern increase in additive genetic variance of development time and photoperiodic response found in previous studies. These previous studies also showed that the genetic divergence of populations has involved stochastic variation in the contribution of dominance and epistasis to the genetic architecture underlying demographic traits, including preadult development time, and photoperiodic response. When taken together, the present and prior studies identify the genetic processes underlying the lack of concordance between geographic patterns of allozyme and quantitative genetic variation in natural populations of W. smithii. In the presence of nonadditive genetic variation, isolation and drift can result in opposite patterns of genetic variation for structural genes and quantitative traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...