Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Helminthol ; 98: e41, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785193

RESUMEN

Background: Inflammatory bowel disease is an autoimmune disease that affects the gut. T. spiralis larvae (E/S Ags) loaded on calcium-benzene-1,3,5-tricarboxylate metal-organic frameworks (Ca-BTC MOFs) were tested to determine whether they might prevent or cure acetic acid-induced murine colitis. Methods: T. spiralis larvae E/S Ags/Ca-BTC MOFs were used in prophylactic and therapeutic groups to either precede or follow the development of murine colitis. On the seventh day after colitis, mice were slaughtered. The effect of our target antigens on the progress of the colitis was evaluated using a variety of measures, including survival rate, disease activity index, colon weight/bodyweight, colon weight/length) ratios, and ratings for macroscopic and microscopic colon damage. The levels of inflammatory cytokines (interferon-γ and interleukin-4), oxidative stress marker malondialdehyde, and glutathione peroxidase in serum samples were evaluated. Foxp3 T-reg expression was carried out in colonic and splenic tissues. Results: T. spiralis larvae E/S Ags/Ca-BTC MOFs were the most effective in alleviating severe inflammation in murine colitis. The survival rate, disease activity index score, colon weight/length and colon weight/bodyweight ratios, and gross and microscopic colon damage scores have all considerably improved. A large decrease in proinflammatory cytokine (interferon-γ) and oxidative stress marker (malondialdehyde) expression and a significant increase in interleukin-4 and glutathione peroxidase expression were obtained. The expression of Foxp3+ Treg cells was elevated in colonic and splenic tissues. Conclusion: T. spiralis larvae E/S Ags/Ca-BTC MOFs had the highest anti-inflammatory, antioxidant, and cytoprotective capabilities against murine colitis and might be used to develop new preventative and treatment strategies.


Asunto(s)
Colitis , Citocinas , Larva , Estructuras Metalorgánicas , Trichinella spiralis , Animales , Ratones , Estructuras Metalorgánicas/química , Colitis/prevención & control , Colitis/inducido químicamente , Colitis/parasitología , Trichinella spiralis/inmunología , Antígenos Helmínticos/inmunología , Modelos Animales de Enfermedad , Colon/parasitología , Colon/patología , Ratones Endogámicos BALB C , Femenino , Masculino
2.
J Med Life ; 17(2): 157-163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38813367

RESUMEN

Aging, a complex physiological process affecting all living things, is a major area of research, particularly focused on interventions to slow its progression. This study assessed the antiaging efficacy of dapagliflozin (DAPA) on various aging-related parameters in a mouse model artificially induced to age. Forty male Swiss albino mice were randomly divided into four groups of ten animals each. The control group (Group I) received normal saline. The aging model group (Group II) was administered D-galactose orally at 500mg/kg to induce aging. Following the aging induction, the positive control group received Vitamin C supplementation (Group III), while the DAPA group (Group IV) was treated with dapagliflozin. The inflammatory mediators (TNF-α and IL-1ß) showed similar patterns of change. No statistically significant difference was observed between groups III and IV. Both groups had significantly lower values compared to GII, while it was significantly higher compared to GI. Glutathione peroxidase (GSH-Px) showed no statistically significant difference between groups GIII and GIV, but it was higher in GIII compared to GII and significantly lower in GIII compared to GI. The study demonstrated that dapagliflozin exerts a beneficial impact on many indicators of aging in mice. The intervention resulted in a reduction in hypertrophy in cardiomyocytes, an enhancement in skin vitality, a decrease in the presence of inflammatory mediators, and an improvement in the efficacy of antioxidants.


Asunto(s)
Envejecimiento , Compuestos de Bencidrilo , Glucósidos , Inflamación , Estrés Oxidativo , Animales , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Ratones , Masculino , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Biomarcadores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo
3.
Food Res Int ; 180: 114089, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395585

RESUMEN

Selenium bioavailability is critically influenced by gut microbiota, yet the interaction dynamics with selenocompounds remain unexplored. Our study found that L-Selenomethionine (SeMet) and Se-(Methyl)seleno-L-cysteine (MeSeCys) maintained stability during in vitro gastrointestinal digestion. In contrast, Selenite and L-Selenocystine (SeCys2) were degraded by approximately 13% and 35%. Intriguingly, gut microflora transformed MeSeCys, SeCys2, and Selenite into SeMet. Moreover, when SeCys2 and Selenite incubated with gut microbiota, they produced red selenium nanoparticles with diameters ranging between 100 and 400 nm and boosted glutathione peroxidase activity. These changes were positively associated with an increased relative abundance of unclassified_g__Blautia (Family Lachnospiraceae), Erysipelotrichaceae_UCG-003 (Family Erysipelatoclostridiaceae), and uncultured_bacterium_g__Subdoligranulum (Family Ruminococcaceae). Our findings implied that differential microbial sensitivities to selenocompounds, potentially attributable to their distinct mechanisms governing selenium uptake, storage, utilization, and excretion.


Asunto(s)
Microbioma Gastrointestinal , Selenio , Selenio/metabolismo , Antioxidantes/metabolismo , Fermentación , Ácido Selenioso , Ácidos Grasos Volátiles , Digestión
4.
Braz. j. med. biol. res ; 45(8): 716-720, Aug. 2012. tab
Artículo en Inglés | LILACS | ID: lil-643659

RESUMEN

The objective of this study was to evaluate the effect of short-term levosimendan exposure on oxidant/antioxidant status and trace element levels in the testes of rats under physiological conditions. Twenty male Wistar albino rats were randomly divided into two groups of 10 animals each. Group 1 was not exposed to levosimendan and served as control. Levosimendan (12 µg/kg) diluted in 10 mL 0.9% NaCl was administered intraperitoneally to group 2. Animals of both groups were sacrificed after 3 days and their testes were harvested for the determination of changes in tissue oxidant/antioxidant status and trace element levels. Tissue malondialdehyde (MDA) was significantly lower in the levosimendan group (P < 0.001) than in the untreated control group and superoxide dismutase and glutathione peroxidase (GSH-Px) levels were significantly higher in the levosimendan group (P < 0.001). Carbonic anhydrase, catalase and GSH levels were not significantly different from controls. Mg and Zn levels of testes were significantly higher (P < 0.001) and Co, Pb, Cd, Mn, and Cu were significantly lower (P < 0.001) in group 2 compared to group 1. Fe levels were similar for the two groups (P = 0.94). These results suggest that 3-day exposure to levosimendan induced a significant decrease in tissue MDA level, which is a lipid peroxidation product and an indicator of oxidative stress, and a significant increase in the activity of an important number of the enzymes that protect against oxidative stress in rat testes.


Asunto(s)
Animales , Masculino , Ratas , Antioxidantes/farmacología , Hidrazonas/farmacología , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piridazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Oligoelementos/análisis , Glutatión Peroxidasa/metabolismo , Distribución Aleatoria , Ratas Wistar , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...