Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35684276

RESUMEN

Metallothioneins (MTs) are polypeptide-encoded genes involved in plant growth, development, seed formation, and diverse stress response. High temperature and humidity stress (HTH) reduce seed development and maturity of the field-grown soybean, which also leads to seed pre-harvest deterioration. However, the function of MTs in higher plants is still largely unknown. Herein, we isolated and characterized the soybean metallothionein II gene. The full-length fragment is 255 bp and encodes 85 amino acids and contains the HD domain and the N-terminal non-conservative region. The subcellular location of the GmMT-II-GFP fusion protein was clearly located in the nucleus, cytoplasm, and cell membrane. The highest expression of the GmMT-II gene was observed in seeds both of the soybean Xiangdou No. 3 and Ningzhen No. 1 cultivars, as compared to other plant tissues. Similarly, gene expression was higher 45 days after flowering followed by 30, 40, and 35 days. Furthermore, the GmMT-II transcript levels were significantly higher at 96 and 12 h in the cultivars Xiangdou No. 3 and Ningzhen No. 1 under HTH stress, respectively. In addition, it was found that when the Gm1-MMP protein was deleted, the GmMT-II could bind to the propeptide region of the Gm1-MMP, but not to the signal peptide region or the catalytic region. GmMT-II overexpression in transgenic Arabidopsis increased seed germination and germination rate under HTH conditions, conferring enhanced resistance to HTH stress. GmMT-II overexpressing plants suffered less oxidative damage under HTH stress, as reflected by lower MDA and H2O2 content and ROS production than WT plants. In addition, the activity of antioxidant enzymes namely SOD, CAT, and POD was significantly higher in all transgenic Arabidopsis lines under HTH stress compared wild-tpye plants. Our results suggested that GmMT-II is related to growth and development and confers enhanced HTH stress tolerance in plants by reduction of oxidative molecules through activation of antioxidant activities. These findings will be helpful for us in further understanding of the biological functions of MT-II in plants.

2.
Front Plant Sci ; 13: 865584, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548294

RESUMEN

Isoflavones, one of the most important secondary metabolites produced by soybeans (Glycine max (L.) Merr.), are important for a variety of biological processes, and are beneficial for human health. To identify genetic loci underlying soybean isoflavone content, a mapping population containing 119 F5:18 recombinant inbred lines, derived by crossing soybean cultivar "Zhongdou27" with "Dongong8004," was used. We identified 15 QTLs associated with isoflavone contents. A novel loci, qISO19-1, was mapped onto soybean chromosome 19 and was fine-mapped to a 62.8 kb region using a BC2F2 population. We considered GmMT1 as a candidate gene for the qISO19-1 locus due to the significant positive correlation recovered between its expression level and isoflavone content in the seeds of 43 soybean germplasms. Overexpression of GmMT1 in Arabidopsis and soybean cultivars increased isoflavone contents. Transgenic soybeans overexpressing GmMT1 also exhibited improved resistance to pathogenic infection, while transgenic Arabidopsis resisted salt and drought stress.

3.
Phytochemistry ; 159: 90-101, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30605853

RESUMEN

The main polysaccharide of the gel present in the leaves of or Aloe vera Burm.F., (Aloe barbadensis Miller) a xerophytic crassulacean acid metabolism (CAM) plant, is an acetylated glucomannan named acemannan. This polysaccharide is responsible for the succulence of the plant, helping it to retain water. In this study we determined using polysaccharide analysis by carbohydrate gel electrophoresis (PACE) that the acemannan is a glucomannan without galactose side branches. We also investigated the expression of the gene responsible for acemannan backbone synthesis, encoding a glucomannan mannosyltransferase (GMMT, EC 2.4.1.32), since there are no previous reports on GMMT expression under water stress in general and specifically in Aloe vera. It was found by in silico analyses that the GMMT gene belongs to the cellulose synthase-like A type-9 (CSLA9) subfamily. Using RT-qPCR it was found that the expression of GMMT increased significantly in Aloe vera plants subjected to water stress. This expression correlates with an increase of endogenous ABA levels, suggesting that the gene expression could be regulated by ABA. To corroborate this hypothesis, exogenous ABA was applied to non-water-stressed plants, resulting in a significant increase of GMMT expression after 48 h of ABA treatment.


Asunto(s)
Ácido Abscísico/farmacología , Aloe/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Mananos/metabolismo , Metiltransferasas/genética , Estrés Fisiológico , Agua/metabolismo , Aloe/enzimología , Aloe/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Dominio Catalítico , ADN Complementario/genética , Sequías , Electroforesis en Gel de Almidón/métodos , Cromatografía de Gases y Espectrometría de Masas , Metiltransferasas/química , Metiltransferasas/metabolismo , Homología de Secuencia de Aminoácido
4.
ACS Nano ; 10(6): 5740-50, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-26982386

RESUMEN

We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...