Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Oral Biosci ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880250

RESUMEN

OBJECTIVE: Chronic constriction injury (CCI) of the infraorbital nerve induces neuropathic pain, such as allodynia and hyperalgesia, in the orofacial area. However, the changes in the local circuits of the central nervous system following CCI remain unclear. This study aimed to identify the changes following CCI in Thy1-GCaMP6s transgenic mice. METHODS: Neural activity in the primary somatosensory cortex (S1) and motor cortex (M1) following whisker stimulation was assessed using in vivo Ca2+ imaging. CCI-induced changes in responses were analyzed. RESULTS: Before CCI, whisker stimulation induced a greater Ca2+ response in the contralateral S1 than in the ipsilateral S1 and contralateral M1. The peak Ca2+ response amplitude in the bilateral S1 and contralateral M1 decreased two days after CCI compared to before CCI. Decreased Ca2+ response amplitude in these regions was observed until four days after CCI. Seven days after CCI, the Ca2+ response amplitude in the contralateral S1 decreased, whereas that in the ipsilateral S1 and contralateral M1 recovered to control levels. CONCLUSION: These results suggest that neural activity in regions receiving excitatory inputs via corticocortical pathways recovers earlier than in regions receiving thalamocortical inputs. (185/250 words).

2.
Front Cell Dev Biol ; 12: 1386141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711618

RESUMEN

Background: Retinal prostheses aim to restore vision by electrically stimulating the remaining viable retinal cells in Retinal Degeneration (RD) cases. Research in this field necessitates a comprehensive analysis of retinal ganglion cells' (RGCs) responses to assess the obtained visual acuity and quality. Here we present a novel animal model which facilitates the optical recording of RGCs activity in an RD rat. This model can significantly enhance the functional evaluation of vision restoration treatments. Methods: The development of the novel rat model is based on crossbreeding a retinal degenerated Royal College of Surgeons (RCS) rat with a transgenic line expressing the genetic calcium indicator GCaMP6f in the RGCs. Characterization of the model was achieved using Optical Coherence Tomography (OCT) imaging, histology, and electroretinography (ERG) at the ages of 4, 8, and 12 weeks. Additionally, optical recordings of RGCs function in response to ex-vivo subretinal electrical stimulations were performed. Results: Histological investigations confirmed the high expression of GCaMP6f in the RGCs and minimal expression in the inner nuclear layer (INL). OCT imaging and histological studies revealed the expected gradual retinal degeneration, as evident by the decrease in retinal thickness with age and the formation of subretinal debris. This degeneration was further confirmed by ERG recordings, which demonstrated a significant decrease in the b-wave amplitude throughout the degeneration process, culminating in its absence at 12 weeks in the GCaMP6f-RCS rat. Importantly, the feasibility of investigating subretinal stimulation was demonstrated, revealing a consistent increase in activation threshold throughout degeneration. Furthermore, an increase in the diameter of the activated area with increasing currents was observed. The spatial spread of the activation area in the GCaMP6f-RCS rat was found to be smaller and exhibited faster activation dynamics compared with the GCaMP6f-LE strain. Conclusion: This novel animal model offers an opportunity to deepen our understanding of prosthetically induced retinal responses, potentially leading to significant advancements in prosthetic interventions in visual impairments.

3.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38726925

RESUMEN

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Asunto(s)
Angiotensina II , Encéfalo , Calcio , Hipertensión , Riñón , Microvasos , Óxido Nítrico , Vasoconstricción , Animales , Óxido Nítrico/metabolismo , Angiotensina II/farmacología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertensión/tratamiento farmacológico , Riñón/irrigación sanguínea , Riñón/metabolismo , Calcio/metabolismo , Vasoconstricción/efectos de los fármacos , Microvasos/metabolismo , Microvasos/efectos de los fármacos , Microvasos/patología , Encéfalo/metabolismo , Encéfalo/irrigación sanguínea , Ratones , Modelos Animales de Enfermedad , Masculino , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Ratones Endogámicos C57BL , Señalización del Calcio/efectos de los fármacos
4.
Neurobiol Aging ; 140: 12-21, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38701647

RESUMEN

The aging population suffers from memory impairments. Slow-wave activity (SWA) is composed of slow (0.5-1 Hz) and delta (1-4 Hz) oscillations, which play important roles in long-term memory and working memory function respectively. SWA disruptions might lead to memory disturbances often experienced by older adults. We conducted behavioral tests in young and older C57BL/6 J mice. SWA was monitored using wide-field imaging with voltage sensors. Cell-specific calcium imaging was used to monitor the activity of excitatory and inhibitory neurons in these mice. Older mice exhibited impairments in working memory but not memory consolidation. Voltage-sensor imaging revealed aberrant synchronization of neuronal activity in older mice. Notably, we found older mice exhibited no significant alterations in slow oscillations, whereas there was a significant increase in delta power compared to young mice. Calcium imaging revealed hypoactivity in inhibitory neurons of older mice. Combined, these results suggest that neural activity disruptions might correlate with aberrant memory performance in older mice.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Trastornos de la Memoria , Memoria a Corto Plazo , Ratones Endogámicos C57BL , Animales , Envejecimiento/fisiología , Envejecimiento/psicología , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/psicología , Memoria a Corto Plazo/fisiología , Neuronas/fisiología , Masculino , Calcio/metabolismo
5.
Sci Rep ; 14(1): 8104, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582752

RESUMEN

GCaMP is a genetically encoded calcium indicator (GECI) widely used in neuroscience research. It measures intracellular Ca2+ level by fluorescence changes as it directly binds to Ca2+. In this process, the effect of this calcium buffer on the intracellular calcium signaling and cell physiology is often not taken into consideration. However, growing evidence from calcium imaging studies shows GCaMP expression under certain conditions can generate aberrant activity, such as seizures. In this study, we examined the effect of GCaMP6 expression in the dentate gyrus (DG) on epileptogenesis. We found that viral expression of GCaMP6s but not GCaMP6f in the DG induces tonic-clonic seizures several weeks after viral injection. Cell-type specific expression of GCaMP6s revealed the granule cells (GCs) as the key player in GCaMP6s-induced epilepsy. Finally, by using slice electrophysiology, we demonstrated that GCaMP6s expression increases neuronal excitability in the GCs. Together, this study highlights the ability of GCaMP6s in DG-associated epileptogenesis.


Asunto(s)
Calcio , Neuronas , Humanos , Calcio/metabolismo , Neuronas/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Señalización del Calcio , Calcio de la Dieta/metabolismo , Giro Dentado/metabolismo
6.
Methods Mol Biol ; 2801: 97-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578416

RESUMEN

Increasing evidence points to deregulated flux of ionized calcium (Ca2+) mediated by hyperactive mutant connexin (Cx) hemichannels (HCs) as a common gain-of-function etiopathogenetic mechanism for several diseases, ranging from skin disorders to nervous system defects. Furthermore, the opening of nonmutated Cx HCs is associated with an impressive list of widespread diseases including, but not limited to, ischemia/stroke, Alzheimer's disease, and epilepsy. HC inhibitors are attracting a growing attention due to their therapeutic potential for numerous pathologies. This chapter describes a quantitative method to measure Ca2+ uptake though HCs expressed in cultured cells. The assay we developed can be used to probe HC activity as wells as to test HC inhibitors. Furthermore, with minor changes it can be easily adapted to high-throughput high-content platforms and/or primary cells and microtissues.


Asunto(s)
Conexina 43 , Conexinas , Conexinas/genética , Conexinas/metabolismo , Conexina 43/metabolismo , Transporte Biológico , Calcio/metabolismo
7.
Sleep ; 47(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38447008

RESUMEN

Dynorphin is an endogenous opiate localized in many brain regions and spinal cord, but the activity of dynorphin neurons during sleep is unknown. Dynorphin is an inhibitory neuropeptide that is coreleased with orexin, an excitatory neuropeptide. We used microendoscopy to test the hypothesis that, like orexin, the dynorphin neurons are wake-active. Dynorphin-cre mice (n = 3) were administered rAAV8-Ef1a-Con/Foff 2.0-GCaMP6M into the zona incerta-perifornical area, implanted with a GRIN lens (gradient reflective index), and electrodes to the skull that recorded sleep. One month later, a miniscope imaged calcium fluorescence in dynorphin neurons during multiple bouts of wake, non-rapid-eye movement (NREM), and rapid-eye movement (REM) sleep. Unbiased data analysis identified changes in calcium fluorescence in 64 dynorphin neurons. Most of the dynorphin neurons (72%) had the highest fluorescence during bouts of active and quiet waking compared to NREM or REM sleep; a subset (20%) were REM-max. Our results are consistent with the emerging evidence that the activity of orexin neurons can be classified as wake-max or REM-max. Since the two neuropeptides are coexpressed and coreleased, we suggest that dynorphin-cre-driven calcium sensors could increase understanding of the role of this endogenous opiate in pain and sleep.


Asunto(s)
Dinorfinas , Neuronas , Sueño REM , Vigilia , Zona Incerta , Animales , Ratones , Dinorfinas/metabolismo , Dinorfinas/fisiología , Neuronas/fisiología , Orexinas/metabolismo , Orexinas/fisiología , Sueño REM/fisiología , Vigilia/fisiología , Zona Incerta/fisiología , Zona Incerta/fisiopatología
8.
Sleep ; 47(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37599437

RESUMEN

To determine how a waking brain falls asleep researchers have monitored and manipulated activity of neurons and glia in various brain regions. While imaging Gamma-Aminobutyric Acid (GABA) neurons in the zona incerta (ZI) we found a subgroup that anticipates onset of NREM sleep (Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral ZI anticipates sleep onset. Sleep. 2021;44(6):zsaa268. doi:10.1093/sleep/zsaa268.). To differentiate the GABA subtype we now image and optogenetically manipulate the ZI neurons containing the transcription factor, Lhx6. In the first study, Lhx6-cre mice (n = 5; female = 4) were given rAAV-DJ-EF1a-DIO-GCaMP6M into the ZI (isofluorane anesthesia), a GRIN lens implanted, and 21days later sleep and fluorescence in individual Lhx6 neurons were recorded for 4 hours. Calcium fluorescence was detected in 132 neurons. 45.5% of the Lhx6 neurons were REM-max; 30.3% were wake-max; 11.4% were wake + REM max; 9% were NREM-max; and 3.8% had no change. The NREM-max group of neurons fluoresced 30 seconds ahead of sleep onset. The second study tested the effects of unilateral optogenetic stimulation of the ZI Lhx6 neurons (n = 14 mice) (AAV5-Syn-FLEX-rc[ChrimsonR-tdTomato]. Stimulation at 1 and 5 Hz (1 minute on- 4 minutes off) significantly increased percent REM sleep during the 4 hours stimulation period (last half of day cycle). The typical experimental approach is to stimulate neurons in both hemispheres, but here we found that low-frequency stimulation of ZI Lhx6 neurons in one hemisphere is sufficient to shift states of consciousness. Detailed mapping combined with mechanistic testing is necessary to identify local nodes that can shift the brain between wake-sleep states.


Asunto(s)
Proteína Fluorescente Roja , Sueño REM , Zona Incerta , Ratones , Femenino , Animales , Sueño REM/fisiología , Zona Incerta/fisiología , Optogenética , Sueño/fisiología , Neuronas , Ácido gamma-Aminobutírico
9.
Cardiovasc Res ; 120(1): 44-55, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-37890099

RESUMEN

AIMS: CRISPR/Cas9 gene edits of cardiac ryanodine receptor (RyR2) in human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) provide a novel platform for introducing mutations in RyR2 Ca2+-binding residues and examining the resulting excitation contraction (EC)-coupling remodelling consequences. METHODS AND RESULTS: Ca2+-signalling phenotypes of mutations in RyR2 Ca2+-binding site residues associated with cardiac arrhythmia (RyR2-Q3925E) or not proven to cause cardiac pathology (RyR2-E3848A) were determined using ICa- and caffeine-triggered Ca2+ releases in voltage-clamped and total internal reflection fluorescence-imaged wild type and mutant cardiomyocytes infected with sarcoplasmic reticulum (SR)-targeted ER-GCaMP6 probe. (i) ICa- and caffeine-triggered Fura-2 or ER-GCaMP6 signals were suppressed, even when ICa was significantly enhanced in Q3925E and E3848A mutant cardiomyocytes; (ii) spontaneous beating (Fura-2 Ca2+ transients) persisted in mutant cells without the SR-release signals; (iii) while 5-20 mM caffeine failed to trigger Ca2+-release in voltage-clamped mutant cells, only ∼20% to ∼70% of intact myocytes responded respectively to caffeine; (iv) and 20 mM caffeine transients, however, activated slowly, were delayed, and variably suppressed by 2-APB, FCCP, or ruthenium red. CONCLUSION: Mutating RyR2 Ca2+-binding residues, irrespective of their reported pathogenesis, suppressed both ICa- and caffeine-triggered Ca2+ releases, suggesting interaction between Ca2+- and caffeine-binding sites. Enhanced transmembrane calcium influx and remodelling of EC-coupling pathways may underlie the persistence of spontaneous beating in Ca2+-induced Ca2+ release-suppressed mutant myocytes.


Asunto(s)
Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Cafeína/farmacología , Cafeína/metabolismo , Calcio/metabolismo , Fura-2/metabolismo , Miocitos Cardíacos/metabolismo , Mutación Puntual , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
10.
Front Neurosci ; 17: 1277501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965217

RESUMEN

Mutations in autism spectrum disorder (ASD) risk genes disrupt neural network dynamics that ultimately lead to abnormal behavior. To understand how ASD-risk genes influence neural circuit computation during behavior, we analyzed the hippocampal network by performing large-scale cellular calcium imaging from hundreds of individual CA1 neurons simultaneously in transgenic mice with total knockout of the X-linked ASD-risk gene NEXMIF (neurite extension and migration factor). As NEXMIF knockout in mice led to profound learning and memory deficits, we examined the CA1 network during voluntary locomotion, a fundamental component of spatial memory. We found that NEXMIF knockout does not alter the overall excitability of individual neurons but exaggerates movement-related neuronal responses. To quantify network functional connectivity changes, we applied closeness centrality analysis from graph theory to our large-scale calcium imaging datasets, in addition to using the conventional pairwise correlation analysis. Closeness centrality analysis considers both the number of connections and the connection strength between neurons within a network. We found that in wild-type mice the CA1 network desynchronizes during locomotion, consistent with increased network information coding during active behavior. Upon NEXMIF knockout, CA1 network is over-synchronized regardless of behavioral state and fails to desynchronize during locomotion, highlighting how perturbations in ASD-implicated genes create abnormal network synchronization that could contribute to ASD-related behaviors.

11.
Open Biol ; 13(11): 230019, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37989224

RESUMEN

Studies at the cellular and molecular level of magnetoreception-sensing and responding to magnetic fields-are a relatively new research area. It appears that different mechanisms of magnetoreception in animals evolved from different origins, and, therefore, many questions about its mechanisms remain left open. Here we present new information regarding the Electromagnetic Perceptive Gene (EPG) from Kryptopterus vitreolus that may serve as part of the foundation to understanding and applying magnetoreception. Using HaloTag coupled with fluorescent ligands and phosphatidylinositol specific phospholipase C we show that EPG is associated with the membrane via glycosylphosphatidylinositol anchor. EPG's function of increasing intracellular calcium was also used to generate an assay using GCaMP6m to observe the function of EPG and to compare its function with that of homologous proteins. It was also revealed that EPG relies on a motif of three phenylalanine residues to function-stably swapping these residues using site directed mutagenesis resulted in a loss of function in EPG. This information not only expands upon our current understanding of magnetoreception but may provide a foundation and template to continue characterizing and discovering more within the emerging field.


Asunto(s)
Glicosilfosfatidilinositoles , Fenilalanina , Animales , Fosfatidilinositol Diacilglicerol-Liasa , Fosfoinositido Fosfolipasa C , Glicosilfosfatidilinositoles/metabolismo , Peces , Mamíferos
12.
Bio Protoc ; 13(16): e4738, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37638301

RESUMEN

This protocol describes a method for detecting and quantifying calcium ions in the endoplasmic reticulum (ER) and cytoplasm of cultured cells using fluorescent reporter proteins and ImageJ software. Genetically engineered fluorescent reporter proteins, such as G-CEPIA1er and GCaMP6f, localize to intracellular regions of interest (i.e., ER and cytoplasm) and emit green fluorescence upon binding to calcium ions. In this way, the fluorescence brightness of cells transfected with expression vectors for these reporters reflects the calcium ion concentration in each intracellular region. Here, we describe procedures for observing cultured cells expressing these fluorescent reporters under a fluorescence microscope, analyzing the obtained image using the free image analysis software ImageJ (https://imagej.net/ij/index.html), and determining the average fluorescence brightness of multiple cells present in the image. The current method allows us to quickly and easily quantify calcium ions on an image containing multiple cells and to determine whether there are relative differences in intracellular calcium ion concentration among experiments with different conditions. Key features Detection and quantification of calcium ions in the ER and cytoplasm using fluorescent reporter proteins Quick and easy verification of measurement results using ImageJ Simultaneous comparison between various experimental conditions (drug treatment, mutants, etc.).

13.
Neurobiol Aging ; 130: 154-171, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37531809

RESUMEN

This study investigated the impact of familial Alzheimer's disease (AD)-linked amyloid precursor protein (App) mutations on hippocampal CA1 neuronal activity and function at an early disease stage in AppNL-G-F/NL-G-F × Thy1-GCaMP6s+/- (A-TG) mice using calcium imaging. Longitudinal assessment of spatial behavior at 12 and 18 months of age identified an early disease stage at 12 months when there was significant amyloid beta pathology with mild behavioral deficits. Hippocampal CA1 neuronal activity and event-related encoding of distance and time were therefore assessed at 12 months of age in several configurations of an air-induced running task to assess the dynamics of cellular activity. Neurons in A-TG mice displayed diminished (weaker) and more frequent (hyperactive) neuronal firing that was more pronounced during movement compared to immobility. Responsive neurons showed configuration-specific deficits in distance and time encoding with impairment in adapting their responses to changing configurations. These results suggest that at an early stage of AD in the absence of full-blown behavioral deficits, weak-hyperactive neuronal activity may induce impairments in sensory perception of changing environments.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Hipocampo/patología , Ratones Transgénicos , Neuronas/metabolismo , Síntomas Prodrómicos
14.
Cell Rep Methods ; 3(5): 100481, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37323578

RESUMEN

Traumatic brain injury (TBI)-induced axonal degeneration leads to acute and chronic neuropsychiatric impairment, neuronal death, and accelerated neurodegenerative diseases of aging, including Alzheimer's and Parkinson's diseases. In laboratory models, axonal degeneration is traditionally studied through comprehensive postmortem histological evaluation of axonal integrity at multiple time points. This requires large numbers of animals to power for statistical significance. Here, we developed a method to longitudinally monitor axonal functional activity before and after injury in vivo in the same animal over an extended period. Specifically, after expressing an axonal-targeting genetically encoded calcium indicator in the mouse dorsolateral geniculate nucleus, we recorded axonal activity patterns in the visual cortex in response to visual stimulation. In vivo aberrant axonal activity patterns after TBI were detectable from 3 days after injury and persisted chronically. This method generates longitudinal same-animal data that substantially reduces the number of required animals for preclinical studies of axonal degeneration.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Enfermedades Neurodegenerativas , Ratones , Animales , Lesiones Encefálicas/patología , Axones/patología , Lesiones Traumáticas del Encéfalo/patología , Enfermedades Neurodegenerativas/patología , Cuerpos Geniculados/patología
15.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176016

RESUMEN

The ventrolateral preoptic area (VLPO) contains GABAergic sleep-active neurons. However, the extent to which these neurons are involved in expressing spontaneous sleep and homeostatic sleep regulatory demands is not fully understood. We used calcium (Ca2+) imaging to characterize the activity dynamics of VLPO neurons, especially those expressing the vesicular GABA transporter (VGAT) across spontaneous sleep-waking and in response to homeostatic sleep demands. The VLPOs of wild-type and VGAT-Cre mice were transfected with GCaMP6, and the Ca2+ fluorescence of unidentified (UNID) and VGAT cells was recorded during spontaneous sleep-waking and 3 h of sleep deprivation (SD) followed by 1 h of recovery sleep. Although both VGAT and UNID neurons exhibited heterogeneous Ca2+ fluorescence across sleep-waking, the majority of VLPO neurons displayed increased activity during nonREM/REM (VGAT, 120/303; UNID, 39/106) and REM sleep (VGAT, 32/303; UNID, 19/106). Compared to the baseline waking, VLPO sleep-active neurons (n = 91) exhibited higher activity with increasing SD that remained elevated during the recovery period. These neurons also exhibited increased Ca2+ fluorescence during nonREM sleep, marked by increased slow-wave activity and REM sleep during recovery after SD. These findings support the notion that VLPO sleep-active neurons, including GABAergic neurons, are components of neuronal circuitry that mediate spontaneous sleep and homeostatic responses to sustained wakefulness.


Asunto(s)
Calcio , Sueño , Ratones , Animales , Sueño/fisiología , Neuronas GABAérgicas/fisiología , Privación de Sueño , Sueño REM , Área Preóptica , Calcio de la Dieta
16.
Artículo en Inglés | MEDLINE | ID: mdl-37171000

RESUMEN

BACKGROUND: Transient receptor potential vanilloid-1 (TRPV1) is a non-selective cation channel capable of integrating various noxious chemical and physical stimuli. Recently, human TRPV1 (hTRPV1) has attracted wide attention from researchers because it is closely related to pain, inflammation, temperature perception, and tumors. Our study was aimed at generating a stable cell line co-expressing hTRPV1 receptor and GCaMP6s calcium indicator protein and, based on this, developing high-throughput screening methods for targeting hTRPV1 agonists. METHODS: The CHO-hTRPV1-GCaMP6s cell line stably expressing hTRPV1 and GCaMP6s was generated by co-transfection of hTRPV1 and GCaMP6s into Chinese hamster ovary (CHO) cells. The high-throughput screening methods were developed based on detecting the concentration of intracellular calcium ions ([Ca2+]i) by using chemically synthesized dyes and genetically encoded calcium indicator (GECI). Meanwhile, the sensitivity and adaptability of these methods in the evaluation of capsaicinoids were also compared. RESULTS: A stable cell line co-expressing hTRPV1 and GCaMP6s was generated and used to establish a functional high-throughput screening assay based on the measurement of [Ca2+]i by fluorometric imaging plate reader (FLIPR). The GECI exhibited a higher sensitivity and applicability than that of chemically synthesized dyes in detecting the changes in [Ca2+]i induced by capsaicin. The CHO-hTRPV1-GCaMP6s cell line was further used to detect the dose-dependent relationships of various hTRPV1 agonists (comparison of EC50 values: capsaicin (39 ± 1.67 nM) < nonivamide (67 ± 3.05 nM) < piperine (9222 ± 1851 nM)), and this order is consistent with the pharmacological properties of hTRPV1 activation by these agonists. CONCLUSION: The successful establishment of the CHO-hTRPV1-GCaMP6s cell lines and their application in high-throughput screening of hTRPV1 agonists.

17.
Proc Natl Acad Sci U S A ; 120(22): e2208654120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216522

RESUMEN

The development of precise neural circuits in the brain requires spontaneous patterns of neural activity prior to functional maturation. In the rodent cerebral cortex, patchwork and wave patterns of activity develop in somatosensory and visual regions, respectively, and are present at birth. However, whether such activity patterns occur in noneutherian mammals, as well as when and how they arise during development, remain open questions relevant for understanding brain formation in health and disease. Since the onset of patterned cortical activity is challenging to study prenatally in eutherians, here we offer an approach in a minimally invasive manner using marsupial dunnarts, whose cortex forms postnatally. We discovered similar patchwork and travelling waves in the dunnart somatosensory and visual cortices at stage 27 (equivalent to newborn mice) and examined earlier stages of development to determine the onset of these patterns and how they first emerge. We observed that these patterns of activity emerge in a region-specific and sequential manner, becoming evident as early as stage 24 in somatosensory and stage 25 in visual cortices (equivalent to embryonic day 16 and 17, respectively, in mice), as cortical layers establish and thalamic axons innervate the cortex. In addition to sculpting synaptic connections of existing circuits, evolutionarily conserved patterns of neural activity could therefore help regulate other early events in cortical development.


Asunto(s)
Corteza Cerebral , Marsupiales , Animales , Ratones , Axones , Mamíferos , Encéfalo , Euterios , Corteza Somatosensorial
18.
J Physiol ; 601(12): 2391-2405, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965132

RESUMEN

The exocrine pancreas secretes fluid and digestive enzymes in response to parasympathetic release of acetylcholine (ACh) via the vagus nerve and the gut hormone cholecystokinin (CCK). Both secretion of fluid and exocytosis of secretory granules containing enzymes and zymogens are dependent on an increase in the cytosolic [Ca2+ ] in acinar cells. It is thought that the specific spatiotemporal characteristics of the Ca2+ signals are fundamental for appropriate secretion and that these properties are disrupted in disease states in the pancreas. While extensive research has been performed to characterize Ca2+ signalling in acinar cells, this has exclusively been achieved in ex vivo preparations of exocrine cells, where it is difficult to mimic physiological conditions. Here we have developed a method to optically observe pancreatic acinar Ca2+ signals in vivo using a genetically expressed Ca2+ indicator and imaged with multi-photon microscopy in live animals. In vivo, acinar cells exhibited baseline activity in fasted animals, which was dependent on CCK1 receptors (CCK1Rs). Both stimulation of intrinsic nervous input and administration of systemic CCK induced oscillatory activity in a proportion of the cells, but the maximum frequencies were vastly different. Upon feeding, oscillatory activity was also observed, which was dependent on CCK1Rs. No evidence of a vago-vagal reflex mediating the effects of CCK was observed. Our in vivo method revealed the spatial and temporal profile of physiologically evoked Ca2+ signals, which will provide new insights into future studies of the mechanisms underlying exocrine physiology and that are disrupted in pathological conditions. KEY POINTS: In the exocrine pancreas, the spatiotemporal properties of Ca2+ signals are fundamentally important for the appropriate stimulation of secretion by the neurotransmitter acetylcholine and gut hormone cholecystokinin. These characteristics were previously defined in ex vivo studies. Here we report the spatiotemporal characteristics of Ca2+ signals in vivo in response to physiological stimulation in a mouse engineered to express a Ca2+ indicator in acinar cells. Specific Ca2+ 'signatures' probably important for stimulating secretion are evoked in vivo in fasted animals, by feeding, neural stimulation and cholecystokinin administration. The Ca2+ signals are probably the result of the direct action of ACh and CCK on acinar cells and not indirectly through a vago-vagal reflex.


Asunto(s)
Células Acinares , Páncreas Exocrino , Ratones , Animales , Acetilcolina/farmacología , Páncreas , Colecistoquinina/farmacología , Calcio/farmacología
19.
J Oral Biosci ; 65(1): 126-131, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738967

RESUMEN

OBJECTIVE: It is difficult to comprehensively study the activity patterns and distribution of neurons in the brainstem that control the act of swallowing, as they are located deep in the brain. In this study, we aimed to evaluate the usefulness of calcium imaging using GCaMP6f in arterially perfused preparations to study the activity of swallowing-related neurons in the brainstem. METHODS: Arterially perfused rat preparations were prepared 3-4 weeks after the injection of a neuron-specific virus expressing GCaMP6f. Fictive swallowing was induced by repetitive electrical stimulation of the superior laryngeal nerve (SLN). Simultaneously, the activity of GCaMP6f-expressing neurons in the dorsal brainstem, between 0.1 and 4.8 mm rostral to the obex, was assessed by changes in the intracellular calcium concentration using confocal laser microscopy. RESULTS: Neurons responding to stimulation of the SLN included swallowing-related neurons (48%), which showed an increase in fluorescence intensity at the time of swallowing bursts in the cervical vagus nerve, and stimulation-related neurons (52%), which showed an increase in fluorescence intensity through stimulation, regardless of the swallowing bursts. Despite a broad search area, swallowing-related neurons were localized exclusively in and around the solitary nucleus. In contrast, most stimulation-related neurons were located in the brainstem reticular formation, which is more rostral than the solitary nucleus. CONCLUSIONS: Calcium imaging using GCaMP in arterially perfused rat preparations is useful for an efficient search of the activity pattern and distribution of neurons located in a wide area of the brainstem.


Asunto(s)
Deglución , Nervio Vago , Ratas , Animales , Deglución/fisiología , Nervio Vago/fisiología , Neuronas/fisiología , Núcleo Solitario/fisiología , Imagen Óptica
20.
Curr Biol ; 33(2): 351-363.e3, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36610393

RESUMEN

Circadian clocks align various behaviors such as locomotor activity, sleep/wake, feeding, and mating to times of day that are most adaptive. How rhythmic information in pacemaker circuits is translated to neuronal outputs is not well understood. Here, we used brain-wide, 24-h in vivo calcium imaging in the Drosophila brain and searched for circadian rhythmic activity among identified clusters of dopaminergic (DA) and peptidergic neurosecretory (NS) neurons. Such rhythms were widespread and imposed by the PERIOD-dependent clock activity within the ∼150-cell circadian pacemaker network. The rhythms displayed either a morning (M), evening (E), or mid-day (MD) phase. Different subgroups of circadian pacemakers imposed neural activity rhythms onto different downstream non-clock neurons. Outputs from the canonical M and E pacemakers converged to regulate DA-PPM3 and DA-PAL neurons. E pacemakers regulate the evening-active DA-PPL1 neurons. In addition to these canonical M and E oscillators, we present evidence for a third dedicated phase occurring at mid-day: the l-LNv pacemakers present the MD activity peak, and they regulate the MD-active DA-PPM1/2 neurons and three distinct NS cell types. Thus, the Drosophila circadian pacemaker network is a polyphasic rhythm generator. It presents dedicated M, E, and MD phases that are functionally transduced as neuronal outputs to organize diverse daily activity patterns in downstream circuits.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Animales , Drosophila melanogaster/fisiología , Actividad Motora/fisiología , Ritmo Circadiano/fisiología , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas Dopaminérgicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...