Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037429

RESUMEN

In our study, a method based on affinity ultrafiltration screening coupled with UPLC-ESI-Orbitrap-MS technology was established to select Glucagon-like peptide-1 receptor (GLP-1R) agonists from natural products, and as an example, the GLP-1R agonists from Panax ginseng was selected using our established method. As a result, total five GLP-1R agonists were selected from Panax ginseng for the first time. Our results indicated that activating GLP-1R to promote insulin secretion probably was another important hypoglycemia mechanism for ginsenosides in Panax ginseng, which had great influence on the study of the anti-diabetes effect of ginsenosides.

2.
Cell Metab ; 36(6): 1302-1319.e12, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838642

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic ß cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Trasplante de Islotes Pancreáticos , Ratones Endogámicos C57BL , Animales , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Masculino , Trasplante de Corazón , Ratones Endogámicos BALB C , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Supervivencia de Injerto/inmunología
4.
EMBO Mol Med ; 16(6): 1284-1309, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38783166

RESUMEN

Hypoxic-ischaemic encephalopathy (HIE) arises from diminished blood flow and oxygen to the neonatal brain during labor, leading to infant mortality or severe brain damage, with a global incidence of 1.5 per 1000 live births. Glucagon-like Peptide 1 Receptor (GLP1-R) agonists, used in type 2 diabetes treatment, exhibit neuroprotective effects in various brain injury models, including HIE. In this study, we observed enhanced neurological outcomes in post-natal day 10 mice with surgically induced hypoxic-ischaemic (HI) brain injury after immediate systemic administration of exendin-4 or semaglutide. Short- and long-term assessments revealed improved neuropathology, survival rates, and locomotor function. We explored the mechanisms by which GLP1-R agonists trigger neuroprotection and reduce inflammation following oxygen-glucose deprivation and HI in neonatal mice, highlighting the upregulation of the PI3/AKT signalling pathway and increased cAMP levels. These findings shed light on the neuroprotective and anti-inflammatory effects of GLP1-R agonists in HIE, potentially extending to other neurological conditions, supporting their potential clinical use in treating infants with HIE.


Asunto(s)
Animales Recién Nacidos , Modelos Animales de Enfermedad , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones , Transducción de Señal/efectos de los fármacos , Exenatida/farmacología , Exenatida/uso terapéutico , Hipoglucemiantes/farmacología , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Péptidos/farmacología , Péptidos/uso terapéutico
5.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612620

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent data highlight similarities between neurodegenerative diseases, including PD and type 2 diabetes mellitus (T2DM), suggesting a crucial interplay between the gut-brain axis. Glucagon-like peptide-1 receptor (GLP-1R) agonists, known for their use in T2DM treatment, are currently extensively studied as novel PD modifying agents. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles and clinical trials regarding GLP-1R agonists and PD published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Many data on animal models and preclinical studies show that GLP1-R agonists can restore dopamine levels, inhibit dopaminergic loss, attenuate neuronal degeneration and alleviate motor and non-motor features of PD. Evidence from clinical studies is also very promising, enhancing the possibility of adding GLP1-R agonists to the current armamentarium of drugs available for PD treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Agonistas Receptor de Péptidos Similares al Glucagón , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Eje Cerebro-Intestino , Bases de Datos Factuales , Dopamina
6.
Int Immunopharmacol ; 132: 111894, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38569426

RESUMEN

AIMS: To investigate the immunology shared mechanisms underlying chronic obstructive pulmonary disease (COPD) and type 2 diabetes mellitus (T2DM) and examine the impact of anti-diabetic drugs on acute exacerbation of COPD (AECOPD). METHODS: We analyzed GSE76925, GSE76894, GSE37768, and GSE25724 to identify differentially expressed genes. Hub-genes were identified through protein-protein interaction network analysis and evaluated by the receiver operating characteristic curve. CXCL12 emerged as a robust biomarker, and its correlation with lung function and CD8+ T cells were further quantified and validated. The activated signaling pathways were inferred through Gene set enrichment analysis (GSEA). The retrospective clinical analysis was executed to identify the influence of dipeptidyl peptidase-4 inhibitors (DPP-4i) on CXCL12 and evaluate the drug's efficacy in AECOPD. RESULTS: The significant up-regulation of CXCL12 expression in patients with two diseases were revealed. CXCL12 exhibited a negative correlation with pulmonary function (r = -0.551, p < 0.05). Consistent with analysis in GSE76925 and GSE76894, the positive correlation between the proportion of CD8+ T cells was demonstrated(r=0.469, p<0.05). GSEA identified "cytokines interaction" as an activated signaling pathway, and the clinical study revealed the correlation between CXCL12 and IL-6 (r=0.668, p<0.05). In patients with COPD and T2DM, DDP-4i treatment exhibited significantly higher serum CXCL12, compared to GLP-1RA. Analysis of 187 COPD patients with T2DM indicated that the DPP-4i group had a higher frequency of AECOPD compared to the GLP-1RA group (OR 1.287, 95%CI [1.018-2.136]). CONCLUSIONS: CXCL12 may represent a therapeutic target for COPD and T2DM. GLP-1RA treatment may be associated with lower CXCL12 levels and a lower risk of AECOPD compared to DPP-4i treatment. CLINICAL TRIAL REGISTRATION: China Clinical Trial Registration Center(ChiCTR2200055611).


Asunto(s)
Quimiocina CXCL12 , Biología Computacional , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Masculino , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Femenino , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Progresión de la Enfermedad , Mapas de Interacción de Proteínas
7.
Genet Epidemiol ; 48(4): 151-163, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38379245

RESUMEN

Phenotypic heterogeneity at genomic loci encoding drug targets can be exploited by multivariable Mendelian randomization to provide insight into the pathways by which pharmacological interventions may affect disease risk. However, statistical inference in such investigations may be poor if overdispersion heterogeneity in measured genetic associations is unaccounted for. In this work, we first develop conditional F statistics for dimension-reduced genetic associations that enable more accurate measurement of phenotypic heterogeneity. We then develop a novel extension for two-sample multivariable Mendelian randomization that accounts for overdispersion heterogeneity in dimension-reduced genetic associations. Our empirical focus is to use genetic variants in the GLP1R gene region to understand the mechanism by which GLP1R agonism affects coronary artery disease (CAD) risk. Colocalization analyses indicate that distinct variants in the GLP1R gene region are associated with body mass index and type 2 diabetes (T2D). Multivariable Mendelian randomization analyses that were corrected for overdispersion heterogeneity suggest that bodyweight lowering rather than T2D liability lowering effects of GLP1R agonism are more likely contributing to reduced CAD risk. Tissue-specific analyses prioritized brain tissue as the most likely to be relevant for CAD risk, of the tissues considered. We hope the multivariable Mendelian randomization approach illustrated here is widely applicable to better understand mechanisms linking drug targets to diseases outcomes, and hence to guide drug development efforts.


Asunto(s)
Índice de Masa Corporal , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Análisis de la Aleatorización Mendeliana , Fenotipo , Humanos , Receptor del Péptido 1 Similar al Glucagón/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
8.
Children (Basel) ; 11(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38397265

RESUMEN

Obesity is a significant health problem with a continuously increasing prevalence among children and adolescents that has become a modern pandemic during the last decades. Nowadays, the genetic contribution to obesity is well-established. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles, and meta-analyses regarding the genetics of obesity and current pharmacological treatment, published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Our research was conducted between December 2022 and December 2023. We used the terms "obesity", "genetics", "monogenic", "syndromic", "drugs", "autosomal dominant", "autosomal recessive", "leptin-melanocortin pathway", and "children" in different combinations. Recognizing the genetic background in obesity can enhance the effectiveness of treatment. During the last years, intense research in the field of obesity treatment has increased the number of available drugs. This review analyzes the main categories of syndromic and monogenic obesity discussing current data on genetic-based pharmacological treatment of genetic obesity and highlighting the necessity that cases of genetic obesity should follow specific, pharmacological treatment based on their genetic background.

9.
J Cutan Med Surg ; 28(1): 91-92, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38156613
10.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686344

RESUMEN

Type II diabetes mellitus (T2DM) accounts for approximately 90% of all diabetes mellitus cases in the world. Glucagon-like peptide-1 receptor (GLP-1R) agonists have established an increased capability to target directly or indirectly six core defects associated with T2DM, while the underlying molecular mechanisms of these pharmacological effects are not fully known. This exploratory study was conducted to analyze the effect of treatment with GLP-1R agonists on the urinary peptidome of T2DM patients. Urine samples of thirty-two T2DM patients from the PROVALID study ("A Prospective Cohort Study in Patients with T2DM for Validation of Biomarkers") collected pre- and post-treatment with GLP-1R agonist drugs were analyzed by CE-MS. In total, 70 urinary peptides were significantly affected by GLP-1R agonist treatment, generated from 26 different proteins. The downregulation of MMP proteases, based on the concordant downregulation of urinary collagen peptides, was highlighted. Treatment also resulted in the downregulation of peptides from SERPINA1, APOC3, CD99, CPSF6, CRNN, SERPINA6, HBA2, MB, VGF, PIGR, and TTR, many of which were previously found to be associated with increased insulin resistance and inflammation. The findings indicate potential molecular mechanisms of GLP-1R agonists in the context of the management of T2DM and the prevention or delaying of the progression of its associated diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudios Prospectivos , Apolipoproteína C-III , Redes y Vías Metabólicas
11.
J Cardiovasc Dev Dis ; 10(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37623335

RESUMEN

Sodium glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like-peptide-1 receptor (GLP-1-R) agonists are novel therapeutic agents used for the management of type 2 diabetes mellitus (T2DM). Recently, large-scale randomized clinical trials have been conducted to assess the cardiovascular safety of these medications. The findings of these trials have revealed that both SGLT2 inhibitors and GLP-1-R agonists exhibit favorable cardioprotective effects, including reduction in cardiovascular and all-cause mortality, a decreased risk of chronic kidney disease progression, a decrease in hospitalization for heart failure (HF), an effect shown by SGLT2 inhibitors, and stroke prevention, an effect shown by GLP-1-R agonists. Based on the results from above studies, the European and American Diabetes Associations have issued new recommendations strongly endorsing the use of SGLT2 inhibitors and GLP-1-R agonists in combination with metformin for patients with T2DM who have additional cardiovascular (CV) comorbidities or risk factors. The primary aim of this combined therapy is to prevent CV events. Although both medication groups offer beneficial effects, they demonstrate slightly different profiles. SGLT2 inhibitors have exhibited better effects regarding a reduced incidence of HF, whereas GLP-1-R agonists have shown a reduced risk of CV events, particularly stroke. Moreover, recent European Society of Cardiology as well as American College of Cardiology and American Heart Association guidelines of HF treatment stressed the importance of SGLT2 inhibitor administration in patients with HF regardless of T2DM. In this context, we present and discuss the outcomes of the most recent trials investigating the impact of SGLT2 inhibitors and GLP-1-R agonists on renal and cardiovascular outcomes in patients, both with and without T2DM. Additionally, we explore the synergistic effects of combining SGLT2 inhibitors and GLP-1-R agonists in patients with cardiovascular disease.

13.
J Endocrinol Invest ; 46(11): 2213-2236, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37378828

RESUMEN

BACKGROUND: Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE: This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. ß3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.

14.
J Clin Endocrinol Metab ; 109(1): 10-24, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37329216

RESUMEN

PURPOSE: Polycystic ovary syndrome (PCOS) is a complex genetic trait and the most common endocrine disorder of women, clinically evident in 5% to 15% of reproductive-aged women globally, with associated cardiometabolic dysfunction. Adipose tissue (AT) dysfunction appears to play an important role in the pathophysiology of PCOS even in patients who do not have excess adiposity. METHODS: We undertook a systematic review concerning AT dysfunction in PCOS, and prioritized studies that assessed AT function directly. We also explored therapies that targeted AT dysfunction for the treatment of PCOS. RESULTS: Various mechanisms of AT dysfunction in PCOS were identified including dysregulation in storage capacity, hypoxia, and hyperplasia; impaired adipogenesis; impaired insulin signaling and glucose transport; dysregulated lipolysis and nonesterified free fatty acids (NEFAs) kinetics; adipokine and cytokine dysregulation and subacute inflammation; epigenetic dysregulation; and mitochondrial dysfunction and endoplasmic reticulum and oxidative stress. Decreased glucose transporter-4 expression and content in adipocytes, leading to decreased insulin-mediated glucose transport in AT, was a consistent abnormality despite no alterations in insulin binding or in IRS/PI3K/Akt signaling. Adiponectin secretion in response to cytokines/chemokines is affected in PCOS compared to controls. Interestingly, epigenetic modulation via DNA methylation and microRNA regulation appears to be important mechanisms underlying AT dysfunction in PCOS. CONCLUSION: AT dysfunction, more than AT distribution and excess adiposity, contributes to the metabolic and inflammation abnormalities of PCOS. Nonetheless, many studies provided contradictory, unclear, or limited data, highlighting the urgent need for additional research in this important field.


Asunto(s)
Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Humanos , Femenino , Adulto , Síndrome del Ovario Poliquístico/metabolismo , Resistencia a la Insulina/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Tejido Adiposo/metabolismo , Insulina/metabolismo , Citocinas/metabolismo , Obesidad/complicaciones , Inflamación/metabolismo , Glucosa/metabolismo
15.
Acta Pharm Sin B ; 13(4): 1648-1659, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37139407

RESUMEN

Peptides are increasingly important resources for biological and therapeutic development, however, their intrinsic susceptibility to proteolytic degradation represents a big hurdle. As a natural agonist for GLP-1R, glucagon-like peptide 1 (GLP-1) is of significant clinical interest for the treatment of type-2 diabetes mellitus, but its in vivo instability and short half-life have largely prevented its therapeutic application. Here, we describe the rational design of a series of α/sulfono-γ-AA peptide hybrid analogues of GLP-1 as the GLP-1R agonists. Certain GLP-1 hybrid analogues exhibited enhanced stability (t 1/2 > 14 days) compared to t 1/2 (<1 day) of GLP-1 in the blood plasma and in vivo. These newly developed peptide hybrids may be viable alternative of semaglutide for type-2 diabetes treatment. Additionally, our findings suggest that sulfono-γ-AA residues could be adopted to substitute canonical amino acids residues to improve the pharmacological activity of peptide-based drugs.

16.
Front Endocrinol (Lausanne) ; 14: 1095753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909312

RESUMEN

The occurrence of obesity is an increasing issue worldwide, especially in industrialized countries. Weight loss is important both to treat obesity and to prevent the development of complications. Currently, several drugs are used to treat obesity, but their efficacy is modest. Thus, new anti-obesity treatments are needed. Recently, there has been increased interest in the development of incretins that combine body-weight-lowering and glucose-lowering effects. Therefore, a new drug that simultaneously coactivates both the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R) has been developed. Tirzepatide, the first in this class, improves glycemic control by increasing insulin sensitivity and lipid metabolism as well as by reducing body weight. Combining the activation of the two receptors, greater improvement of ß-cell function offers more effective treatment of diabetes and obesity with fewer adverse effects than selective GLP-1R agonists. In the present review, we discuss the progress in the use of GIPR and GLP-1R coagonists and review literature from in vitro studies, animal studies, and human trials, highlighting the synergistic mechanisms of tirzepatide.


Asunto(s)
Polipéptido Inhibidor Gástrico , Receptor del Péptido 1 Similar al Glucagón , Animales , Humanos , Polipéptido Inhibidor Gástrico/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Incretinas , Obesidad/metabolismo , Pérdida de Peso , Glucosa/uso terapéutico
17.
Diabetologia ; 66(7): 1306-1321, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36995380

RESUMEN

AIMS/HYPOTHESIS: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons. METHODS: The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice. RESULTS: Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons. CONCLUSIONS/INTERPRETATION: Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Atrofia Óptica , Síndrome de Wolfram , Humanos , Animales , Ratones , Síndrome de Wolfram/tratamiento farmacológico , Síndrome de Wolfram/genética , Exenatida/uso terapéutico , Atrofia Óptica/patología , Células Secretoras de Insulina/patología , Ratones Noqueados
18.
Front Endocrinol (Lausanne) ; 14: 1085799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843578

RESUMEN

Obesity is a complex disease characterized by excessive fat accumulation which is caused by genetic, environmental and other factors. In recent years, there has been an increase in the morbidity, disability rate,and mortality due to obesity, making it great threat to people's health and lives, and increasing public health care expenses. Evidence from previous studies show that weight loss can significantly reduce the risk of obesity-related complications and chronic diseases. Diet control, moderate exercise, behavior modification programs, bariatric surgery and prescription drug treatment are the major interventions used to help people lose weight. Among them, anti-obesity drugs have high compliance rates and cause noticeable short-term effects in reducing obese levels. However, given the safety or effectiveness concerns of anti-obesity drugs, many of the currently used drugs have limited clinical use. Glucagon-like peptide-1 receptor (GLP-1R) agonists are a group of drugs that targets incretin hormone action, and its receptors are widely distributed in nerves, islets, heart, lung, skin, and other organs. Several animal experiments and clinical trials have demonstrated that GLP-1R agonists are more effective in treating or preventing obesity. Therefore, GLP-1R agonists are promising agents for the treatment of obese individuals. This review describes evidence from previous research on the effects of GLP-1R agonists on obesity. We anticipate that this review will generate data that will help biomedical researchers or clinical workers develop obesity treatments based on GLP-1R agonists.


Asunto(s)
Fármacos Antiobesidad , Receptor del Péptido 1 Similar al Glucagón , Animales , Receptor del Péptido 1 Similar al Glucagón/agonistas , Obesidad/etiología , Incretinas , Fármacos Antiobesidad/uso terapéutico , Pérdida de Peso
19.
Pulm Ther ; 9(1): 71-89, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36575356

RESUMEN

Adults with obesity may develop asthma that is ineffectively controlled by inhaled corticosteroids and long-acting beta-adrenoceptor agonists. Mechanistic and translational studies suggest that metabolic dysregulation that occurs with obesity, particularly hyperglycemia and insulin resistance, contributes to altered immune cell function and low-grade systemic inflammation. Importantly, in these cases, the same proinflammatory cytokines believed to contribute to insulin resistance may also be responsible for airway remodeling and hyperresponsiveness. In the past decade, new research has emerged assessing whether hypoglycemic therapies impact comorbid asthma as reflected by the incidence of asthma, asthma-related emergency department visits, asthma-related hospitalizations, and asthma-related exacerbations. The purpose of this review article is to discuss the mechanism of action, preclinical data, and existing clinical studies regarding the efficacy and safety of hypoglycemic therapies for adults with obesity and comorbid asthma.

20.
Ann Hepatol ; 28(4): 100751, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36002119

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide affecting a third of adults and 12% of children in Western countries. In around 50-60%% of cases, NAFLD and type 2 diabetes mellitus (T2DM) coexist and act synergistically to increase the risk of adverse hepatic and extra-hepatic outcomes. T2DM is a strong risk factor for rapid progression of NAFLD to nonalcoholic steatohepatitis (NASH), cirrhosis or hepatocellular carcinoma (HCC), which have become frequent indications of liver transplantation. The pathophysiology of NAFLD is complex and its relationship with T2DM is bidirectional, where lipotoxicity and insulin resistance (IR), act as the strongest pillars. To date, no pharmacological treatment has been approved for NAFLD. However, there is an intense research with numerous drugs focused on reversing inflammation and liver fibrosis through modulation of molecular targets without good results. It has been known for some time that weight reduction >10% is associated to histological improvement of NAFLD. Recently, glycemic control has been shown to induce similar results. Diet and physical exercise for weight reduction have limitations, so alternative methods (pharmacologic, endoscopic or surgical) may be required. Currently, new antidiabetic drugs inducing weight loss, have been recently approved for the treatment of obesity. Nevertheless, their therapeutic effects on NAFLD have not been extensively studied. We will review here, recently published data on the effects of weight loss and glycemic control on the histological and metabolic parameters of NAFLD and recent published data on therapeutic studies of NAFLD with new antidiabetic drugs.


Asunto(s)
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Niño , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Hipoglucemiantes/efectos adversos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Carcinoma Hepatocelular/complicaciones , Control Glucémico , Neoplasias Hepáticas/complicaciones , Cirrosis Hepática/complicaciones , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...