Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39222205

RESUMEN

Combined deficiency of coagulation factor V (FV) and factor VIII (FVIII) is a rare bleeding disease caused by variants in either lectin mannose binding 1 (LMAN1) or multiple coagulation factor deficiency 2 (MCFD2) gene. Reducing the level of FVIII by inhibiting the LMAN1-MCFD2 complex may become a new anticoagulant approach. We aimed to find a new therapeutic option for anticoagulation by RNA interference (RNAi) targeting LMAN1 and MCFD2. siRNA sequences with cross-homology between mice and humans were designed based on LMAN1 or MCFD2 transcripts in NCBI and were screened with the Dual-Luciferase reporter assay. The optimal siRNAs were chemically modified and conjugated with three N-acetylgalactosamine molecules (GalNAc-siRNA), promoting their targeted delivery to the liver. The expression of LMAN1 and MCFD2 in cell lines or mice was examined by RT-qPCR and western blotting. For the mice administered with siRNA, we assessed their coagulation function by measuring APTT and the activity of FVIII factor. After administration, siRNAs GalNAc-LMAN1 and GalNAc-MCFD2 demonstrated effective and persistent LMAN1 and MCFD2 inhibition. 7 days after injection of 3mg/kg GalNAc-LMAN1, the LMAN1 mRNA levels reduced to 19.97% ± 3.78%. MCFD2 mRNA levels reduced to 32.22% ± 13.14% with injection of 3mg/kg GalNAc-MCFD2. After repeated administration, APTT was prolonged and the FVIII activity was remarkably decreased. The tail bleeding test of mice showed that the amount of bleeding in the treated group did not significantly increase compared with the control group. Our study confirms that therapy with RNAi targeting LMAN1-MCFD2 complex is effective and can be considered a viable option for anticoagulation drugs. However, the benefits and potential risk of bleeding in thrombophilic mice model needs to be evaluated.

2.
Front Immunol ; 15: 1430057, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100678

RESUMEN

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis, with clinical outcomes ranging from asymptomatic infections to severe invasive diseases. The innate immune system, particularly macrophages, is of paramount importance in resisting the invasion of host tissues and organs by the trophozoites of E. histolytica. Parasite-derived pathogenic factors, such as lectins, play a pivotal role in the promotion of macrophage polarization phenotypes that have undergone alteration. Nevertheless, the precise mechanisms by which E. histolytica modulates immune polarization remain largely unknown. The current study focused on the immunomodulatory effects of the Igl-C fragment of E. histolytica Gal/GalNAc lectin on macrophage polarization. These results demonstrated that Igl-C could induce the secretion of IL-1ß, IL-6, and other cytokines, activating a mixed M1/M2 polarization state. M1 polarization of macrophages occurs in the early stages and gradually transitions to M2 polarization in the later stages, which may contribute to the persistence of the infection. Igl-C induces the macrophage M1 phenotype and causes the release of immune effector molecules, including iNOS and cytokines, by activating the NF-κB p65 and JAK-STAT1 transcription factor signaling pathways. Furthermore, Igl-C supports the macrophage M2 phenotype via JAK-STAT3 and IL-4-STAT6 pathways, which activate arginase expression in later stages, contributing to the tissue regeneration and persistence of the parasite. The involvement of distinct signaling pathways in mediating this response highlights the complex interplay between the parasite and the host immune system. These findings enhance our understanding of the Igl-C-mediated pathogenic mechanisms during E. histolytica infection.


Asunto(s)
Entamoeba histolytica , Entamebiasis , Lectinas , Macrófagos , Entamoeba histolytica/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/parasitología , Entamebiasis/inmunología , Entamebiasis/parasitología , Animales , Ratones , Lectinas/metabolismo , Lectinas/inmunología , Citocinas/metabolismo , Activación de Macrófagos , Humanos , Transducción de Señal , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo
3.
J Adv Res ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111624

RESUMEN

INTRODUCTION: Embryo implantation requires synergistic interaction between the embryo and the receptive endometrium. Glycoproteins and glycan-binding proteins are involved in endometrium-embryo attachment. Sialyl Tn (sTn), a truncated O-glycan, is catalyzed by ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 1 (ST6GALNAC1) and can be detected by specific Sialic-acid-binding immunoglobulin-like lectins (Siglecs). Whether the sTn-Siglecs axis supports embryo implantation remains unknown. OBJECTIVES: This paper aims to study the role of ST6GALNAC1/sTn-Siglecs axis in embryo implantation. METHODS: ST6GALNAC1 and sTn in human endometrium were analyzed by immunohistochemistry. An in vitro implantation model was conducted to evaluate the effects of ST6GALNAC1/sTn on the receptivity of human endometrial AN3CA cells to JAR spheroids. Immunoprecipitation combined with mass spectrometry analysis was carried out to identify the key proteins modified by sTn in endometrial cells. Siglec-6 in human embryos was analyzed by published single-cell RNA sequencing (scRNA-seq) datasets. Protein interaction assay was applied to verify the bond between the Siglec-6 with sTn-modified CD44. St6galnac1 siRNAs and anti-sTn antibodies were injected into the uterine horn of the mouse at the pre-implantation stage to evaluate the role of endometrial St6galnac1/sTn in embryo implantation. Siglec-G in murine embryos was analyzed by immunofluorescence staining. The function of Siglec-G is evidenced by uterine horn injection and protein interaction assay. RESULTS: Both human and murine endometrium at the receptive stage exhibit higher ST6GALNAC1 and sTn levels compared to the non-receptive stage. Overexpression of ST6GALNAC1 significantly enhanced the receptivity of AN3CA cells to JAR spheroids. Inhibition of endometrial ST6GALNAC1/sTn substantially impaired embryo implantation in vivo. CD44 was identified as a carrier for sTn in the endometrial cells of both species. Siglec-6 and Siglec-G, expressed in the embryonic trophectoderm, were found to promote embryo attachment, which may be achieved through binding with sTn-modified CD44. CONCLUSION: ST6GALNAC1-regulated sTn in the endometrium aids in embryo attachment through interaction with trophoblastic Siglecs.

4.
J Lipid Res ; : 100635, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187042

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide. If left untreated, MASLD can progress from simple hepatic steatosis to metabolic dysfunction-associated steatohepatitis (MASH), which is characterized by inflammation and fibrosis. Current treatment options for MASLD remain limited, leaving substantial unmet medical needs for innovative therapeutic approaches. Here, we show that PLIN2, a lipid droplet protein inhibiting hepatic lipolysis, serves as a promising therapeutic target for MASLD. Hepatic PLIN2 levels were markedly elevated in multiple MASLD mouse models induced by diverse nutritional and genetic factors. The liver-specific deletion of Plin2 exhibited significant anti-MASLD effects in these models. To translate this discovery into a therapeutic application, we developed a GalNAc-siRNA conjugate with enhanced stability chemistry and validated its potent and sustained efficacy in suppressing Plin2 expression in mouse livers. This siRNA therapeutic, named GalNAc-siPlin2, was shown to be biosafe in mice. Treatment with GalNAc-siPlin2 for 6-8 weeks led to a decrease in hepatic triglyceride levels by approximately 60% in high-fat diet- and obesity-induced MASLD mouse models, accompanied with increased hepatic secretion of very-low-density lipoprotein (VLDL)-triglyceride and enhanced thermogenesis in brown adipose tissues. 8-week treatment with GalNAc-siPlin2 significantly improved hepatic steatosis, inflammation and fibrosis in high fat/high fructose-induced MASH models compared to control group. As a proof of concept, we developed a GalNAc-siRNA therapeutic targeting human PLIN2, which effectively suppressed hepatic PLIN2 expression and ameliorated MASLD in humanized PLIN2 knock-in mice. Together, our results highlight the potential of GalNAc-siPLIN2 as a candidate MASLD therapeutic for clinical trials.

5.
J Biol Chem ; 300(9): 107628, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098533

RESUMEN

The UDP-N-acetylgalactosamine polypeptide:N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes initiates O-linked glycosylation by catalyzing the addition of the first GalNAc sugar to serine or threonine on proteins destined to be membrane-bound or secreted. Defects in individual isoforms of the GalNAc-T family can lead to certain congenital disorders of glycosylation (CDG). The polypeptide N-acetylgalactosaminyltransferase 3 (GALNT)3-CDG, is caused by mutations in GALNT3, resulting in hyperphosphatemic familial tumoral calcinosis due to impaired glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) within osteocytes of the bone. Patients with hyperphosphatemia present altered bone density, abnormal tooth structure, and calcified masses throughout the body. It is therefore important to identify all potential substrates of GalNAc-T3 throughout the body to understand the complex disease phenotypes. Here, we compared the Galnt3-/- mouse model, which partially phenocopies GALNT3-CDG, with WT mice and used a multicomponent approach using chemoenzymatic conditions, a product-dependent method constructed using EThcD triggered scans in a mass spectrometry workflow, quantitative O-glycoproteomics, and global proteomics to identify 663 Galnt3-specific O-glycosites from 269 glycoproteins across multiple tissues. Consistent with the mouse and human phenotypes, functional networks of glycoproteins that contain GalNAc-T3-specific O-glycosites involved in skeletal morphology, mineral level maintenance, and hemostasis were identified. This library of in vivo GalNAc-T3-specific substrate proteins and O-glycosites will serve as a valuable resource to understand the functional implications of O-glycosylation and to unravel the underlying causes of complex human GALNT3-CDG phenotypes.

6.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000392

RESUMEN

Preeclampsia (PE) is a pregnancy-specific disorder associated with shallow invasion of the trophoblast cells and insufficient remodeling of the uterine spiral artery. Protein glycosylation plays an important role in trophoblast cell invasion. However, the glycobiological mechanism of PE has not been fully elucidated. In the current study, employing the Lectin array, we found that soybean agglutinin (SBA), which recognizes the terminal N-acetylgalactosamine α1,3-galactose (GalNAc α1,3 Gal) glycotype, was significantly increased in placental trophoblast cells from PE patients compared with third-trimester pregnant controls. Upregulating the expression of the key enzyme α1,3 N-acetylgalactosaminyl transferase (GTA) promoted the biosynthesis of terminal GalNAc α1,3 Gal and inhibited the migration/invasion of HTR8/SVneo trophoblast cells. Moreover, the methylation status of GTA promoter in placental tissues from PE patients was lower than that in the third trimester by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis. Elevated GTA expression in combination with the DNA methylation inhibitor 5-azacytidine (5-AzaC) treatment increased the glycotype biosynthesis and impaired the invasion potential of trophoblast cells, leading to preeclampsia. This study suggests that elevated terminal GalNAc α1,3 Gal biosynthesis and GTA expression may be applied as the new markers for evaluating placental function and the auxiliary diagnosis of preeclampsia.


Asunto(s)
Movimiento Celular , N-Acetilgalactosaminiltransferasas , Preeclampsia , Trofoblastos , Humanos , Preeclampsia/metabolismo , Preeclampsia/patología , Trofoblastos/metabolismo , Trofoblastos/patología , Femenino , Embarazo , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Adulto , Metilación de ADN , Regiones Promotoras Genéticas , Línea Celular , Placenta/metabolismo
7.
Pharmaceutics ; 16(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39065635

RESUMEN

Hyperuricemia, i.e., increased plasma uric acid concentration, is a common problem in clinical practice, leading to gout or nephrolithiasis, and is associated with other disorders, such as metabolic syndrome, cardiovascular disease, and chronic renal disease. Xanthine oxidoreductase (XOR) is a critical rate-limiting enzyme involved in uric acid synthesis and a promising target for hyperuricemia therapy. However, XOR inhibitors currently face clinical problems such as a short half-life and side effects. Here, we found that specifically targeting liver Xor with GalNAc-siRNAs had a good therapeutic effect on hyperuricemia. First, siRNAs were designed to target various sites in the homologous region between Homo sapiens and Mus musculus Xor mRNA and were screened in primary mouse hepatocytes. Then, the siRNAs were modified to increase their stability in vivo and conjugated with GalNAc for liver-specific delivery. The effects of GalNAc-siRNAs were evaluated in three hyperuricemia mouse models, including potassium oxonate and hypoxanthine administration in WT and humanized XDH mice and Uox knockout mice. Febuxostat, a specific XOR inhibitor used for hyperuricemia treatment, was used as a positive control. Targeting liver Xor with GalNAc-siRNAs by subcutaneous administration reduced plasma uric acid levels, uric acid accumulation in the kidney, renal inflammation, and fibrosis, thereby alleviating kidney damage in hyperuricemia mouse models without hepatoxicity. The results demonstrated that targeting liver Xor with GalNAc-siRNAs was a promising strategy for hyperuricemia therapy.

8.
mLife ; 3(1): 57-73, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38827513

RESUMEN

O-glycosylation is an ancient yet underappreciated protein posttranslational modification, on which many bacteria and viruses heavily rely to perform critical biological functions involved in numerous infectious diseases or even cancer. But due to the innate complexity of O-glycosylation, research techniques have been limited to study its exact role in viral attachment and entry, assembly and exit, spreading in the host cells, and the innate and adaptive immunity of the host. Recently, the advent of many newly developed methodologies (e.g., mass spectrometry, chemical biology tools, and molecular dynamics simulations) has renewed and rekindled the interest in viral-related O-glycosylation in both viral proteins and host cells, which is further fueled by the COVID-19 pandemic. In this review, we summarize recent advances in viral-related O-glycosylation, with a particular emphasis on the mucin-type O-linked α-N-acetylgalactosamine (O-GalNAc) on viral proteins and the intracellular O-linked ß-N-acetylglucosamine (O-GlcNAc) modifications on host proteins. We hope to provide valuable insights into the development of antiviral reagents or vaccines for better prevention or treatment of infectious diseases.

9.
Heliyon ; 10(11): e31924, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841435

RESUMEN

Small interference RNA (siRNA) is a class of short double-stranded RNA molecules that cause mRNA degradation through an RNA interference mechanism and is a promising therapeutic modality. RBD1016 is a siRNA drug in clinical development for the treatment of chronic Hepatitis B Virus (HBV) infection, which contains a conjugated with N-acetylglucosamine moiety that can facilitate its hepatic delivery. We aimed to construct a semi-mechanistic model of RBD1016 in pre-clinical animals, to elucidate the pharmacokinetic/pharmacodynamic (PK/PD) profiles in mice and PK profiles in monkeys, which can lay the foundation for potential future translation of RBD1016 PK and PD from the pre-clinical stage to the clinic stage. The proposed semi-mechanistic PK/PD model fitted PK and PD data in HBV transgenic mice well and described plasma and liver concentrations in the monkeys well. The simulation results showed that our model has a reasonable predictive ability for Hepatitis B surface antigen (HBsAg) levels after multiple dosing in mice. Further PK and PD data for RBD1016, including clinical data, will assist in refining the model presented here. Our current effort focused on model building for RBD1016, we anticipate that the model could apply to other GalNAc-siRNA drugs.

10.
Drug Discov Ther ; 18(3): 178-187, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38777764

RESUMEN

In humans, Entamoeba histolytica is the main pathogen causing various amoebiases, while E. moshkovskii falls between being a pathogen and non-pathogen. The two species have similar behavior patterns but differ significantly in pathogenicity, with previous studies and clinical data indicating that E. moshkovskii has a low level of pathogenicity. Meaningfully, the biological characteristics of E. moshkovskii make it a potential model organism and a protein display platform for studying the functions of important Entamoeba proteins. Here, an Amoeba-pcDNA3.1 vector capable of overexpressing E. histolytica-sourced Igl-C protein was constructed and successfully transfected into E. moshkovskii. High levels of expression of the Igl-C, EGFP, and NeoR genes were identified in Igl-C-transfected trophozoites using qRT-PCR, and they were subsequently confirmed using immunoblotting. Transfection of Igl-C protein improved the adherence and phagocytosis of E. moshkovskii, demonstrating that E. histolytica Igl mediated amoebic adhesion. Moreover, as a manifestation of protein virulence, the ability of post-transfected trophozoites to induce inflammation in host macrophages was also enhanced. In conclusion, this study utilizing the characteristics of E. moshkovskii confirmed its potential to serve as a model organism. E. moshkovskii could replace E. histolytica as the target of gene editing, allowing more efficient study of amoebic pathogenicity.


Asunto(s)
Entamoeba histolytica , Entamoeba , Proteínas Protozoarias , Trofozoítos , Entamoeba/genética , Entamoeba/patogenicidad , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Entamoeba histolytica/genética , Entamoeba histolytica/patogenicidad , Entamoeba histolytica/metabolismo , Trofozoítos/metabolismo , Fagocitosis , Lectinas/metabolismo , Lectinas/genética , Humanos , Animales , Transfección , Virulencia/genética , Entamebiasis/parasitología , Ratones
11.
J Virol ; 98(6): e0052424, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38757972

RESUMEN

Ebola virus glycoprotein (EBOV GP) is one of the most heavily O-glycosylated viral glycoproteins, yet we still lack a fundamental understanding of the structure of its large O-glycosylated mucin-like domain and to what degree the host O-glycosylation capacity influences EBOV replication. Using tandem mass spectrometry, we identified 47 O-glycosites on EBOV GP and found similar glycosylation signatures on virus-like particle- and cell lysate-derived GP. Furthermore, we performed quantitative differential O-glycoproteomics on proteins produced in wild-type HEK293 cells and cell lines ablated for the three key initiators of O-linked glycosylation, GalNAc-T1, -T2, and -T3. The data show that 12 out of the 47 O-glycosylated sites were regulated, predominantly by GalNAc-T1. Using the glycoengineered cell lines for authentic EBOV propagation, we demonstrate the importance of O-linked glycan initiation and elongation for the production of viral particles and the titers of progeny virus. The mapped O-glycan positions and structures allowed to generate molecular dynamics simulations probing the largely unknown spatial arrangements of the mucin-like domain. The data highlight targeting GALNT1 or C1GALT1C1 as a possible way to modulate O-glycan density on EBOV GP for novel vaccine designs and tailored intervention approaches.IMPORTANCEEbola virus glycoprotein acquires its extensive glycan shield in the host cell, where it is decorated with N-linked glycans and mucin-type O-linked glycans. The latter is initiated by a family of polypeptide GalNAc-transferases that have different preferences for optimal peptide substrates resulting in a spectrum of both very selective and redundant substrates for each isoform. In this work, we map the exact locations of O-glycans on Ebola virus glycoprotein and identify subsets of sites preferentially initiated by one of the three key isoforms of GalNAc-Ts, demonstrating that each enzyme contributes to the glycan shield integrity. We further show that altering host O-glycosylation capacity has detrimental effects on Ebola virus replication, with both isoform-specific initiation and elongation playing a role. The combined structural and functional data highlight glycoengineered cell lines as useful tools for investigating molecular mechanisms imposed by specific glycans and for steering the immune responses in future vaccine designs.


Asunto(s)
Ebolavirus , Polisacáridos , Replicación Viral , Ebolavirus/fisiología , Ebolavirus/metabolismo , Humanos , Células HEK293 , Glicosilación , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Glicoproteínas/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
12.
AAPS J ; 26(3): 41, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570436

RESUMEN

Small interfering RNA (siRNA) is gaining momentum as a therapeutic modality with six approved products. Since siRNA has the potential to elicit undesired immune responses in patients, immunogenicity assessment is required during clinical development by regulatory authorities. In this study, anti-siRNA polyclonal antibodies were generated through animal immunization. These cross-reactive polyclonal antibodies recognized mostly the N-acetylgalactosamine (GalNAc) moiety with a small fraction against sequence-independent epitopes. We demonstrate that the polyclonal antibodies can be utilized as immunogenicity assay positive controls for the same class of GalNAc-conjugated siRNAs. In addition, anti-GalNAc mAbs showed desired sensitivity and drug tolerance, supporting their use as alternative surrogate positive controls. These findings can guide positive control selection and immunogenicity assay development for GalNAc-conjugated siRNAs and other oligonucleotide therapeutics.


Asunto(s)
Acetilgalactosamina , Oligonucleótidos , Animales , Humanos , ARN Interferente Pequeño/genética , Anticuerpos Monoclonales
13.
Xenotransplantation ; 31(2): exen12855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38602029

RESUMEN

Carbohydrate-antigens widely existed on glycoproteins and glycosphingolipids of all mammalian cells play a crucial role in self-defense and immunity. Xeno-reactive antibodies included in natural human sera play a protecting role in an acute phase-rejection of xenotransplantation. In this study, we investigated the effect of an alteration of glycosylation-pattern, caused by human sialyltransferases such as hST3Gal II or hST6GalNAc IV, on human serum mediated cytotoxicity in pig kidney PK15 cells. From LDH cytotoxicity assay, cytotoxicity to human serum was significantly increased in hST3Gal II and hST6GalNAc IV-transfected PK15 cells, as compared to the control. In the hST6Gal I-carrying cells, the cytotoxicity to human serum was rather decreased. Moreover, flow cytometry analysis revealed that an alteration of pig glycosylation-pattern by hST3Gal II or hST6GalNAc IV influences on a binding of human IgM or IgG, respectively, in pig kidney cells, regardless of Gal antigen alteration. Finally, we found that hST6GalNAc IV contributed to increase of terminal disialylated tetrasaccharide structure, disialyl T antigen, as evidenced by increase of the MAL II lectin binding capacity in the hST6GalNAc IV-transfected PK15 cells, compared with control. Therefore, our results suggest that carbohydrate antigens, such as disialyl T antigen, newly synthesized by the ST3Gal II- and ST6GalNAc IV are potentially believed to be new xeno-reactive elements.


Asunto(s)
Sialiltransferasas , Trasplante Heterólogo , beta-Galactosida alfa-2,3-Sialiltransferasa , Animales , Humanos , Antígenos Virales de Tumores , Carbohidratos , Mamíferos/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/química , Sialiltransferasas/metabolismo , Porcinos
14.
Mol Biotechnol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456963

RESUMEN

Precise quantification of human cells in preclinical animal models by a sensitive and specific approach is warranted. The probe-based quantitative PCR (qPCR) assay as a sensitive and swift approach is suitable for the quantification of human cells by targeting human-specific DNA sequences. In this study, we developed an efficient qPCR assay targeting human-specific DNA in ST6GALNAC3 (termed ST6GAL-qPCR) for the quantification of human cells in preclinical animal models. ST6GAL-qPCR probe was synthesized with FAM and non-fluorescent quencher-minor groove binder conjugated to the 5' and 3' end of the probe, respectively. Genomic DNA from human, rhesus monkeys, cynomolgus monkeys, New Zealand White rabbits, SD rats, C57BL/6, and BALB/c mice were utilized for analyzing the specificity and sensitivity of the ST6GAL-qPCR assay. The ST6GAL-qPCR assay targeted human-specific DNA was cloned to pUCM-T vector and released by EcoR I/Hind III digestion for generating a calibration curve. Cell mixing experiment was performed to validate the ST6GAL-qPCR assay by analysis of 0.1%, 0.01%, and 0.001% of human leukocytes mixed with murine thymocytes. The ST6GAL-qPCR assay detected human DNA rather than DNA from the tested animal species. The amplification efficiency of the ST6GAL-qPCR assay was 93% and the linearity of calibration curve was R2 = 0.999. The ST6GAL-qPCR assay detected as low as 5 copies of human-specific DNA and is efficient to specially amplify as low as 30-pg human DNA in the presence of 1 µg of DNA from the tested species, respectively. The ST6GAL-qPCR assay was able to quantify as low as 0.01% of human leukocytes within murine thymocytes. This ST6GAL-qPCR assay can be used as an efficient approach for the quantification of human cells in preclinical animal models.

15.
Cell Metab ; 36(5): 1013-1029.e5, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38547864

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.


Asunto(s)
Inosina , Mitocondrias , Transcetolasa , Animales , Femenino , Humanos , Masculino , Ratones , Hiperinsulinismo/metabolismo , Inosina/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Transcetolasa/metabolismo
16.
Enzyme Microb Technol ; 177: 110426, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503081

RESUMEN

Eukaryotic sialyltransferases play key roles in many physiological and pathological events. The expression of active human recombinant sialyltransferases in bacteria is still challenging. In the current study, the genes encoding human N-acetylgalactosaminide α2,6-sialyltransferase V (hST6GalNAc V) and N-acetylgalactosaminide α2,6-sialyltransferase VI (hST6GalNAc VI) lacking the N-terminal transmembrane domains were cloned into the expression vectors, pET-32a and pET-22b, respectively. Soluble and active forms of recombinant hST6GalNAc V and hST6GalNAc VI when coexpressed with the chaperone plasmid pGro7 were successfully achieved in Escherichia coli. Further, lactose (Lac), Lacto-N-triose II (LNT II), lacto-N-tetraose (LNT), and sialyllacto-N-tetraose a (LSTa) were used as acceptor substrates to investigate their activities and substrate specificities. Unexpectedly, both can transfer sialic acid onto all those substrates. Compared with hST6GalNAc V expressed in the mammalian cells, the recombinant two α2,6-sialyltransferases in bacteria displayed flexible substrate specificities and lower enzymatic efficiency. In addition, an important human milk oligosaccharide disialyllacto-N-tetraose (DSLNT) can be synthesized by both human α2,6-sialyltransferases expressed in E. coli using LSTa as an acceptor substrate. To the best of our knowledge, these two active human α2,6-sialyltransferases enzymes were expressed in bacteria for the first time. They showed a high potential to be applied in biotechnology and investigating the molecular mechanisms of biological and pathological interactions related to sialylated glycoconjugates.


Asunto(s)
Escherichia coli , Proteínas Recombinantes , Sialiltransferasas , Humanos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Lactosa/metabolismo , Oligosacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Especificidad por Sustrato
17.
Gut Microbes ; 16(1): 2305477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298145

RESUMEN

Non-LEE-encoded Effector A (NleA) is a type III secreted effector protein of enterohaemorrhagic and enteropathogenic Escherichia coli as well as the related mouse pathogen Citrobacter rodentium. NleA translocation into host cells is essential for virulence. We previously published several lines of evidence indicating that NleA is modified by host-mediated mucin-type O-linked glycosylation, the first example of a bacterial effector protein modified in this way. In this study, we use lectins to provide direct evidence for the modification of NleA by O-linked glycosylation and determine that the interaction of NleA with the COPII complex is necessary for this modification to occur.


Asunto(s)
Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Animales , Ratones , Proteínas de Escherichia coli/metabolismo , Factores de Virulencia/metabolismo , Glicosilación , Proteínas Bacterianas/metabolismo
18.
Mol Immunol ; 168: 10-16, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368725

RESUMEN

Complement alternative pathway (AP) dysregulation drives C3 glomerulopathy (C3G), a rare renal disorder characterized by glomerular C3 deposition and glomerular damage, for which no effective treatments are available. Blockade of complement C3 is emerging as a viable therapeutic option. In an earlier study we showed that SLN500, a small interfering RNA targeting liver C3 synthesis, was able to limit AP dysregulation and glomerular C3d deposits in mice with partial factor H (FH) deficiency (Cfh+/- mice). Here, we assessed the pharmacological effects of SLN501 - an optimized SLN500 version - in mice with complete FH deficiency (Cfh-/- mice) that exhibit a more severe C3G phenotype. SLN501 effectively prevented liver C3 synthesis, thus limiting AP dysregulation, glomerular C3d deposits and the development of ultrastructural alterations. These data provide firm evidence of the use of siRNA-mediated liver C3 gene silencing as a potential therapy for treating C3G patients with either partial or complete FH loss of function.


Asunto(s)
Factor H de Complemento/deficiencia , Glomerulonefritis Membranoproliferativa , Enfermedades por Deficiencia de Complemento Hereditario , Enfermedades Renales , Humanos , Animales , Ratones , Complemento C3/genética , Complemento C3/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Factor H de Complemento/genética , Factor H de Complemento/uso terapéutico , Glomerulonefritis Membranoproliferativa/genética , Glomerulonefritis Membranoproliferativa/tratamiento farmacológico , Glomerulonefritis Membranoproliferativa/metabolismo , Vía Alternativa del Complemento
19.
Methods Mol Biol ; 2763: 237-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347415

RESUMEN

Mucin-type O-glycosylation is one of the most common posttranslational modifications of proteins. The abnormal expression of various polypeptide GalNAc-transferases (GALNTs) which initiate and define sites of O-glycosylation is linked to many cancers and other diseases. Many current O-glycosylation prediction programs utilize O-glycoproteomics data obtained without using the transferase isoform(s) responsible for the glycosylation. With 20 different GALNTs in humans, having the ability to predict and interpret O-glycosylation sites in terms of specific GALNT isoforms is invaluable.To fill this gap, ISOGlyP (isoform-specific O-glycosylation prediction) has been developed. Using position-specific enhancement values generated based on GalNAc-T isoform-specific amino acid preferences, ISOGlyP predicts the propensity that a site would be glycosylated by a specific transferase. ISOGlyP gave an overall prediction accuracy of 70% against in vivo data, which is comparable to that of the NetOGlyc4.0 predictor. Additionally, ISOGlyP can identify the known effects of long- and short-range prior glycosylation and can generate potential peptide sequences selectively glycosylated by specific isoforms. ISOGlyP is freely available for use at https://ISOGlyP.utep.edu . The code is also available on GitHub ( https://github.com/jonmohl/ISOGlyP ).


Asunto(s)
N-Acetilgalactosaminiltransferasas , Polipéptido N-Acetilgalactosaminiltransferasa , Humanos , Glicosilación , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Péptidos/química , Isoformas de Proteínas/metabolismo
20.
Nucleic Acid Ther ; 34(1): 18-25, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38227794

RESUMEN

The triantennary N-acetylgalactosamine (GalNAc3) cluster has demonstrated the utility of receptor-mediated uptake of ligand-conjugated antisense drugs targeting RNA expressed by hepatocytes. GalNAc3-conjugated 2'-O-methoxyethyl (2'MOE) modified antisense oligonucleotides (ASOs) have demonstrated a higher potency than the unconjugated form to support lower doses for an equivalent pharmacological effect. We utilized the Ionis integrated safety database to compare four GalNAc3-conjugated and four same-sequence unconjugated 2'MOE ASOs. This assessment evaluated data from eight randomized placebo-controlled dose-ranging phase 1 studies involving 195 healthy volunteers (79 GalNAc3 ASO, 24 placebo; 71 ASO, 21 placebo). No safety signals were identified by the incidence of abnormal threshold values in clinical laboratory tests for either ASO group. However, there was a significant increase in mean alanine transaminase levels compared with placebo in the upper dose range of the unconjugated 2'MOE ASO group. The mean percentage of subcutaneous injections leading to local cutaneous reaction was 30-fold lower in the GalNAc3-conjugated ASO group compared with the unconjugated ASO group (0.9% vs. 28.6%), with no incidence of flu-like reactions (0.0% vs. 0.7%). Three subjects (4.2%) in the unconjugated ASO group discontinued dosing. An improvement in the overall safety and tolerability profile of GalNAc3-conjugated 2'MOE ASOs is evident in this comparison of short-term clinical data in healthy volunteers.


Asunto(s)
Hepatocitos , Oligonucleótidos Antisentido , Humanos , Oligonucleótidos Antisentido/genética , ARN , Acetilgalactosamina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...