RESUMEN
Limited knowledge of fucoxanthin's changes during digestion necessitates comprehensive investigation to ensure its efficacy as a functional ingredient. This study assessed the effects of digestion on fucoxanthin's bioaccessibility, antioxidant activity, colour changes, and metabolite formation through in vitro gastrointestinal digestion. Results indicated the highest bioaccessibility during gastric digestion (0.03 ± 0.00 mg/mL), followed by intestinal and mouth with 0.012 ± 0.00 and 0.011 ± 0.13 mg/mL, respectively. Antioxidant activity was the highest at the gastric stage, with significant activity persisting post-digestion (P < 0.05). Colour changes were significant, with total colour differences (∆E*) of 2.40, 2.86, and 2.76 at the mouth, gastric, and intestinal stages, respectively. LC-MS/MS-based metabolomics analysis revealed 15 key metabolites, with carboxylic acids as major metabolites during gastric and intestinal stages. Pearson correlation analysis demonstrated a significant correlation between identified metabolites with bioaccessibility, antioxidant activity, and colour changes, underscoring fucoxanthin's potential as a promising functional food ingredient.
Asunto(s)
Antioxidantes , Color , Digestión , Tracto Gastrointestinal , Xantófilas , Antioxidantes/metabolismo , Antioxidantes/química , Xantófilas/metabolismo , Xantófilas/química , Humanos , Tracto Gastrointestinal/metabolismo , Espectrometría de Masas en Tándem , Modelos Biológicos , Disponibilidad BiológicaRESUMEN
This study innovatively utilized kelp-derived nanocellulose and sodium caseinate (SC) to prepare fucoxanthin (Fx)-loaded nanoparticles, exploring their efficacy in reducing oxidative stress and inhibiting lipid accumulation. 2, 2, 6, 6-Tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation produced well-dispersed, kelp-derived nanocellulose. When these celluloses were mixed with SC at varying mass ratios, the composite nanoparticles showed excellent stability. Specifically, at a TEMPO-oxidized kelp nanocellulose (TKNC) to SC mass ratio of 1:3, the encapsulation efficiency for Fx reached 82.2 %, with a retention of 56.12 % after 14 days of storage. In vitro, the nanoparticles demonstrated good biocompatibility and were efficiently absorbed by cells, significantly enhancing Fx bioavailability. This enhanced delivery efficiency alleviates oxidative stress by activating the Nrf2/HO-1/NQO1 signaling pathways and effectively inhibits lipid droplet formation induced by excessive free fatty acids (FFAs). Moreover, distribution studies in mice revealed effective accumulation of nanoparticles in the intestines and liver, indicating their potential for targeted drug delivery. These findings provide strong experimental support for the use of TKNC and SC as biocompatible materials in nanoparticles for drug delivery and treatment applications.
RESUMEN
Fucoxanthin (FX) is a carotenoid found in marine environments with a range of nutritional functions. However, its application in the food industry has been restricted by its vulnerability to deterioration and absorption challenges. This study employed zein to develop hydrophilic colloids to enhance the thermal processing adaptability, gastrointestinal digestive stability, and oral bioavailability of FX. The findings demonstrated that the using glucose for the grafting modification of zein caused a deviation in its isoelectric point, reduced its water contact angle, and altered its secondary structure, resulting in higher hydrophilicity. Using glycosylated zein (GZ) for FX loading yielded homogenous, stable aqueous GZ-FX complex dispersion solutions with an encapsulation efficiency (EE) > 85.00â¯%, a particle size < 210.00â¯nm, a zeta-potential > -30.00â¯mV, and a polydispersity index (PDI) < 0.30. GZ-based encapsulation notably enhanced the thermal stability of FX, retaining approximately 90.00â¯% and 80.00â¯% of the FX at 65 â and 100 â, respectively. During in vitro simulated gastrointestinal digestion, GZ-encapsulation of FX demonstrated a retention increase of 30.63â¯% and a 2.31-fold higher micellization rate. The in vivo absorption results showed that GZ-based encapsulation dramatically increased FX oral bioavailability, while its serum, liver, and kidney response levels were 51.49-fold, 5.13-fold and 6.73-fold higher. This study suggests that glycosylated alcohol-soluble proteins are highly effective carriers for delivering carotenoids, with significant application potential in the food industry.
RESUMEN
Introduction: The marine microalga Isochrysis galbana is prolific producer of fucoxanthin, which is a xanthophyll carotenoid with substantial global market value boasting extensive applications in the food, nutraceutical, pharmaceutical, and cosmetic industries. This study presented a novel integrated experimental approach coupled with machine learning (ML) models to predict the fucoxanthin content in I. galbana by altering the type and concentration of phytohormone supplementation, thus overcoming the multiple methodological limitations of conventional fucoxanthin quantification. Methods: A novel integrated experimental approach was developed, analyzing the effect of varying phytohormone types and concentrations on fucoxanthin production in I. galbana. Morphological analysis was conducted to assess changes in microalgal structure, while growth rate and fucoxanthin yield correlations were explored using statistical analysis and machine learning models. Several ML models were employed to predict fucoxanthin content, with and without hormone descriptors as variables. Results: The findings revealed that the Random Forest (RF) model was highly significant with a high R 2 of 0.809 and R M S E of 0.776 when hormone descriptors were excluded, and the inclusion of hormone descriptors further improved prediction accuracy to R 2 of 0.839, making it a useful tool for predicting the fucoxanthin yield. The model that fitted the experimental data indicated methyl jasmonate (0.2 mg/L) as an effective phytohormone. The combined experimental and ML approach demonstrated rapid, reliable, and cost-efficient prediction of fucoxanthin yield. Discussion: This study highlights the potential of machine learning models, particularly Random Forest, to optimize parameters influencing microalgal growth and fucoxanthin production. This approach offers a more efficient alternative to conventional methods, providing valuable insights into improving fucoxanthin production in microalgal cultivation. The findings suggest that leveraging diverse ML models can enhance the predictability and efficiency of fucoxanthin production, making it a promising tool for industrial applications.
RESUMEN
Microalgae are considered promising sustainable feedstocks for the production of food, food additives, feeds, chemicals and various high-value products. Marine microalgae Phaeodactylum tricornutum, Isochrysis galbana and Nitzschia laevis are rich in fucoxanthin, which is effective for weight loss and metabolic diseases. The selection of microalgae species with outstanding nutritional profiles is fundamental for novel foods development, and the nutritional value of P. tricornutum, I. galbana and N. laevis are not yet fully understood. Hence, this study investigates and analyzes the nutritional components of the microalgae by chromatography and mass spectrometry, to explore their nutritional and industrial application potential. The results indicate that the three microalgae possess high nutritional value. Among them, P. tricornutum shows significantly higher levels of proteins (43.29%) and amino acids, while I. galbana has the highest content of carbohydrates (25.40%) and lipids (10.95%). Notwithstanding that P. tricornutum and I. galbana have higher fucoxanthin contents, N. laevis achieves the highest fucoxanthin productivity (6.21 mg/L/day) and polyunsaturated fatty acids (PUFAs) productivity (26.13 mg/L/day) because of the competitive cell density (2.89 g/L) and the advantageous specific growth rate (0.42/day). Thus, compared with P. tricornutum and I. galbana, N. laevis is a more promising candidate for co-production of fucoxanthin and PUFAs.
Asunto(s)
Diatomeas , Haptophyta , Microalgas , Valor Nutritivo , Xantófilas , Microalgas/metabolismo , Diatomeas/metabolismo , Diatomeas/química , Haptophyta/metabolismoRESUMEN
Natural compounds promoting human health are the main focus of research nowadays. Fucoxanthin, fucoidan and alginate are such bioactive compounds that are extracted from marine brown algae. Extracting these 3 compounds through successive extraction enhances the commercial value of the brown algae biomass. There are studies on successive extraction of fucoidan and alginate but not with fucoxanthin which displays various biological bioactivities. Alginate, a polysaccharide presents 45 % in the cell wall of brown algae. Fucoidan, a sulphated polysaccharide proved showing various bioactivities. These bioproducts yield are vary depending on the species. Dictyota species recorded high fucoxanthin content of 7 %. Ascophyllum nodosum was found with high fucoidan of 16.08 % by direct extraction. Maximum alginate of 45.79 % was recorded from the brown alga Sargassum cymosum and by successive extraction 44 % was recorded from Ecklonia radiata. Fucoxanthin exits in two isomers as trans and cis forms. Based on linkage, fucoidan structure is found in 3 forms as 1,3- or 1,4- or alternating 1,3- and 1,4-linked fucose in the polysaccharide residues. Fucoidan composition varys depending on the degree of sulphation, composition of monosaccharides and location of collection. In alginate, its property relies on the mannuronic acid and guluronic acid composition. Biosynthesis of these 3 compounds is not much explored. Keeping this view which signify sequential extraction towards biomass valorisation, fucoxanthin, fucoidan and alginate extracted from the brown algae species focusing yield, extraction, characterisation, biosynthesis and biological activities were compiled and critically analysed and discussed in this review.
RESUMEN
Fucoxanthin (Fx) has garnered significant interest due to its exceptional biological properties. However, its efficacy in enhancing food quality and human health is contingent upon the solubility of the compound in water and its physicochemical stability. Therefore, nanocarriers must be developed to enhance the stability and biocompatibility of Fx. In this study, oxidized paramylon and Fx self-assembled nanoparticles (Fx-OEP) were prepared via the anti-solvent method, with a loading rate of 82.47 % for Fx. The Fx-OEP exhibited robust storage and photostability. In vitro simulated digestion assays demonstrated that Fx-OEP effectively protected Fx from premature gastric release, while achieving a release efficiency of 72.17 % in the intestinal phase. Fx-OEP has the capacity to scavenge a range of reactive oxygen species (ROS) induced by cellular oxidative stress. Treatment with Fx-OEP resulted in a significant reduction in ROS accumulation in insulin-resistant HepG2 cells, which was attributed to the activation of the nuclear factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway. This, in turn, activated insulin receptor substrate 1/glucose transporter type 4 (IRS1/GLUT4), promoting cellular glucose absorption and utilization. These findings indicate the potential of self-assembled nanoparticles based on oxidized paramylon as a new type of nanocarrier for delivering hydrophobic substances.
Asunto(s)
Resistencia a la Insulina , Nanopartículas , Xantófilas , Humanos , Xantófilas/farmacología , Xantófilas/química , Nanopartículas/química , Células Hep G2 , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Portadores de Fármacos/química , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Liberación de Fármacos , Glucanos/química , Glucanos/farmacologíaRESUMEN
Fucoxanthin (Fx), a xanthophyll carotenoid abundant in brown algae, possesses several biological functions, such as antioxidant, anti-inflammatory, and cardiac-protective activities. However, the role of Fx in myocardial ischemia/reperfusion (MI/R) is still unclear. Thus, the aim of this study was to investigate the effect of Fx on MI/R-induced injury and explore the underlying mechanisms. Our results showed that in vitro, Fx treatment significantly suppressed inflammatory response, oxidative stress, and apoptosis in rat cardiomyocytes exposed to hypoxia/reoxygenation (H/R). In addition, Fx led to increased phosphorylation of AMPK, AKT, and GSK-3ß, and enhanced activation of Nrf2 in cardiomyocytes under H/R conditions. Notably, pretreatment with Compound C (AMPK inhibitor), partially reduced the beneficial effects of Fx in cardiomyocytes exposed to H/R. In vivo, Fx ameliorated myocardial damage, inhibited inflammatory response, oxidative stress, and apoptosis, and activated the AMPK/GSK-3ß/Nrf2 signaling in myocardial tissues in MI/R rat model. Taken together, these findings indicated that Fx attenuates MI/R-induced injury by inhibiting oxidative stress, inflammatory response, and apoptosis. The AMPK/GSK-3ß/Nrf2 pathway is involved in the cardioprotective effect of Fx in MI/R injury. Thus, Fx may be a promising drug for the treatment of MI/R.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Apoptosis , Glucógeno Sintasa Quinasa 3 beta , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Xantófilas , Animales , Ratas , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Xantófilas/farmacología , Xantófilas/químicaRESUMEN
Fucoxanthin, a dietary carotenoid, is predominantly found in edible brown algae and is commonly consumed worldwide. Fucoxanthin has been shown to possess beneficial health activities such as antidiabetic, anti-inflammatory, antimutagenic, and antiobesity; however, the effects of fucoxanthin on VEGF-mediated angiogenesis and its possible binding with VEGF are unknown. Here, different lines of evidence supported the suppressive roles of fucoxanthin in VEGF-mediated angiogenesis. In human umbilical vein endothelial cells, fucoxanthin remarkedly suppressed VEGF-mediated cell proliferative, migration, and invasive abilities, as well as tube formation, without cytotoxicity. In addition, fucoxanthin inhibited the subintestinal vessel formation of zebrafish in vivo. In signaling cascades, fucoxanthin was proposed to interact with VEGF, thus attenuating VEGF's functions in activating the VEGF receptor and its related downstream signaling, i.e., phosphorylations of MEK and Erk. Fucoxanthin also significantly blocked VEGF-triggered ROS formation. Furthermore, the outcomes of applying fucoxanthin in cancer cells were identified, which included (i) inhibiting VEGF-mediated cell proliferation and migration and (ii) inhibiting NF-κB translocation via limiting MMP2 expression. These lines of investigations supported the antiangiogenic roles of fucoxanthin, as well as reviewing its signaling mechanisms, in blocking the VEGF-triggered responses. The results would benefit the potential development of fucoxanthin for the prevention and treatment of angiogenesis-related diseases.
Asunto(s)
Movimiento Celular , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Xantófilas , Pez Cebra , Humanos , Xantófilas/farmacología , Xantófilas/química , Transducción de Señal/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/química , Phaeophyceae/química , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , AngiogénesisRESUMEN
Phaeodactylum tricornutum (PT) is a microalgae extract that contains fucoxanthin and has been shown to enhance cognitive function in younger populations. The present study assessed if PT supplementation affects cognition in healthy, young-old, physically active adults with self-perceptions of cognitive and memory decline. METHODS: Forty-three males and females (64.3 ± 6.0 years, 79.8 ± 16.0 kg, 27.0 ± 4.0 kg/m2) with perceptions of cognitive and memory decline completed the double-blind, randomized, parallel-arm, placebo-controlled intervention clinical trial. Participants were counterbalanced by sex and BMI and randomly allocated to their respective 12-week supplementation interventions, which were either the placebo (PL) or 1100 mg/day of PT containing 8.8 mg of fucoxanthin (FX). Fasting blood samples were collected, and cognitive assessments were performed during the testing session at 0, 4, and 12 weeks of intervention. The data were analyzed by multivariate and univariate general linear model (GLM) analyses with repeated measures, pairwise comparisons, and mean changes from baseline analysis with 95% confidence intervals (CIs) to assess the clinical significance of the findings. RESULTS: FX supplementation significantly affected (p < 0.05) or exhibited tendencies toward significance (p > 0.05 to p < 0.10 with effect sizes ranging from medium to large) for word recall, picture recognition reaction time, Stroop color-word test, choice reaction time, and digit vigilance test variables. Additionally, FX supplementation promoted a more consistent clinical improvement from baseline values when examining mean changes with 95% CIs, although most differences were seen over time rather than between groups. CONCLUSIONS: The results demonstrate some evidence that FX supplementation can improve working and secondary memory, vigilance, attention, accuracy, and executive function. There was also evidence that FX promoted more positive effects on insulin sensitivity and perceptions about sleep quality with no negative effects on clinical blood panels or perceived side effects. Additional research should investigate how FX may affect cognition in individuals perceiving memory and cognitive decline. Registered clinical trial #NCT05759910.
Asunto(s)
Cognición , Disfunción Cognitiva , Suplementos Dietéticos , Microalgas , Xantófilas , Humanos , Masculino , Femenino , Cognición/efectos de los fármacos , Persona de Mediana Edad , Método Doble Ciego , Xantófilas/farmacología , Xantófilas/administración & dosificación , Anciano , Biomarcadores/sangre , DiatomeasRESUMEN
The present study aimed to isolate a bioactive compound from Sri Lankan edible marine brown algae, Chnoospora minima, to manage diabetes. The de-polysaccharide crude methanolic extract was partitioned using hexane, chloroform, and ethyl acetate with increased polarity. The samples were subjected to determine the quantitative phytochemical analysis, antioxidants, and antidiabetic potentials. Further, the potent antidiabetic fraction was selected to isolate an active compound using bioactivity-guided fractionation. From the selected extract, the chloroform fraction exhibited comparatively high TPC (59.01 ± 1.86 mg GAE/g), TFC (5.14 ± 0.43 mg QE/g) and alkaloid content (2.79 ± 0.31 PE/g of extract). Crude methanol extract exhibited a potent DPPH activity (IC50: 0.48 ± 0.01 mg/mL) whereas the ethyl acetate fraction elicited a maximum ABTS activity (IC50: 0.064 ± 0.001 mg/mL) and a ferrous iron-chelating capacity (IC50: 0.019 mg/mL). Similarly, the chloroform fraction exhibited the highest FRAP (20.34 ± 1.72 mg TE/g) and ORAC (19.72 ± 2.92 mg TE/g) capacities. The potent inhibitory activity of α-amylase (IC50:3.17 ± 0.02 µg/mL) and α-glucosidase (IC50: 1.99 ± 0.01 µg/mL) enzymes and glucose diffusion was observed in the chloroform fraction. Similarly, the chloroform extract exhibited a potent BSA-glucose (IC50: 202.43 ± 5.71 µg/mL), BSA-MGO (IC50: 124.30 ± 2.85 µg/mL) antiglycation model and reversing activities (EC50BSAglucose: 98.99 ± 0.35 µg/mL; EC50BSA-MGO: 118.89 ± 1.58 µg/mL). Depending on the hypoglycemic activity, fucoxanthin was isolated as the active compound which showed a notable change in the functional group. Molecular docking studies were conducted on the compound, and binding energy was observed to be - 6.56 kcal/mol and - 4.83 kcal/mol for α-amylase and α-glucosidase enzymes, respectively, which confirmed the hypoglycemic effect of the isolated compounds. However, more studies are required to understand the mechanistic insights of these observations.
Asunto(s)
Antioxidantes , Hiperglucemia , Hipoglucemiantes , Phaeophyceae , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Phaeophyceae/química , Antioxidantes/farmacología , Antioxidantes/química , Hiperglucemia/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Sri Lanka , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismoRESUMEN
Antibacterial resistance causes around 1.27 million deaths annually around the globe and has been recognized as a top 3 priority health threat. Antimicrobial photodynamic therapy (aPDT) is considered a promising alternative to conventional antibiotic treatments. Algal lipid extracts have shown antibacterial effects when used as photosensitizers (PSs) in aPDT. In this work we assessed the photodynamic efficiency of lipidic extracts of microalgae belonging to different phyla (Bacillariophyta, Chlorophyta, Cyanobacteria, Haptophyta, Ochrophyta and Rhodophyta). All the extracts (at 1 mg mL-1) demonstrated a reduction of Staphylococcus aureus >3 log10 (CFU mL-1), exhibiting bactericidal activity. Bacillariophyta and Haptophyta extracts were the top-performing phyla against S. aureus, achieving a reduction >6 log10 (CFU mL-1) with light doses of 60 J cm-2 (Bacillariophyta) and 90 J cm-2 (Haptophyta). The photodynamic properties of the Bacillariophyta Phaeodactylum tricornutum and the Haptophyta Tisochrysis lutea, the best effective microalgae lipid extracts, were also assessed at lower concentrations (75 µg mL-1, 7.5 µg mL-1, and 3.75 µg mL-1), reaching, in general, inactivation rates higher than those obtained with the widely used PSs, such as Methylene Blue and Chlorine e6, at lower concentration and light dose. The presence of chlorophyll c, which can absorb a greater amount of energy than chlorophylls a and b; rich content of polyunsaturated fatty acids (PUFAs) and fucoxanthin, which can also produce ROS, e.g. singlet oxygen (1O2), when photo-energized; a lack of photoprotective carotenoids such as ß-carotene, and low content of tocopherol, were associated with the algal extracts with higher antimicrobial activity against S. aureus. The bactericidal activity exhibited by the extracts seems to result from the photooxidation of microalgae PUFAs by the 1O2 and/or other ROS produced by irradiated chlorophylls/carotenoids, which eventually led to bacterial lipid peroxidation and cell death, but further studies are needed to confirm this hypothesis. These results revealed the potential of an unexplored source of natural photosensitizers (microalgae lipid extracts) that can be used as PSs in aPDT as an alternative to conventional antibiotic treatments, and even to conventional PSs, to combat antibacterial resistance.
Asunto(s)
Lípidos , Microalgas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Microalgas/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Lípidos/química , Xantófilas/farmacología , Xantófilas/química , Luz , Clorofila/química , Clorofila/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Diatomeas/química , Haptophyta/química , Oxígeno Singlete/metabolismo , Pruebas de Sensibilidad Microbiana , Rhodophyta/químicaRESUMEN
Human pharyngeal squamous cell carcinoma (HPSCC) is the most common malignancy in the head and neck region, characterized by high mortality and a propensity for metastasis. Fucoxanthin, a carotenoid isolated from brown algae, exhibits pharmacological properties associated with the suppression of tumor proliferation and metastasis. Nevertheless, its potential to inhibit HPSCC proliferation and metastasis has not been fully elucidated. This study represents the first exploration of the inhibitory effects of fucoxanthin on two human pharyngeal squamous carcinoma cell lines (FaDu and Detroit 562), as well as the mechanisms underlying those effects. The results showed dose-dependent decreases in the proliferation, migration, and invasion of HPSCC cells after fucoxanthin treatment. Further studies indicated that fucoxanthin caused a significant reduction in the expression levels of proteins in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, as well as the downstream proteins matrix metalloproteinase (MMP)-2 and MMP-9. Specific activators of PI3K/AKT reversed the effects of fucoxanthin on these proteins, as well as on cell proliferation and metastasis, in FaDu and Detroit 562 cells. Molecular docking assays confirmed that fucoxanthin strongly interacted with PI3K, AKT, mTOR, MMP-2, and MMP-9. Overall, fucoxanthin, a functional food component, is a potential therapeutic agent for HPSCC.
Asunto(s)
Movimiento Celular , Proliferación Celular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Xantófilas , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Xantófilas/farmacología , Xantófilas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Neoplasias Faríngeas/tratamiento farmacológico , Neoplasias Faríngeas/patología , Neoplasias Faríngeas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Metástasis de la Neoplasia , Simulación del Acoplamiento MolecularRESUMEN
Fucoxanthin (FX), a non-provitamin-A carotenoid, is a well-known major xanthophyll contained in edible brown algae. The nanoencapsulation of FX was motivated due to its multiple activities. Here, nano-encapsulated-FX (nano-FX) was prepared according to our early method by using whey protein and flaxseed gum as the biomacromolecule carrier material, then in vivo antitumor effect and mechanism of nano-FX on xenograft mice were investigated. Thirty 4-week-old male BALB/c nude mice were fed adaptively for 7 days to establish xenograft tumor model with Huh-7 cells. The tumor-bearing mice consumed nano-FX (50, 25, and 12.5 mg kg-1) and doxorubicin hydrochloride (DOX, 1 mg kg-1) or did not consume (Control) for 21 days, n = 6. The tumor inhibition rates of nano-FX were as high as 54.67 ± 1.04 %. Nano-FX intervention promoted apoptosis and induced hyperchromatic pyknosis and focal necrosis in tumor tissue by down-regulating the expression of p-JNK, p-ERK, PI3Kp85α, p-AKT, p-p38MAPK, Bcl-2, CyclinD1 and Ki-67, while up-regulating the expression of cleaved caspase-3 and Bax. Nano-FX inhibited tumor growth and protected liver function of tumor bearing mice in a dose-dependent manner, up-regulate the level of apoptosis-related proteins, inhibit the MAPK-PI3K/Akt pathways, and promote tumor cell apoptosis.
Asunto(s)
Apoptosis , Ratones Desnudos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteína de Suero de Leche , Xantófilas , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Línea Celular Tumoral , Xantófilas/farmacología , Xantófilas/química , Proteína de Suero de Leche/química , Proteína de Suero de Leche/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos BALB CRESUMEN
BACKGROUND: The present study evaluated the effects of temperature, pH, light and chemical oxidation on fucoxanthin changes in terms of colour, antioxidant activity and metabolomic profile. Additionally, the correlation between antioxidant activity and identified metabolites was analysed. RESULTS: It was found that colour change was significantly reduced at elevated heat (100 °C, *∆E = 0.81 ± 0.05), reduced pH (pH 3, *∆E = 0.59 ± 0.04) and length of light exposure (*∆E = 3.16 ± 0.04). Antioxidant activity decreased under all treatments. Among the temperatures tested, fucoxanthin exhibited the highest activity at 60 °C, ranging from 0.92 to 3.04 mg Trolox equivalents (TE) g-1. Significant activity reductions (P < 0.05) were observed as a result of pH changes in the 2,2-diphenyl-1-picrylhydrazyl and ß-carotene bleaching assays. Exposure to light 2: warm white lamp for 120 h significantly reduced antioxidant activity (0.01 to 1.70 mg TE g-1). Chemical oxidation also led to reduced activity, ranging from 0.18 to 0.29 mg TE g-1. Multivariate data analysis revealed distinct profiles for temperature, pH, light and chemical oxidation treatments. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics analysis identified 10 metabolites, and significant correlations (P < 0.05) indicate that these metabolites contributed to the samples' antioxidant activities. CONCLUSION: In conclusion, fucoxanthin tolerates well at 60 °C, within pH range 3-9, and within 8 h of light exposure, as indicated by its consistent antioxidant activity and minimal colour change. Each treatment resulted in distinct metabolite concentrations, as shown by LC-MS/MS-based metabolomics analysis. Further research into these metabolites could advance the understanding of their roles and aid in optimising processing conditions to favour beneficial metabolites. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMEN
Retinal disease has become the major cause of visual impairment and vision loss worldwide. Carotenoids, which have the potential antioxidant and eye-care activities, have been widely used in functional foods. Our previous study showed that fucoxanthin could exert photoprotective activity in UVB-induced retinal müller cells (RMCs). To extend the application of fucoxanthin in food industry, fucoxanthin, Undaria pinnatifida pulp (UPP), carrageenan, and other ingredients were mixed to prepare seaweed-flavoured photoprotective gummies in this study. The structural and functional properties of the gummies were then evaluated by physicochemical test and cell experiments. As a result, fucoxanthin enriched gummies presented favourable structural properties and flavour. The hydroxyl groups in fucoxanthin and κ-carrageenan are bonded through hydrogen bonds, forming the spatial network structure inside the gummies, enhancing its elasticity. The gummies showed significant antioxidant effect and alleviated the UVB oxidation damage in RMCs. Moreover, the main ingredients carrageenan and UPP improved the stability of fucoxanthin during in vitro digestion. The results enhance the application of fucoxanthin in functional food with photoprotective activity.
RESUMEN
Fucoxanthin, a carotenoid with remarkable antioxidant properties, has considerable potential for high-value biotechnological applications in the pharmaceutical, nutraceutical, and cosmeceutical fields. However, conventional extraction methods of this molecule from microalgae are limited in terms of cost-effectiveness. This study focused on optimizing biomass and fucoxanthin production from Isochrysis galbana, isolated from the coast of Tadjoura (Djibouti), by testing various culture media. The antioxidant potential of the cultures was evaluated based on the concentrations of fucoxanthin, carotenoids, and total phenols. Different nutrient formulations were tested to determine the optimal combination for a maximum biomass yield. Using the statistical methodology of principal component analysis, Walne and Guillard F/2 media were identified as the most promising, reaching a maximum fucoxanthin yield of 7.8 mg/g. Multiple regression models showed a strong correlation between antioxidant activity and the concentration of fucoxanthin produced. A thorough study of the optimization of I. galbana growth conditions, using a design of experiments, revealed that air flow rate and CO2 flow rate were the most influential factors on fucoxanthin production, reaching a value of 13.4 mg/g. Finally, to validate the antioxidant potential of fucoxanthin, an in silico analysis based on molecular docking was performed, showing that fucoxanthin interacts with antioxidant proteins (3FS1, 3L2C, and 8BBK). This research not only confirmed the positive results of I. galbana cultivation in terms of antioxidant activity, but also provided essential information for the optimization of fucoxanthin production, opening up promising prospects for industrial applications and future research.
Asunto(s)
Antioxidantes , Biología Computacional , Haptophyta , Microalgas , Xantófilas , Microalgas/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Xantófilas/aislamiento & purificación , Xantófilas/farmacología , Xantófilas/química , Haptophyta/química , Biomasa , Medios de Cultivo/química , Simulación del Acoplamiento Molecular , Fenoles/farmacología , Fenoles/químicaRESUMEN
Tisochrysis lutea is a highly nutritious marine microalga that has various applications in aquaculture and biotechnology. However, the effects of T. lutea extract (TLE) on osteoarthritis (OA) pathogenesis remain unexplored. In this study, we aimed to determine the effects of TLE on OA development. We found that TLE inhibits the expression of matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity in an OA mouse model generated by the destabilization of the medial meniscus (DMM) surgery. In vivo assays of the OA model mice demonstrated that TLE has a protective effect against cartilage destruction by inhibiting MMP3 and MMP13 expression. To enable the medical use of TLE, the components of TLE were characterized using high-performance liquid chromatography (HPLC) analysis. Interestingly, we found that Fucoxanthin accounts for 41.2% of TLE and showed anti-catabolic and antioxidant effects under IL-1ß-treated in vitro conditions. RNA sequencing analysis showed that fucoxanthin decreased p38, NF-κB, and JNK signaling pathway gene expression, all of which are activated by IL-1ß. Furthermore, in vivo analysis showed that fucoxanthin inhibited the IL-1ß-stimulated phosphorylation of p65, JNK, and p38. These results highlight new possibilities for the use of TLE as a source of fucoxanthin, an antioxidant, for OA treatment.
RESUMEN
Glucose and lipid metabolism dysregulation in skeletal muscle contributes to the development of metabolic disorders. The efficacy of fucoxanthin in alleviating lipid metabolic disorders in skeletal muscle remains poorly understood. In this study, we systematically investigated the impact of fucoxanthin on mitigating lipid deposition and insulin resistance in skeletal muscle employing palmitic acid-induced lipid deposition in C2C12 cells and ob/ob mice. Fucoxanthin significantly alleviated PA-induced skeletal muscle lipid deposition and insulin resistance. In addition, fucoxanthin prominently upregulated the expression of lipid metabolism-related genes (Pparα and Cpt-1), promoting fatty acid ß-oxidation metabolism. Additionally, fucoxanthin significantly increased the expression of Pgc-1α and Tfam, elevated the mtDNA/nDNA ratio, and reduced ROS levels. Further, we identified pyruvate kinase muscle isozyme 1 (PKM1) as a high-affinity protein for fucoxanthin by drug affinity-responsive target stability and LC-MS and confirmed their robust interaction by CETSA, microscale thermophoresis, and circular dichroism. Supplementation with pyruvate, the product of PKM1, significantly attenuated the beneficial effects of fucoxanthin on lipid deposition and insulin resistance. Mechanistically, fucoxanthin reduced glucose glycolysis rate and enhanced mitochondrial biosynthesis and fatty acid ß-oxidation through inhibiting PKM1 activity, thereby alleviating lipid metabolic stress. These findings present a novel clinical strategy for treating metabolic diseases using fucoxanthin.
Asunto(s)
Resistencia a la Insulina , Metabolismo de los Lípidos , Músculo Esquelético , Piruvato Quinasa , Xantófilas , Animales , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Xantófilas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Masculino , Humanos , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversosRESUMEN
Fucoxanthin, a carotenoid widely studied in marine microalgae, is at the heart of scientific research because of its promising bioactive properties for human health. Its unique chemical structure and specific biosynthesis, characterized by complex enzymatic conversion in marine organisms, have been examined in depth in this review. The antioxidant, anti-inflammatory, and anti-cancer activities of fucoxanthin have been rigorously supported by data from in vitro and in vivo experiments and early clinical trials. Additionally, this review explores emerging strategies to optimize the stability and efficacy of fucoxanthin, aiming to increase its solubility and bioavailability to enhance its therapeutic applications. However, despite these potential benefits, challenges persist, such as limited bioavailability and technological obstacles hindering its large-scale production. The medical exploitation of fucoxanthin thus requires an innovative approach and continuous optimization to overcome these barriers. Although further research is needed to refine its clinical use, fucoxanthin offers promising potential in the development of natural therapies aimed at improving human health. By integrating knowledge about its biosynthesis, mechanisms of action, and potential beneficial effects, future studies could open new perspectives in the treatment of cancer and other chronic diseases.